王 晶, 徐賓鐸??, 任一平, 焦 燕,2
(1.中國海洋大學(xué)水產(chǎn)學(xué)院,山東 青島 266003;2.Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0321, USA)
?
黃河口及鄰近水域魚類群落長度譜及其季節(jié)變化?
王晶1, 徐賓鐸1??, 任一平1, 焦燕1,2
(1.中國海洋大學(xué)水產(chǎn)學(xué)院,山東 青島 266003;2.Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0321, USA)
摘要:為查明黃河口及鄰近水域魚類個體長度的組成。采用2013年6月—2014年5月7個航次的漁業(yè)資源底拖網(wǎng)調(diào)查數(shù)據(jù),分析了該海域魚類群落的長度譜結(jié)構(gòu)及其季節(jié)變化。調(diào)查顯示:共捕獲魚類50種,在完全選擇性長度范圍內(nèi),全部魚類群落、底層魚類群落和暖溫性魚類群落的長度譜變化趨勢相似,各長度組內(nèi)的魚類尾數(shù)隨長度的增加呈下降趨勢。在相同月份中,底層魚類群落、暖溫性魚類群落的長度譜斜率和截距與全部魚類群落的長度譜斜率和截距之間無顯著性差異。在黃河口及鄰近水域,底層魚類和暖溫性魚類占優(yōu)勢,在全部魚類群落結(jié)構(gòu)中起主導(dǎo)作用。不同月份間,全部魚類群落的長度譜斜率和截距有顯著差異。7、8、10月(夏、秋季)的長度譜斜率的絕對值和截距值顯著高于其它月份,這與夏、秋季當(dāng)年生群體大量進(jìn)入漁業(yè)有關(guān),小個體魚類數(shù)量的劇增使長度譜變陡峭、截距值變大。冬季(2月)全部魚類群落的小個體組以安氏新銀魚為主。春季(5月)魚類數(shù)量較低,長度譜結(jié)構(gòu)簡單。研究結(jié)果表明,黃河口及鄰近水域全部魚類群落的長度組成表現(xiàn)為小型物種和小個體多,大型物種和大個體少,魚類種類組成有明顯的季節(jié)變化,進(jìn)而影響魚類群落的長度譜結(jié)構(gòu)。
關(guān)鍵詞:黃河口;魚類資源;長度譜;季節(jié)變化
引用格式:王晶,徐賓鐸,任一平,等. 黃河口及鄰近水域魚類群落長度譜及其季節(jié)變化[J].中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2016, 46(7): 44-53.
WANG Jing, XU Bin-Duo, REN Yi-Ping, et al. Size spectrum of fish community and its seasonal change in the Yellow River estuary and its adjacent waters [J]. Periodical of Ocean University of China, 2016, 46(7): 44-53.
近年來基于魚類長度的生物學(xué)指標(biāo)已廣泛應(yīng)用于漁業(yè)資源評價和管理,如魚類群落長度譜的斜率和截距[1-3]。魚類群落長度譜是表示魚類生物量或數(shù)量與長度關(guān)系的曲線,長度譜斜率代表生態(tài)系統(tǒng)的營養(yǎng)循環(huán)效率,直線越陡,效率越低;截距反映生產(chǎn)力水平的高低,截距越大,生產(chǎn)力水平越高[4-5]。魚類群落長度譜方法可以克服魚種間的復(fù)雜關(guān)系,避免種名鑒定造成的誤差,直接反映魚類長度的分布,是生態(tài)系統(tǒng)能量流動在海洋魚類群落中的直觀體現(xiàn),目前得到了廣泛的應(yīng)用[1,6-10]。魚類群落長度譜的長期變化受捕撈活動的影響,長度譜斜率可作為衡量捕撈活動強度的指標(biāo)[11-12]。
黃河口及鄰近海域是多種魚類的產(chǎn)卵場、索餌場和育幼場,對渤、黃海漁業(yè)資源補充具有重要作用[13-16]。近年來關(guān)于黃河口水域魚類群落的種類組成、區(qū)系分布、資源數(shù)量變動、資源補充和群落結(jié)構(gòu)及其變化等有較多研究[17-22]。文獻(xiàn)[23-24]研究表明,盡管不同年間魚類群落長度譜格局未發(fā)生變化,但實際上該海域種類已發(fā)生更替現(xiàn)象。黃河口及鄰近海域?qū)儆跍貛ШS?,魚類群落種類組成存在季節(jié)變化,而其魚類群落長度譜格局是否存在季節(jié)變化需要進(jìn)一步研究。
本文根據(jù)2013—2014年在黃河口及鄰近海域進(jìn)行的漁業(yè)資源調(diào)查數(shù)據(jù),分析魚類群落長度譜、不同季節(jié)間長度譜差異以及組成種類的變化,以期為黃河口及鄰近海域的海洋魚類資源的養(yǎng)護(hù)、可持續(xù)利用和科學(xué)管理提供理論依據(jù)。
1.1 數(shù)據(jù)來源
本文數(shù)據(jù)來源于2013年6、7、8、10月和2014年2、4、5月在黃河口及鄰近海域進(jìn)行的7個航次的漁業(yè)資源底拖網(wǎng)調(diào)查。調(diào)查以黃河入??跒橹行?,呈輻射狀設(shè)置5條斷面,中間3條斷面各設(shè)置4個站位,兩側(cè)斷面各設(shè)置3個站位,計18個站位(實心圓表示);黃河口以南區(qū)域設(shè)置6個站位(空心圓表示),共計24個站位(見圖1),調(diào)查海域水深范圍是5~20m。調(diào)查船功率260kW,拖網(wǎng)網(wǎng)口周長30.6m,拖曵時網(wǎng)口寬度約8m,囊網(wǎng)網(wǎng)目20mm。原則上每站位拖曵0.5h,拖速2~3kn。調(diào)查所獲漁獲物樣品全部帶回實驗室,參照《海洋調(diào)查規(guī)范》[25]進(jìn)行生物學(xué)測定和分析處理。為便于不同月間比較,將各站位漁獲量數(shù)據(jù)換算成了拖速2kn與拖網(wǎng)時間1h的單位網(wǎng)次漁獲量和漁獲尾數(shù)。
圖1 黃河口及鄰近水域漁業(yè)資源底拖網(wǎng)調(diào)查站位
1.2 分析方法
不分種類,以10mm為間距將魚類長度進(jìn)行分組;根據(jù)長度組成數(shù)據(jù),將所有魚種的標(biāo)準(zhǔn)化后的單位網(wǎng)次漁獲尾數(shù)分配至不同長度組,然后統(tǒng)計各長度組的魚類個體數(shù)量,構(gòu)建全部魚類群落的長度譜。由于調(diào)查中200mm以上個體數(shù)量較少,將200mm以上作為一個長度組。以各長度組單位網(wǎng)次漁獲尾數(shù)的自然對數(shù)(lnN)作縱坐標(biāo),長度組中值(L)作橫坐標(biāo),作兩者的關(guān)系圖;考慮到漁具選擇性,選取長度譜中完全選擇性長度范圍內(nèi)的曲線下降部分作簡單線性回歸分析,求得線性回歸方程的斜率和截距[13]。同時根據(jù)魚類的棲息水層和適溫性類型[26-28],構(gòu)建不同生態(tài)類群魚類長度譜,分析不同生態(tài)類群魚類的長度譜特征及其月變化。
應(yīng)用方差分析,比較不同類群魚類長度譜和全部魚類群落長度譜線性回歸方程的差異顯著性;比較不同月間魚類群落長度譜線性回歸方程的差異顯著性[29]。由于調(diào)查網(wǎng)具以及調(diào)查方法的限制,主要調(diào)查類群為底層魚類,黃河口及鄰近水域主要種類組成以暖溫性魚類為主。因此,對底層魚類群落及暖溫性魚類群落進(jìn)行長度譜分析,而對中上層魚類及暖水性、冷溫性魚類群落長度譜未作單獨分析。
將魚類分成鱸形目、鯡形目、鰈形目和其它魚類4個種類組(見表1),分析各月份中不同魚類組的長度組成及其對長度譜的貢獻(xiàn)。
表1 黃河口及鄰近水域不同種類組的魚類種類
續(xù)表1
種類組①組成種類②棲息水層③適溫屬性④鱸形目Perciformes小黃魚Larimichthyspolyactis(Bleeker,1877)DeT普氏櫛蝦虎魚Acentrogobiuspflaumii(Bleeker,1853)DeWW紅狼牙蝦虎魚Odontamblyopusrubicundus(Hamilton,1822)DeWW鐘馗蝦虎魚Tridentigerbarbatus(Günther,1861)DeT皮氏叫姑魚Johniusbelangeri(Cuvier,1830)DeWW小帶魚Eupleurogrammusmuticus(Gray,1831)DeWW藍(lán)點馬鮫Scomberomorrusniphonius(Cuvier&Valenciennes,1831)PeT斑尾刺蝦虎魚Synechogobiusommaturus(Richardson,1845)DeWW花鱸Lateolabraxjaponicus(Cuvier&Valenciennes,1828)DeT乳色刺蝦虎魚Acanthogobiuslactipes(Hilgendorf,1879)DeT細(xì)條天竺鯛Apogonichthyslineatus(Temminck&Schlegel,1842)DeWW銀鯧Pampusargenteus(Euphrasen,1788)PeWW黑鰓梅童Collichthysniveatus(Jordan&Starks,1906)DeT白姑魚Argyrosomusargentatus(Houttuyn,1782)DeWW多鱗鱚Sillagosihama(Forskàl,1775)DeWW長絲蝦虎魚Myersinafilifer(Valenciennes,1837)DeWW紋縞蝦虎魚Tridentigertrigonocephalus(Gill,1859)DeT其他類Others安氏新銀魚Neosanlanxanderssoni(Rendahl,1923)DeT短鰭Callionymussagitta(Pallas,1770)DeT李氏Callionymusrichardsoni(Bleeker,1854)DeT細(xì)紋獅子魚Liparistanakae(Gilbert&Burke,1912)DeCT大瀧六線魚Hexagrammosotakii(Jordan&Starks,1895)DeCT尖海龍Syngnathusacus(Linnaeus,1758)DeT泥鰍Misgurnusanguillicaudatus(Cantor,1842)DeT松江鱸Trachidermusfasciatus(Heckel,1840)DeT鳀Engraulisjaponicus(Temminck&Schlegel,1846)PeT長蛇鯔Sauridaelongata (Temminck&Shlegel,1846)DeT許氏平鲉Sebastesschlegelii(Hilgendorf,1880)DeCT鲬Platycephalusindicus(Linnaeus,1758)DeWW網(wǎng)紋東方鲀Takifugureticularis(Tian,Cheng&Wang,1975)DeT梭魚LizadussumieriDET日本下頜針魚StrongyluraanastomellaPeT緋Callionymusbeniteguri(Jordar&Snyder,1902)DeT褐菖鲉Sebastiscusmarmoratus(Cuvier&Valenciennes,1829)DeT
注:De: 底層魚類 Demersal fish; Pe: 中上層魚類 Pelagic fish。 T: 暖溫性 Warm temperate; WW: 暖水性 Warm water; CT: 冷溫性 Cold temperate。
①Species group; ②Constituent species; ③Inhabiting water layer; ④Temperature adaptive type
2.1 不同類群對長度譜的貢獻(xiàn)
圖2表明,黃河口及鄰近海域各月份中均以底層魚類為主,除8、10月小個體組外,各月份中底層魚類在各長度組均占有較高比例。對于中上層魚類,5月在95~165mm體長范圍內(nèi)有較大比例,在各體長組內(nèi)均約占50%;6月體長范圍變寬,所占數(shù)量比例降低,但在大個體組185~195mm范圍內(nèi)占100%;7月開始出現(xiàn)小個體;8月,在35~105mm各體長組的數(shù)量比例超過50%,115~145mm體長組的數(shù)量百分比低于50%;10月,無小于45mm的個體;在45~85和125~135mm范圍,中上層魚類數(shù)量百分比超過50%,在95~115和145mm體長組的比例小于50%。2、4月基本沒有中上層魚類。
圖2 黃河口及鄰近水域底層魚類、中上層魚類數(shù)量組成比例
圖3表明,黃河口及鄰近海域魚類數(shù)量組成在各月份均以暖溫性魚類為主。冷溫性種類全年較少,在4—6月35~175mm組出現(xiàn)少量個體。對于暖水性魚類,在6月15mm體長組的魚類數(shù)量組成占100%,在55~135mm體長組有少量出現(xiàn);7月在5mm體長組魚類數(shù)量占100%,在其它體長組較少;8月和7月相比,體長分布范圍類似,但比例增加;10和2月大體長組魚類個體占據(jù)較高比例,在145mm以上各體長組,數(shù)量比例超過50%;4、5月小體長組和大體長組均占較高比例,中間體長組數(shù)量較少。
由圖4可知,黃河口及鄰近海域魚類主要由鱸形目、鯡形目和鰈形目魚類等構(gòu)成,不同種類組對各體長組數(shù)量的貢獻(xiàn)隨月份而變化。鰈形目魚類個體較大,在4和6—8月大個體體長組中比例較高,在5、10月比例相對較低,在2月僅有少量出現(xiàn)。鱸形目魚類個體小,全年中在各體長組比例均較高。鯡形目魚類在5、6月較大體長組有少量出現(xiàn),7月出現(xiàn)一些小個體,8、10月在小個體體長組占50%以上,2、4月無鯡形目種類。
圖3 黃河口及鄰近水域不同適溫類型魚類數(shù)量組成比例
圖4 黃河口及鄰近水域不同分類群魚類數(shù)量組成比例
2.2長度譜及季節(jié)變化
圖5表明,在各月中,在完全選擇性長度范圍內(nèi),全部魚類群落長度譜與不同生態(tài)類群魚類群落長度譜均表現(xiàn)為各長度組內(nèi)總尾數(shù)隨長度增加而呈現(xiàn)下降趨勢;底層魚類群落長度譜、暖溫性魚類群落長度譜與全部魚類群落長度譜的變化趨勢一致。在45~65mm處全部魚類群落、底層魚類群落和暖溫性魚類群落長度譜均有一個明顯的低值。
表2表明,全部魚類群落長度譜的斜率和截距呈現(xiàn)顯著的月間差異(P<0.05),夏、秋和冬季月份長度譜斜率和截距絕對值較大,春季月份斜率和截距的絕對值較小。底層魚類群落長度譜的斜率、截距在10月與全部魚類群落長度譜的斜率、截距有顯著性差異(P<0.05),在其余月份無顯著性差異(P>0.05)。暖溫性魚類群落長度譜與全部魚類群落長度譜的斜率和截距在10、2、4月差異顯著(P<0.05),在其它月份差異不顯著(P>0.05)。
圖5 黃河口及鄰近水域全部魚類群落與不同生態(tài)類群魚類群落長度譜
參數(shù)Parameters類群Classes6月June7月July8月August10月October2月February4月April5月May斜率Slope全部魚類群落-0.352b,c-0.479a,b-0.594a-0.429b-0.426b-0.324c-0.250c底層魚類群落-0.357[2]-0.455[2]-0.437[2]-0.337[1]-0.426[2]-0.323[2]-0.275[2]暖溫性魚類群落-0.344[2]-0.474[2]-0.593[2]-0.553[1]-0.634[1]-0.514[1]-0.275[2]截距Intercept全部魚類群落8.682a,b,c11.576a,b13.437b10.650a10.916a,c7.696c6.449c底層魚類群落8.636[2]11.186[2]10.704[2]8.911[1]10.912[2]7.684[2]6.423[2]暖溫性魚類群落8.333[2]11.458[2]13.275[2]11.832[1]13.114[1]13.275[1]6.805[2]R2全部魚類群落0.7220.9010.8860.9780.8860.8110.746底層魚類群落0.6780.9000.8100.9690.8850.8090.854暖溫性魚類群落0.6380.8930.8910.9710.9500.9520.968
注:相同上標(biāo)字母表示月間差異不顯著,不同字母表示差異顯著。[1]表示在相同月份不同生態(tài)類群魚類群落長度譜與全部魚類群落長度譜組成差異顯著;[2]表示差異不顯著,顯著水平為P=0.05。
Note: The same superscript letters indicate no significant differences, different letters indicate significant differences among different months. [1] represents significant differences in size spectrum between different ecological groups and all fish species in the same month; [2]represents no significant differences at significance levelP=0.05.
3.1 魚類種類組成
黃河口及鄰近海域的底層魚類群落、暖溫性魚類群落的長度譜和全部魚類群落長度譜變化趨勢相似,這與各月份魚類種類組成有關(guān)。本次調(diào)查共捕獲魚類50種,其中底層魚類39種,中上層魚類11種;冷溫性魚類8種,暖水性魚類15種,暖溫性魚類27種。在各月份中,底層魚類和暖溫性魚類數(shù)量均占較高比例,如矛尾蝦虎魚,既是底層魚類又是暖溫性魚類,該結(jié)果可以很好地解釋暖溫性魚類群落、底層魚類群落的長度譜與全部魚類群落長度譜結(jié)果的一致性。
在8、10月,中上層魚類大量出現(xiàn),且以小個體為主,而大體長組基本全是底層魚類,造成8、10月底層魚類群落長度譜與全部魚類群落長度譜有顯著性差異(P<0.05)。2、4月水溫較低,但出現(xiàn)較多的暖水種,主要是由于斑尾刺蝦虎魚和裸項蜂巢蝦虎魚數(shù)量較多引起。本次調(diào)查中,矛尾蝦虎魚和短吻紅舌鰨是全年優(yōu)勢種;日本鳀和赤鼻棱鳀等中上層魚類僅在8、10月大量出現(xiàn),安氏新銀魚在2、4月分別為月份優(yōu)勢種;上述魚種數(shù)量的月變化一定程度上影響了目前黃河口及鄰近海域的魚類群落長度譜及其月變化特征。
3.2 長度譜斜率和截距的季節(jié)變化
全部魚類群落長度譜斜率和截距有明顯的季節(jié)差異,夏季(7、8月)直線最陡,截距最大,表明其有較高的生產(chǎn)力,營養(yǎng)循環(huán)效率偏低;秋、冬季(10、2月)截距有所下降,相對于夏季,生產(chǎn)力開始下降,直線變緩,營養(yǎng)循環(huán)效率增加;春季(4、5月)直線最平緩,截距最小,生產(chǎn)力水平低,營養(yǎng)循環(huán)效率高[4]。該長度譜分析結(jié)果與近年來在黃河口及鄰近海域的調(diào)查結(jié)果[17-22,30]一致,均顯示出該海域生產(chǎn)力水平在夏、秋季較高,冬、春季較低。
影響全部魚類群落長度譜的斜率和截距季節(jié)變化的原因,主要是當(dāng)年生幼魚群體以及洄游性魚類的加入。當(dāng)年生幼魚群體個體小,數(shù)量大,造成長度譜斜率絕對值和截距大,即生產(chǎn)力高和營養(yǎng)循環(huán)效率低的現(xiàn)象。春末夏初,洄游性魚類(主要是鯡形目魚類)洄游至該水域,其個體較大,使長度譜趨于平緩,即表現(xiàn)出生產(chǎn)力低、營養(yǎng)循環(huán)效率高的現(xiàn)象。
黃河口水域是多種魚類的重要產(chǎn)卵場和育肥場[16-18],約有39種魚類在黃河口海域產(chǎn)卵[31-32],且大多數(shù)為洄游性魚類。多數(shù)魚類產(chǎn)卵期主要在升溫季節(jié),5月水溫上升時,一些魚類便洄游至此開始產(chǎn)卵,隨著水溫繼續(xù)上升,產(chǎn)卵種類數(shù)增加。矛尾蝦虎魚當(dāng)年生幼魚分別占6、7月25~45mm體長組的90%和70%,幼魚補充群體的進(jìn)入影響了魚類群落長度譜結(jié)構(gòu)。日本鳀、赤鼻棱鳀和青鱗小沙丁魚等洄游性魚類在5、6月出現(xiàn)少量較大洄游產(chǎn)卵個體,當(dāng)年生幼魚在8和10月大量出現(xiàn),成為影響該月魚類群落長度譜結(jié)構(gòu)的主要因素。在2、4和5月,水溫較低,洄游至該水域的魚類種類少,定居種矛尾蝦虎魚等在前一年產(chǎn)卵后死亡[33],同時又無幼魚補充群體,整體漁獲數(shù)量少,這也反映出該水域漁業(yè)資源開發(fā)利用過度的現(xiàn)狀。
黃河口及鄰近海域魚類群落長度譜的斜率絕對值和截距值較高,同時長度譜結(jié)構(gòu)極易受補充群體,尤其是當(dāng)年生幼魚群體的影響,反映出該海域魚類群落結(jié)構(gòu)簡單,大型魚類個體少,魚類小型化、低質(zhì)化現(xiàn)象嚴(yán)重。同時對長度譜斜率和截距有長期影響的主要是捕撈活動,針對目標(biāo)魚種的漁業(yè)活動,使大個體、生命周期長的魚類數(shù)量減少,小個體魚類進(jìn)一步增加,造成魚類群落結(jié)構(gòu)發(fā)生變化,影響魚類群落長度譜結(jié)構(gòu)[13,34]。
黃河口及鄰近海域魚類群落長度譜具有明顯的季節(jié)變化,夏、秋季魚類群落長度譜斜率的絕對值和截距值顯著高于其它季節(jié),主要是受當(dāng)年生幼魚以及洄游性魚類數(shù)量變化的影響。該水域現(xiàn)有魚類群落結(jié)構(gòu)簡單,大型魚類個體少,魚類組成小型化現(xiàn)象突出。
參考文獻(xiàn):
[1]Rice J, Gislason H. Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models [J]. ICES Journal of Marine Science, 1996, 53(6): 1214-1225.
[2]Haedrich R L, Barnes S M. Changes over time of the size structure in an exploited shelf fish community [J]. Fisheries Research, 1997, 31(3): 229-239.
[3]Jennings S, Greenstreet S, Hill L, et al. Long-term trends in the trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size-spectra and community metrics [J]. Marine Biology, 2002, 141(6): 1085-1097.
[4]Pope J G, Knights B J. Comparison of length distributions of combined catches of all demersal fishes in surveys in the North Sea and at Faroe Bank [J]. Canadian Special Publication of Fisheries and Aquatic Sciences, 1982, 59: 116-118.
[5]Macpherson E, Gordoa A. Biomass spectra in benthic fish assemblages in the Benguela system [J]. Marine Ecology Progress Series, 1996, 138: 27-32.
[6]Sheldon R W, Prakash A, Sutcliffe W H. The size distribution of particles in the ocean [J]. Limnology and Oceanography, 1972, 17(3): 327-340.
[7]Rodríguez J. Some comments on the size-based structural analysis of the pelagic ecosystem [J]. Scientia Marina (Barcelona), 1994, 58(1): 1-10.
[8]Gobert B. Size structures of demersal catches in a multispecies multigear tropical fishery [J]. Fisheries Research, 1994, 19(1): 87-104.
[9]劉尊雷, 程家驊, 李圣法, 等. 江蘇近岸海域魚類群落結(jié)構(gòu)的變化 [J]. 中國水產(chǎn)科學(xué), 2009, 16(2): 274-281.
Liu Z L, Cheng J H, Li S F, et al. Changes of fish community structure in Jiangsu, China offshore areas[J]. Journal of Fishery Sciences of China, 2009, 16(2): 274-281.
[10]周林濱, 譚燁輝, 黃良民, 等. 水生生物粒徑譜/生物量譜研究進(jìn)展[J]. 生態(tài)學(xué)報, 2010, 30(12): 3319-3333.
Zhou L B, Tan Y H, Huang L M, et al. The advances in the aquatic particle /biomass size spectra study [J]. Acta Ecologica Sinica, 2010, 30(12): 3319-3333.
[11]Shin Y J, Rochet M J, Jennings S, et al. Using size-based indicators to evaluate the ecosystem effects of fishing [J]. ICES Journal of Marine Science, 2005, 62(3): 384-396.
[12]程家驊, 姜亞洲. 捕撈對海洋魚類群落影響的研究進(jìn)展 [J]. 中國水產(chǎn)科學(xué), 2008, 15(2): 359-366.
Cheng J H, Jiang Y Z. Methods for evaluating fishing effects on fish community [J]. Journal of Fishery Sciences of China, 2008, 15(2): 359-366.
[13]Chen D G, Shen W Q, Liu Q, et al. The geographical characteristics and fish species diversity in the Laizhou Bay and Yellow River estuary [J]. 中國水產(chǎn)科學(xué), 2000, 7(3): 46-52.
Chen D G, Shen W Q, Liu Q, et al. The geographical characteristics and fish species diversity in the Laizhou Bay and Yellow River estuary [J]. Journal of Fishery Sciences of China, 2000, 7(3): 46-52.
[14]朱鑫華, 繆鋒, 劉棟, 等. 黃河口及鄰近海域魚類群落時空格局與優(yōu)勢種特征研究[J]. 海洋科學(xué)集刊, 2001, 43: 141-150.
Zhu X H, Miu F, Liu D, et al. Spatiotemporal pattern and dominant component of fish community in the Yellow River estuary and its adjacent waters [J]. Studia Marina Sinica, 2001, 43: 141-150.
[15]鄧景耀, 金顯仕. 萊州灣及黃河口水域漁業(yè)生物多樣性及其保護(hù)研究 [J]. 動物學(xué)研究, 2002, 21(2): 76-82.
Deng J Y, Jin X S. Study on fishery biodiversity and its conservation in Laizhou Bay and Yellow River estuary [J]. Zoological Research, 2002, 21(2): 76-82.
[16]張洪亮, 楊建強, 崔文林. 萊州灣鹽度變化現(xiàn)狀及其對海洋環(huán)境與生態(tài)的影響 [J]. 海洋環(huán)境科學(xué), 2006, 25(Sup1): 11-14.
Zhang H L, Yang J Q, Cui W L. Status of salinity changes and the effect on marine environments and ecosystem in Laizhou Bay [J]. Marine Environmental Science, 2006, 25(sup1): 11-14.
[17]張旭, 張秀梅, 高天翔, 等. 黃河口海域弓子網(wǎng)漁獲物組成及其季節(jié)變化 [J]. 漁業(yè)科學(xué)進(jìn)展, 2009, 30(6): 118-124.
Zhang X, Zhang X M, Gao T X, et al. Composition of catches by beam trawl and its seasonal variations in Yellow River estuary [J]. Progress in Fishery Sciences, 2009, 30(6): 118-124.
[18]張旭. 黃河口海域漁業(yè)資源調(diào)查及現(xiàn)狀評價的初步研究[D]. 青島: 中國海洋大學(xué), 2009.
Zhang X. Primary studies on fishery resources investigation and evaluation of the Yellow River estuary [D]. Qingdao: Ocean University of China, 2009.
[19]卞曉東, 張秀梅, 高天翔, 等. 2007年春、夏季黃河口海域魚卵、仔稚魚種類組成與數(shù)量分布[J]. 中國水產(chǎn)科學(xué), 2010, 17(4): 815-827.
Bian X D, Zhang X M, Gao T X, et al. Category composition and distributional patterns of ichthyoplankton in the Yellow River estuary during spring and summer 2007 [J]. Journal of Fishery Sciences of China, 2010, 17(4): 815-827.
[20]呂振波, 李凡, 曲業(yè)兵, 等. 2010年夏季黃河口及鄰近海域魚類群落多樣性[J]. 漁業(yè)科學(xué)進(jìn)展, 2013, 34(2): 10-18.
Lv Z B, Li F, Qu Y B, et al. Fish community diversity in the Huanghe estuary and its adjacent area in summer, 2010 [J]. Progress in Fishery Sciences, 2013, 34(2): 10-18.
[21]孫鵬飛, 單秀娟, 吳強, 等. 萊州灣及黃河口水域魚類群落結(jié)構(gòu)的季節(jié)變化[J]. 生態(tài)學(xué)報, 2014, 34(2): 367-376.
Sun P F, Shan X J, Wu Q, et al. Seasonal variations in fish community structure in the Laizhou Bay and the Yellow River estuary [J]. Acta Ecologica Sinica, 2014, 34(2): 367-376.
[22]鄭亮, 呂振波, 李凡, 等. 調(diào)水調(diào)沙期間黃河口海域魚類群落結(jié)構(gòu)特征[J]. 中國水產(chǎn)科學(xué), 2014, 21(3): 602-610.
Zheng L, Lv Z B, Li F, et al. Fish community structure in the Yellow River estuary: Effect of water and sediment discharge regulations [J]. Journal of Fishery Sciences of China, 2014, 21(3): 602-610.
[23]Bianchi G, Gislason H, Graham K, et al. Impact of fishing on size composition and diversity of demersal fish communities [J]. ICES Journal of Marine Science, 2000, 57(3): 558-571.
[24]Duplisea D E, Kerr S R, Dickie L M. Demersal fish biomass size spectra on the Scotian Shelf, Canada: species replacement at the shelfwide scale [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(8): 1725-1735.
[25]中國國家質(zhì)量監(jiān)督檢驗檢疫總局. 海洋調(diào)查規(guī)范第6部分: 海洋生物調(diào)查 (GB/T 12763. 6-2007) [M]. 北京: 中國標(biāo)準(zhǔn)出版社, 2007.
General administration of quality supervision, inspection and quarantine of the People's Republic of China. Specifications for oceanographic survey, Part 6: Marine biological survey (GB/T 12763. 6-2007) [M]. Beijing: China Standards Press, 2007.
[26]李思忠, 王惠民. 中國動物志: 硬骨魚綱. 鰈形目[M]. 北京: 科學(xué)出版社, 1995.
Li S Z, Wang H M. Fauna Sinica of China: Osteichthyes. Pleuronectiformes [M]. Beijing: Science Press, 1995.
[27]伍漢霖, 鐘俊生. 中國動物志: 硬骨魚綱. 鱸形目[M]. 北京:科學(xué)出版社, 2008.
Wu H L, Zhong J S. Fauna Sinica of China: Osteichthyes. Perciformes [M]. Beijing: Science Press, 2008.
[28]張世義. 中國動物志: 硬骨魚綱. 鱘形目, 海鰱目, 鯡形目, 鼠鱚目[M]. 北京: 科學(xué)出版社, 2001.
Zhang S Y. Fauna Sinica of China: Osteichthyes. Acipenseriformes. Elopiformes. Clupeiformes. Gonorhynchiformes [M]. Beijing: Science Press, 2001.
[29]杜榮騫. 生物統(tǒng)計學(xué)(第三版) [M]. 北京: 高等教育出版社, 2009.
Du R Q. Biostatistics (third edition)[M]. Beijing: Higher Education Press, 2009.
[30]張繼民, 劉霜, 張琦, 等. 黃河口附近海域浮游植物種群變化[J]. 海洋環(huán)境科學(xué), 2010, 29(6): 834-837.
Zhang J M, Liu S, Zhang Q, et al. Population variation of phytoplankton around Yellow River estuary[J]. Marine Environmental Science, 2010, 29(6): 834-837.
[31]楊紀(jì)明, 李軍. 近十五年來中國海洋魚類學(xué)的研究概況[J]. 海洋科學(xué)集刊, 1995, 36: 297-310.
Yang J M, Li J. Progress of Chinese marine ichthyology in the last 15 years [J]. Studia Marina Sinica, 1995, 36: 297-310.
[32]Yang J M, Wang C X. Primary fish survey in the Huanghe River estuary [J]. Chinese Journal of Oceanology and Limnology, 1993, 11(4): 368-374.
[33]Graham N A J, Dulvy N K, Jennings S, et al. Size-spectra as indicators of the effects of fishing on coral reef fish assemblages [J]. Coral Reefs, 2005, 24(1): 118-124.
[34]陳大剛. 矛尾復(fù)蝦虎魚[J]. 水產(chǎn)科技情報, 1975, 2: 29-30.
Chen D G.Synechogobiushasta[J]. Fisheries Science and Technology Information, 1975, 2: 29-30.
責(zé)任編輯朱寶象
基金項目:? 公益性行業(yè)(農(nóng)業(yè))科研專項(201303050)資助
收稿日期:2015-03-05;
修訂日期:2015-09-17
作者簡介:王晶(1990-),女,碩士生,主要從事漁業(yè)資源與生態(tài)學(xué)研究。E-mail:wangjing9_1@sina.cn ??通訊作者: E-mail:bdxu@ouc.edu.cn
中圖法分類號:S932.4
文獻(xiàn)標(biāo)志碼:A
文章編號:1672-5174(2016)07-044-10
DOI:10.16441/j.cnki.hdxb.20150062
Size Spectrum of Fish Community and Its Seasonal Change in the Yellow River Estuary and Its Adjacent Waters
WANG Jing1, XU Bin-Duo1, REN Yi-Ping1, JIAO Yan1,2
(1. College of Fisheries, Ocean University of China, Qingdao 266003, China; 2. Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0321, USA)
Abstract:Individual size is a fundamental property of fish species, which is linked to the life history traits and physiological properties including production, metabolic rate, reproductive efficiency and trophic interactions among fish species. The size spectrum of fish assemblage is a curve that describes the relationship between fish biomass or abundance and the length of individuals. Both the slope and intercept of size spectrum are individual size-based biological indicators, which reflect the nutrient cycling efficiency and productivity level of the aquatic ecosystem. To ascertain the size structure of the fish assemblage in the Yellow River estuary and its adjacent waters, the fish community size spectrum and its seasonal variation were examined based on the data collected from a seven months survey conducted from June 2013 to May 2014. In total, 50 fish species were captured during the survey. The results showed that the aggregated length distribution for all fish species, and those for demersal fish species and warm temperate fish species showed a consistent pattern of decreasing logarithmic numbers with increasing length over the fully selected size range. Both the slope and intercept of the size spectrum of all fish species showed significantly monthly and seasonal changes; the absolute value of slope and intercept of all fish assemblage in July, August and October were significantly higher than those in other months. Gene-rally, the size spectrum of both demersal fish and warm temperate fish showed consistent pattern with that of all fish species. The demersal fish species and warm temperate fish species dominated most of the length interval of the size spectrum of fish community each month. Significant difference in slope and intercept of the size spectrum of all fish species among different months were observed. The absolute values of slope and intercept of the size spectrum for all fish species in July, August and October were higher than those in other months. The abundance of Neosanlanx anderssoni contributed considerably to the small length interval of fish size spectrum in February, and the size spectrum of fish assemblage in May exhibited a simple pattern with low abundance in each length interval. The monthly change in size spectrum was related to the recruitment of young of the year to the fisheries in summer and autumn, and the increase in abundance of small-sized individuals affected the size spectrum pattern, which resulted in high slope and intercept. The size structure of fish species in the Yellow River estuary and its adjacent waters was characterized by small-sized species or small-sized individuals, and the size spectrum was affected by the seasonal variation in fish species composition. It indicated that the fish community structure was simple and unstable, and some relevant measures should be taken to ensure the conservation and sustainable utilization of fish resource in the Yellow River estuary and its adjacent waters.
Key words:Yellow River Estuary; fish resources; size spectrum; seasonal change
Supported by Special Fund for Agro-scientific Research in the Public Interest (201303050)