宋波+程景霞+王彥旭+畢澤鋒
摘要:基于某兩聯曲線橋建立了計算模型,通過橫橋向橡膠防撞墊片的設置,研究了橡膠墊片設計參數對曲線橋動力特性的影響。結果表明:橡膠墊片的加設使曲線橋旋轉中心點轉移,位移偏移方向改變;在設置橡膠墊片時,應考慮橡膠墊片的剛度以保證墊片作用力最大值不超過其極限值,避免梁體出現偏移;通過墊片的加設可以減弱梁體與擋塊的碰撞,降低墩底曲率延性需求系數;隨著間隙值的增大,橡膠墊片利用率明顯下降,相對墊片的負荷增大,在保證曲線橋溫度正常服役變形要求的前提下盡量減小間隙值的取值;隨著硬度的增大,橡膠墊片強度增大,變形能力減弱,進而造成橡膠墊片利用率降低,建議選取邵氏硬度55作為橡膠墊片的首選值。
關鍵詞:曲線橋;橡膠墊片;力學特性;間隙值;硬度
中圖分類號:TU311文獻標志碼:A
Abstract: The calculation model was established based on a curved bridge with twolinking, and the influences of parameters of rubber gasket on mechanical characteristic of curved bridge were studied. The results show that application of rubber gasket make the rotation center of curved bridge transfer and the offset direction change. When rubber gasket is arranged, the stiffness of rubber gasket should be considered to ensure that the maximum force of gasket doesnt exceed the limit value, and the deviation of beam body is avoided. The impact of beam body and block stop can be reduced by addition of gasket, and the curvature ductility demand coefficient of pier bottom can be reduced. The utilization rate of rubber gasket decreases obviously and the load of relative gasket increases with the increase of gap value. Under the premise of ensuring the normal service deformation requirements of temperature of curved bridge, the gap value should be reduced as far as possible. With the increase of hardness, the strength of rubber gasket increases, the deformation ability is weakened, and the utilization rate of rubber gasket is reduced. It is suggested that the Shore hardness value of 55 is taken as the first choice of rubber gasket.
Key words: curved bridge; rubber gasket; mechanical characteristic; gap value; hardness
0引言
2008年中國四川省汶川縣發(fā)生8.0級地震,造成大量公路橋梁破壞,該地區(qū)的橋梁主要為連續(xù)簡支梁橋,支座多為直接擱置的板式橡膠支座,地震中穩(wěn)定性較差,主梁與橋墩連接較為薄弱,更多地發(fā)生橫向、縱向移位,乃至最終落梁[1]。中國地震局2015年11月3日發(fā)布中國第5代地震區(qū)劃圖,該區(qū)劃圖以抗倒塌為設防目標,罕遇地震作用橋在該區(qū)劃圖中得到充分體現。然而罕遇地震作用下曲線橋主梁梁體與橫橋向擋塊碰撞受損嚴重,縱向、橫向相對位移過大易發(fā)生落梁,給災后救援增加了難度。本文基于曲線橋橫橋向橡膠墊片的設置,為防止曲線橋橫橋向相對位移過大而導致落梁坍塌,提出了較為經濟合理的措施。
現階段各國對曲線梁橋的抗震性能進行了初步探究。朱東升等[2]采用反應譜法計算了曲線橋地震反應,研究了計算精度、計算中需選取的振型數及最大值的組合方法;聶利英等[3]基于位移和多級設防的橋梁抗震設計思想對曲線梁的抗震性能進行了評估。在數值仿真分析方面,魏雙科等[4]提出了一種雙脊骨空間有限元模型以模擬和分析立交橋曲線箱梁的固有振動特性和動力反應。曲線梁橋碰撞破壞的研究開展相對較少,李黎等[56]研究了公路和城市立交曲線梁橋的相鄰梁體碰撞地震反應,分析了鉛芯橡膠支座對鄰橋碰撞反應的影響;郭安薪等[7]研究了針對高架橋梁碰撞的磁流變阻尼器(MR)半主動控制以及采用形狀記憶合金(SMA)限位器的落梁控制;Shrestha等[8]研究了梁間形狀記憶合金的連梁裝置在罕遇地震作用下的有效性;Khatiwada等[9]基于考慮線性、非線性力位移關系的模型,研究了鄰梁間的碰撞效應及碰撞力;黃勇等[10]研究了汶川地震中小半徑曲線連續(xù)梁橋不同下部結構形式及固定墩上下部結構不同連接方式對曲線梁橋抗震性能的影響;王陽春等[11]指出地震波輸入方式、墩梁約束形式、寬度和跨徑的改變對小半徑匝道曲線梁橋地震響應的影響較大;王軍文等[12]研究了橫橋向地震作用下非規(guī)則梁橋梁體與抗震擋塊間的碰撞對結構橫橋向地震反應的影響;徐略勤等[13]研究了考慮上部梁體與防震擋塊間橫向碰撞效應的非規(guī)則梁橋橫向地震力分布規(guī)律;石巖等[14]建立了考慮偏心距、橋墩彈塑性、樁土相互作用等因素的合理碰撞模型;鄧育林等[15]研究了橫向地震作用下梁體與擋塊間的碰撞效應,推導出阻尼常數與恢復系數間的關系表達式,并提出了為減小梁體與橫橋向擋塊間碰撞效應的擋塊剛度合理取值。
本文以某兩聯八跨曲線橋作為研究對象,考慮碰撞過程中的能量損失,建立了加設橫橋向橡膠防撞墊片裝置的計算模型,分析了橫橋向橡膠防撞墊片設置前后曲線橋動力特性的改變,并對間隙值、橡膠硬度等設計參數進行了分析。
1橡膠防撞墊片作用機理
加設橫向防撞橡膠墊片的曲線橋梁間與擋塊的計算模型[圖1(a)]設置了2個間隙單元,其作用原理為:當上部梁體與橡膠墊片的相對距離為0時,橡膠墊片的間隙單元開始發(fā)揮作用,橡膠墊片承受壓應力進而發(fā)生壓縮變形;隨著該過程的持續(xù),當梁體與擋塊間的相對距離減小到0時,梁體與擋塊橫向碰撞的第2個間隙單元開始發(fā)揮作用,而梁體與橡膠墊片的間隙單元在此時退出工作,即代表橡膠墊片失效。碰撞過程中的恢復力特性如圖1(b)所示(其中,F為恢復力,u為位移),在對防撞橡膠墊片進行設計時通常改變上部梁體與橡膠墊片的間隙d0、橡膠墊片與橫橋向擋塊的間隙d1,以及橡膠墊片剛度k1、碰撞剛度k2等,進而分析其對結構碰撞反應和結構整體動力響應的影響。
4.2橡膠墊片硬度對曲線橋動力響應影響
沿各墩分別提取不同橡膠墊片硬度所對應的梁體與墩頂的相對徑向位移,如圖10所示。天津波作用下除7#墩外其余各墩相對徑向位移均隨著橡膠墊片硬度的增大而減小,7#墩處相對徑向位移較無橡膠墊片時增大;T1Ⅲ波作用下各墩相對徑向位移基本隨著橡膠墊片硬度的增大而減小,相對徑向位移減小值最大出現在2#墩處,減小52.3%。在不同地震動作用下,曲線橋上部梁體與墩頂的相對徑向位移基本都包絡在無橡膠墊片的曲線內,隨著橡膠墊片硬度的增大,梁體與墩頂的相對徑向位移基本呈減小的規(guī)律,但個別墩處易發(fā)生突變,選取橡膠墊片硬度值時應著重考慮這類突變對曲線橋整體動力特性的影響。
不同橡膠墊片硬度時防撞橡膠墊片利用率如圖11所示。同各墩防撞橡膠墊片的利用率極限值相比,隨著硬度的增大,2#墩處曲線橋保持偏右的運動,右邊橡膠墊片承擔負荷大;第1聯5#墩處左右兩邊橡膠墊片的作用力同極限值比值的最小值分別為0.28,0.55,表明在該處曲線橋仍偏右運動,第2聯5#墩處該比值分別為0.65,0.56;9#墩與第2聯5#墩處的規(guī)律相同。隨著橡膠墊片硬度增大,梁體與擋塊間橡膠墊片作用力最大值同極限值的比值呈減小趨勢,即隨著硬度的增大,橡膠墊片強度增大,圖11不同橡膠墊片硬度時的利用率變形能力減弱,進而造成橡膠墊片利用率降低。
5結語
(1)由于橫橋向防撞橡膠墊片的加設,曲線橋運動形式發(fā)生改變,梁體與墩頂相對徑向位移減小明顯,在設置橡膠墊片時,考慮橡膠墊片的剛度以保證橡膠墊片最大碰撞力不超過其極限值,避免梁體出現偏移;另外,通過橡膠墊片的加設可以有效減弱梁體與擋塊的碰撞,耗散能量,降低墩底曲率延性需求系數。
(2)隨著間隙值的增大,曲線橋梁體與墩頂的相對徑向位移變化規(guī)律呈非線性增大,橡膠墊片利用率明顯下降,同時增大了橡膠墊片的負荷,梁體與擋塊的橫向碰撞力呈增大趨勢。因此,在保證曲線橋溫度正常服役變形要求的前提下盡量減小間隙值的取值。
(3)隨著橡膠墊片硬度的增大,梁體與墩頂的相對徑向位移減小,梁體與擋塊橫向碰撞反應減弱,但橡膠墊片強度增大,變形能力會相應減弱,進而造成橡膠墊片利用率降低。通過綜合比選各指標,建議對于類似曲線橋,橡膠墊片邵氏硬度55為首選值。
參考文獻:
References:
[1]王東升,郭迅,孫治國,等.汶川大地震公路橋梁震害初步調查[J].地震工程與工程振動,2009,29(3):8494.
WANG Dongsheng,GUO Xun,SUN Zhiguo,et al.Damage to Highway Bridges During Wenchuan Earthquake[J].Earthquake Engineering and Engineering Dynamics,2009,29(3):8494.
[2]朱東生,劉世忠,虞廬松.曲線橋地震反應研究[J].中國公路學報,2002,15(3):4248.
ZHU Dongsheng,LIU Shizhong,YU Lusong.Research on Seismic Response of Curved Girder Bridges[J].China Journal of Highway and Transport,2002,15(3):4248.
[3]聶利英,李建中,胡世德,等.曲線梁橋非線性分析及抗震性能評估[J].同濟大學學報:自然科學版,2004,32(10):13601364.
NIE Liying,LI Jianzhong,HU Shide,et al.Nonlinear Analysis and Seismic Estimation on Curved Beam Bridge[J].Journal of Tongji University:Natural Science,2004,32(10):13601364.
[4]魏雙科,李鴻晶,羅寒松,等.立交橋曲線箱梁動力分析模型[J].地震工程與工程振動,2006,26(4):168174.
WEI Shuangke,LI Hongjing,LUO Hansong,et al.A Dynamic Model of Curved Box Girder Beam in Highway Interchanges[J].Earthquake Engineering and Engineering Dynamics,2006,26(4):168174.
[5]李黎,吳璟,葉志雄.隔震曲線橋梁碰撞研究[J].工程抗震與加固改造,2008,30(5):4854.
LI Li,WU Jing,YE Zhixiong.Research on Pounding of Isolated Curved Bridge[J].Earthquake Resistant Engineering and Retrofitting,2008,30(5):4854.
[6]MENDEZ GALINDO C,HAYASHIKAWA T,RUIZ JULIAN D.Curvature Effect on Seismic Response of Curved Highway Viaducts Equipped with Unseating Cable Restrainers[J].Journal of Structural Engineering.A,2008,54A:315323.
[7]郭安薪,李惠,李忠軍,等.高架橋梁的地震碰撞和落梁分析及其控制[J].防災減災工程學報,2010,30(增):172176.
GUO Anxin,LI Hui,LI Zhongjun,et al.Analysis and Control of Seismic Collision and Beam Falling of Viaduct Bridge[J].Journal of Disaster Prevention and Mitigation Engineering,2010,30(S):172176.
[8]SHRESTHA B,HAO H,BI K.Effectiveness of Using Rubber Bumper and Restrainer on Mitigating Pounding and Unseating Damage of Bridge Structures Subjected to Spatially Varying Ground Motions[J].Engineering Structures,2014,79:195210.
[9]KHATIWADA S,CHOUW N,BUTTERWORTH J W.A Generic Structural Pounding Model Using Numerically Exact Displacement Proportional Damping[J].Engineering Structures,2014,6263:3341.
[10]黃勇,李瑞,朱文駿.汶川地震中小半徑曲線連續(xù)梁橋震害機理分析[J].地震工程與工程振動,2014,34(增):383388.
HUANG Yong,LI Rui,ZHU Wenjun.Analysis of Damage Mechanism of Small Radius Curve Continuous Beam Bridges During the Wenchuan Earthquake[J].Earthquake Engineering and Engineering Dynamics,2014,34(S):383388.
[11]王陽春,徐秀麗,李雪紅,等.小半徑匝道曲線梁橋地震響應分析[J].世界地震工程,2014,30(1):154159.
WANG Yangchun,XU Xiuli,LI Xuehong,et al.Seismic Response Analysis of a Smallradius Curved Girder Bridge[J].World Earthquake Engineering,2014,30(1):154159.
[12]王軍文,李建中,范立礎.非規(guī)則梁橋橫橋向地震碰撞反應分析[J].振動與沖擊,2010,29(6):2530,233.
WANG Junwen,LI Jianzhong,FAN Lichu.Analysis on Pounding Effect of Irregular Girder Bridges Under Transverse Earthquake[J].Journal of Vibration and Shock,2010,29(6):2530,233.
[13]徐略勤,李建中,吳陶晶.碰撞效應對非規(guī)則梁橋橫向地震反應的影響[J].振動與沖擊,2011,30(4):9599,123.
XU Lueqin,LI Jianzhong,WU Taojing.Influence of Pounding Effects on Transverse Seismic Response of a Nonstandard Girder Bridge[J].Journal of Vibration and Shock,2011,30(4):9599,123.
[14]石巖,王軍文,秦洪果,等.橋梁橫向地震碰撞響應研究進展[J].石家莊鐵道大學學報:自然科學版,2012,25(1):2024.
SHI Yan,WANG Junwen,QIN Hongguo,et al.Recent Development in Pounding Response of Bridges Under Transverse Earthquakes[J].Journal of Shijiazhuang Tiedao University:Natural Science,2012,25(1):2024.
[15]鄧育林,彭天波,李建中.地震作用下橋梁結構橫向碰撞模型及參數分析[J].振動與沖擊,2007,26(9):104107,119,173174.
DENG Yulin,PENG Tianbo,LI Jianzhong.Pounding Model of Bridge Structures and Parameter Analysis Under Transverse Earthquakes[J].Journal of Vibration and Shock,2007,26(9):104107,119,173174.
[16]肖俊恒.減振橡膠設計方法的研究[J].中國鐵道科學,2001,22(6):111116.
XIAO Junheng.Study on Engineering Design of Shock Absorption Rubber[J].China Railway Science,2001,22(6):111116.
[17]GB 50463—2008,隔振設計規(guī)范[S].
GB 50463—2008,Code for Design of Vibration Isolation[S].