国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基因組編輯技術(shù)及其在微藻中的應(yīng)用

2016-07-25 09:52:40林根妹楊官品
海洋科學(xué) 2016年4期
關(guān)鍵詞:微藻

林根妹,楊官品

?

基因組編輯技術(shù)及其在微藻中的應(yīng)用

林根妹,楊官品

(中國(guó)海洋大學(xué) 海洋生命學(xué)院,山東 青島 266003)

摘要:基因組編輯技術(shù)主要有鋅指核酸酶(zinc finger nuclease,ZFN)技術(shù)、轉(zhuǎn)錄激活子樣效應(yīng)因子核酸酶(transcription activator-like effector nuclease,TALEN)技術(shù)和成簇的規(guī)律間隔的短回文重復(fù)序列(clustered regularly interspaced short palindromic repeats,CRISPR)/Cas核酸酶系統(tǒng)。這些技術(shù)已被廣泛用于模式生物、經(jīng)濟(jì)動(dòng)植物的基因功能驗(yàn)證和遺傳改良,在微藻中亦有成功應(yīng)用實(shí)例。本文簡(jiǎn)要介紹了基因組編輯技術(shù),并分析了這些技術(shù)在微藻中的應(yīng)用,以期為微藻基因功能解析和遺傳修飾提供新方法參考。

關(guān)鍵詞:基因組編輯; ZFN; TALEN; CRISPR/Cas; 微藻

基因組編輯是一組對(duì)基因組中特定DNA序列進(jìn)行堿基添加、刪除或替換的技術(shù)。“編輯”有按照設(shè)計(jì)者意愿靈活改變DNA序列的含義。核酸內(nèi)切酶廣泛用于DNA定點(diǎn)切割,可識(shí)別和切割DNA序列。另有一類蛋白,如鋅指蛋白等,可識(shí)別和結(jié)合特定

DNA序列。這些蛋白的氨基酸序列可修飾。修飾后的蛋白可改變其識(shí)別和結(jié)合DNA序列特異性。如果將內(nèi)切酶與具有DNA識(shí)別和結(jié)合特異性的可修飾的鋅指蛋白類蛋白融合,就能定點(diǎn)切割DNA形成雙鏈切口(double strand break,DSB)。細(xì)胞固有的非同源末端連接(non-homologous end-joining,NHEJ)修復(fù)過(guò)程與這些融合蛋白聯(lián)手,就能導(dǎo)致基因組定點(diǎn)插入/刪除或移碼突變,引起外源DNA插入、基因功能缺失等

(圖 1)[1-2],實(shí)現(xiàn)基因組定點(diǎn)修飾或基因組編輯[3-6]。融合蛋白的DNA內(nèi)切酶模塊可在眾多已認(rèn)知酶中選擇;

而DNA特異結(jié)合蛋白模塊的DNA識(shí)別和結(jié)合特異性的設(shè)計(jì)和修飾是基因組編輯技術(shù)的關(guān)鍵?;蚪M編輯技術(shù)快速、有效,最初在細(xì)菌中被開發(fā)和應(yīng)用,

后逐漸延伸到模式生物、高等動(dòng)植物、微藻等,不僅可用于基因表達(dá)調(diào)節(jié)、特定基因組區(qū)域或染色體結(jié)構(gòu)與功能相關(guān)性闡釋等,而且可用于基因治療和疾病模型建立[7-8]。本文歸納了幾種主要的基因組編輯方法,并對(duì)這些方法在微藻中的應(yīng)用進(jìn)行了分析,

期望能促進(jìn)基因組編輯技術(shù)在微藻中的應(yīng)用。

1 鋅指核酸酶(zinc finger nuclease,ZFN)技術(shù)

ZFN是由鋅指蛋白的鋅指DNA結(jié)合域和限制性核酸內(nèi)切酶Fok I等的DNA切割域組成的融合蛋白[9]。鋅指DNA結(jié)合域有一組α螺旋,其-1~+6氨基酸殘基可識(shí)別1個(gè)堿基三聯(lián)體[10]。設(shè)計(jì)并修飾這些α螺旋的氨基酸組成就能改變鋅指蛋白識(shí)別DNA序列的特異性[11]。專門針對(duì)特定DNA位點(diǎn)設(shè)計(jì)鋅指蛋白模塊并與內(nèi)切酶融合,鋅指蛋白可識(shí)別并結(jié)合在特定DNA序列上,而內(nèi)切酶可切割 DNA,細(xì)胞啟動(dòng)固有的 DNA修復(fù)機(jī)制,引入外源 DNA片段或形成DNA序列突變,實(shí)現(xiàn)基因組編輯[12-14]。可借助病毒或質(zhì)粒載體將ZFN基因?qū)牖蚪M,但載體可能會(huì)引起突變; 也可用鋅指模塊的跨膜功能,直接引入融合蛋白[4]。

ZFN基因組編輯方法已成功用于植物和果蠅、線蟲、斑馬魚、爪蟾、哺乳動(dòng)物等[15-17],其特異位點(diǎn)突變效率較基因敲除(gene knockout)高 103~105倍[18]。ZFN 在細(xì)胞系中的應(yīng)用也日益完善。例如,在人類細(xì)胞系中用ZFN技術(shù)可有效干擾相關(guān)基因表達(dá),聯(lián)手GFP報(bào)告系統(tǒng)還可定量ZFN效率,干細(xì)胞ZFN基因組編輯還有用于基因治療的可能[19]。

[Foundation: National High Technology Research and Development Program of China,No.2014AA022001]

圖1 ZFN,TALEN,CRISPR/Cas介導(dǎo)的基因組編輯原理Fig. 1 The principle of ZFN-,TALEN-,and CRISPR/Cas- mediated genome editing

2 轉(zhuǎn)錄激活子樣效應(yīng)因子核酸酶(transcription activator-like effector nuclease,TALEN)技術(shù)

TALEN融合蛋白包括N端核定位結(jié)構(gòu)域、來(lái)自轉(zhuǎn)錄激活子樣效應(yīng)因子(TALE)的 DNA識(shí)別結(jié)合域和C端的內(nèi)切酶。TALE是調(diào)節(jié)內(nèi)源基因轉(zhuǎn)錄活性的蛋白質(zhì),其DNA識(shí)別結(jié)合域有一組重復(fù)單元,每個(gè)重復(fù)單元由33 ~ 35個(gè)氨基酸構(gòu)成,可識(shí)別一個(gè)堿基對(duì),重復(fù)單元第12和13位氨基酸不同可改變這樣的識(shí)別功能,如N33I35識(shí)別A,N33G35識(shí)別T,H33D35識(shí)別 C,N33N35識(shí)別 G或 A等[20-21]。因此,通過(guò)修飾DNA識(shí)別結(jié)合域,可使其具有 DNA識(shí)別特異性。TALEN基因組編輯原理與ZFN基因組編輯原理類似,TALE蛋白模塊特異性識(shí)別DNA序列,TALEN結(jié)合DNA,而內(nèi)切酶模塊切割 DNA,細(xì)胞激活固有的DNA損傷修復(fù)機(jī)制,引入外源 DNA片段或鏈接形成DNA序列突變,實(shí)現(xiàn)基因組編輯[22]。

TALEN基因組編輯技術(shù)在模式生物中獲得驗(yàn)證后[23-24],已廣泛用于動(dòng)植物、酵母和各種細(xì)胞系。TALEN編輯斑馬魚基因組已實(shí)現(xiàn)特定基因沉默[25]。TALEN可介導(dǎo)釀酒酵母的多位點(diǎn)快速定向突變; 通過(guò)編輯啟動(dòng)子區(qū)保守序列TATA框與GC框間的關(guān)鍵區(qū)域,引起基因差異表達(dá),獲得多性狀菌株群,再結(jié)合熒光蛋白篩選,實(shí)現(xiàn)基因組有益修飾位點(diǎn)的積累,加速酵母遺傳性狀進(jìn)化[26]。在干細(xì)胞中使用TALEN技術(shù)已實(shí)現(xiàn)特定基因突變[27-28]。TALEN基因組編輯文庫(kù)還可高通量(成批)實(shí)現(xiàn)基因打靶。例如,高通量組裝18740個(gè)蛋白基因TALEN質(zhì)粒,可對(duì)靶基因群進(jìn)行編輯,干擾信號(hào)轉(zhuǎn)導(dǎo)通路[29]。

與ZFN相比,TALEN可提高堿基對(duì)的識(shí)別數(shù)量和修飾的方便性。ZFN通常識(shí)別 3個(gè)堿基對(duì),而TALEN的DNA識(shí)別結(jié)合域包含4個(gè)重復(fù)單元,可識(shí)別4個(gè)核苷酸對(duì)。而且,TALEN的重復(fù)單元間相互獨(dú)立,使序列特異性設(shè)計(jì)和修飾更容易[30-31]。

3 成簇的規(guī)律間隔的短回文重復(fù)序列(clustered regularly interspaced short palindromic repeats,CRISPR)/ Cas核酸酶系統(tǒng)

ZFN和TALEN都是由蛋白質(zhì)引導(dǎo)的基因組編輯方法,其關(guān)鍵在 DNA特異結(jié)合蛋白模塊的設(shè)計(jì)和修飾。除蛋白外,RNA也可發(fā)揮“定點(diǎn)”作用,主要有CRISPR/ Cas核酸酶系統(tǒng)。

CRISPR位于特殊遺傳座位。這些座位一般由高度保守的多個(gè)21~48 bp的回文重復(fù)序列和26~72 bp的重復(fù)序列間非重復(fù)間隔序列組成。CRISPR側(cè)翼有4~20個(gè) CRISPR相關(guān)基因(cas),這些基因編碼的蛋白有核酸酶活性。CRISPR/Cas系統(tǒng)是細(xì)菌和古菌特有的防御噬菌體或質(zhì)粒等外源DNA干擾基因組功能的類免疫體系[32-33]。在這一系統(tǒng)作用下,外源 DNA被優(yōu)先插入間隔序列,從而減小或消除對(duì)細(xì)菌基因組的影響。CRISPR轉(zhuǎn)錄生成前體crRNA,隨后被加工成包含部分重復(fù)和間隔序列的crRNA。cas轉(zhuǎn)錄翻譯生成Cas核酸酶,并進(jìn)一步形成CASCADE復(fù)合體。當(dāng)外源DNA第一次入侵細(xì)菌時(shí),Cas核酸酶可識(shí)別其序列,產(chǎn)生新的間隔序列并插入至已有的間隔序列中。若相同DNA再次入侵,CASCADE復(fù)合體識(shí)別,結(jié)合和剪切之,使外源 DNA特異性降解(圖2)。crRNA自身,或crRNA與反式激活的crRNA (tracrRNA)嵌合形成引導(dǎo)RNA(guide RNA,gRNA)。gRNA特異性識(shí)別結(jié)合DNA,并引導(dǎo)Cas核酸酶特異性切割DNA。因此,可針對(duì)特定DNA設(shè)計(jì)gRNA,將其與 Cas核酸酶基因重組在一個(gè)質(zhì)粒中,轉(zhuǎn)化細(xì)胞。gRNA引導(dǎo)Cas核酸酶至特定DNA序列,Cas核酸酶切割DNA,經(jīng)細(xì)胞固有修復(fù)過(guò)程,引入外源DNA或突變[34]。優(yōu)化 Cas核酸酶基因和 gRNA對(duì)應(yīng)DNA可提高CRISPER/Cas的切割效率并降低脫靶率[35-36]。

CRISPR/Cas系統(tǒng)已被用于細(xì)菌[37]、植物[38-39]、動(dòng)物[40]及人類[41]基因組編輯。對(duì)擬南芥基因組進(jìn)行CRISPR/Cas編輯時(shí),有研究者設(shè)計(jì) 2條相似的gRNA引導(dǎo)Cas核酸酶同時(shí)切割DNA的2條鏈,創(chuàng)制了新的遺傳種質(zhì)[42]。使用顯微注射將 Cas核酸酶mRNA和gRNA直接導(dǎo)入豬合子,可有效地敲除對(duì)應(yīng)基因的所有等位基因[43]。

與ZFN和TALEN這兩種蛋白引導(dǎo)的基因組編輯方法相比,使用 CRISPR/Cas系統(tǒng)時(shí)無(wú)需對(duì)DNA結(jié)合蛋白模塊本身進(jìn)行修飾改造,只需設(shè)計(jì)特異性gRNA,操作更容易。CRISPR/Cas系統(tǒng)的另一優(yōu)勢(shì)是可同時(shí)使用多條gRNA序列,實(shí)現(xiàn)多位點(diǎn)同步編輯[44]。但是多靶向 CRISPR/Cas基因組編輯方法所構(gòu)建質(zhì)粒較大,導(dǎo)入細(xì)胞較困難。

圖2 細(xì)菌CRISPR/Cas系統(tǒng)防御機(jī)制Fig. 2 CRISPR/Cas-mediated defense mechanism in bacteria

上述幾種基因組編輯技術(shù)可組合使用。例如,ZFN 和TALEN形成的雜交核酸酶具有更廣的DNA識(shí)別特異性和更高的切割效率[45]; TALEN和CRISPR/Cas系統(tǒng)在海葵中組合使用,既可誘導(dǎo)定向突變,又可實(shí)現(xiàn)同源重組,從“加法”(獲得基因)和“減法”(失去基因)兩個(gè)角度解析基因功能[46]。

4 現(xiàn)有基因組編輯技術(shù)的不足

伴隨基因組編輯技術(shù)的廣泛應(yīng)用,諸多問(wèn)題也相繼顯現(xiàn),主要問(wèn)題有 DNA結(jié)合蛋白模塊特異性不足,限制了可修飾基因范圍; 脫靶現(xiàn)象(基因組上其他位置的相似序列會(huì)參與競(jìng)爭(zhēng),與外源 DNA發(fā)生非特異性結(jié)合)導(dǎo)致非靶基因突變甚至基因組范圍表達(dá)紊亂。DNA識(shí)別和結(jié)合特異性受多個(gè)因素影響,包括蛋白結(jié)構(gòu)間相似性、DNA結(jié)合域三維結(jié)構(gòu)和 DNA表觀遺傳修飾、結(jié)合域和切割域間氨基酸鉸鏈匹配度等。電泳遷移率檢測(cè)(electrophoretic mobility shift assays,EMSAs)或酶聯(lián)免疫吸附檢測(cè)(enzyme-linked immunosorbent assays,ELISAs)等可對(duì)蛋白協(xié)同性質(zhì)進(jìn)行定量分析,但仍然不是對(duì)其特異性高低的直接檢測(cè)[47]。類似問(wèn)題在 CRISPR/Cas系統(tǒng)中也存在。在探究人類早期胚胎DNA修復(fù)機(jī)制時(shí)發(fā)現(xiàn),雖然 CRISPR/Cas系統(tǒng)能有效地切割基因,但受gRNA特異性限制,導(dǎo)致編輯效率低、靶向位點(diǎn)錯(cuò)誤、插入片段無(wú)意義、或形成嵌合體胚胎等[48]。這使 DNA結(jié)合蛋白和gRNA既需巧妙設(shè)計(jì),又要有效篩選。另外,結(jié)合蛋白與特定DNA序列結(jié)合后,是否會(huì)擾亂基因組原有的表達(dá)模式等問(wèn)題有待深入研究。

5 基因組編輯技術(shù)在微藻中的應(yīng)用

基因組編輯技術(shù)在微藻中的應(yīng)用已初見端倪(表1)。萊茵衣藻(Chlamydomonas reinhardtii)中使用ZFN可實(shí)現(xiàn)對(duì)基因功能的研究。首先以抗性或熒光標(biāo)記等報(bào)告基因作為靶基因進(jìn)行敲除,可評(píng)估不同的 ZFN轉(zhuǎn)化效率,再據(jù)此結(jié)果對(duì)模塊組合進(jìn)行修飾優(yōu)化,選出特異性以及親和力最合適的核酸酶與外源DNA共轉(zhuǎn)化,實(shí)現(xiàn)對(duì)靶基因的定點(diǎn)敲除[49]。對(duì)衣藻基因組中所有可能的ZFN靶向位點(diǎn)的識(shí)別及評(píng)測(cè)已經(jīng)完成,并建立起ZFN Genome資源庫(kù)[50]。人工設(shè)計(jì)的TALE已被證實(shí)可在衣藻中充當(dāng)轉(zhuǎn)錄活化因子,可識(shí)別特異啟動(dòng)子序列并與之結(jié)合,誘導(dǎo)靶基因在轉(zhuǎn)錄和蛋白水平的表達(dá)上調(diào)[51-52]。TALEN雖尚未在衣藻中直接應(yīng)用,但TALE的使用已為其提供了初步的支持。在三角褐指藻(Phaeodactylum tricornutum)中,將TALEN編碼構(gòu)建物與選擇標(biāo)記(如抗性基因等)進(jìn)行共同轉(zhuǎn)化,通過(guò)非同源末端連接完成三角褐指藻基因組定向修飾,定向突變和基因插入的效率分別可達(dá)56%和27%。用此方法獲得了高產(chǎn)油率藻株且具有遺傳穩(wěn)定性[53]。若構(gòu)建一個(gè)同時(shí)含有尿素酶基因兩端側(cè)翼序列(約 1kbp)和選擇標(biāo)記的“敲除質(zhì)粒”,并將該質(zhì)粒與TALEN一起轉(zhuǎn)化,TALEN分別與靶基因的上下游結(jié)合完成切割,“敲除質(zhì)粒”則通過(guò)同源重組介導(dǎo)的修復(fù)過(guò)程整合到基因組,實(shí)現(xiàn)對(duì)尿素酶的干擾,從而研究相關(guān)代謝途徑[54]。將CRISPR/Cas系統(tǒng)應(yīng)用到微藻中,Cas核酸酶和gRNA在轉(zhuǎn)化衣藻24h內(nèi)有成功的瞬時(shí)表達(dá),但尚未成功得到改造后穩(wěn)定遺傳的轉(zhuǎn)化株[55]。是否可以嘗試使用特定的啟動(dòng)子驅(qū)動(dòng)Cas核酸酶基因表達(dá),或使用活性時(shí)間更短的 Cas核酸酶mRNA進(jìn)行轉(zhuǎn)化,還需驗(yàn)證。

表1 基因組編輯技術(shù)在微藻中的應(yīng)用實(shí)例Tab. 1 Examples of genome editing technique applications in microalgae

基因組編輯技術(shù)在微藻中的應(yīng)用日益廣泛。外源基因在微藻基因組中同源重組的效率很低。在衣藻中,即使不斷優(yōu)化DNA片段、長(zhǎng)度和轉(zhuǎn)化條件,同源重組的比例仍很低,最高只能達(dá)到1%左右[56-58]。因此,難以對(duì)微藻特定DNA區(qū)域進(jìn)行定向修飾。使用基因組編輯技術(shù),除可以直接進(jìn)行定向修飾外,還可以通過(guò)干擾DNA修復(fù)蛋白Ku70、Ku80、DNA連接酶IV等相關(guān)基因,提高微藻同源重組效率。包括RNA干擾在內(nèi)的一些體系,在調(diào)節(jié)基因表達(dá)時(shí)都無(wú)法做到徹底沉默靶基因,而基因組編輯技術(shù)可以避免潛在的泄漏,達(dá)到完全沉默基因的目的。另外,與高等植物相比,微藻操作更容易。基因組編輯技術(shù)具有修飾微藻基因組任何位點(diǎn)(編碼區(qū)、內(nèi)含子、啟動(dòng)子、3'非翻譯區(qū)等)的潛能。

6 結(jié)語(yǔ)

微藻是一類種類繁多、分布廣泛、能夠進(jìn)行光合作用的生物,既在生態(tài)系統(tǒng)中發(fā)揮關(guān)鍵作用,又具有水產(chǎn)養(yǎng)殖、生物能源開發(fā)、食品飼料研制等應(yīng)用價(jià)值。與其他模式生物和經(jīng)濟(jì)動(dòng)植物相比,相關(guān)基因組編輯技術(shù)和策略在微藻中雖有嘗試應(yīng)用,但仍處于起步階段。本文介紹了幾種主要的基因組編輯技術(shù),并對(duì)這些技術(shù)在微藻中的適用性進(jìn)行了分析。雖然有一些技術(shù)問(wèn)題尚待解決,但基因組編輯技術(shù)較其他技術(shù)仍具有無(wú)可比擬的優(yōu)勢(shì)和前景。

參考文獻(xiàn):

[1] Shrivastav M,De Haro L P,Nickoloff J A. Regulation of DNA double-strand break repair pathway choice[J]. Cell research,2008,18(1): 134-147.

[2] Chapman J R,Taylor M R G,Boulton S J. Playing the end game: DNA double-strand break repair pathway choice[J]. Molecular cell,2012,47(4): 497-510.

[3] Smith J,Berg J M,Chandrasegaran S. A detailed study of the substrate specificity of a chimeric restriction enzyme[J]. Nucleic Acids Research,1999,27: 674-681.

[4] Gaj T,Gersbach C A,Barbas C F. ZFN,TALEN,and CRISPR/Cas-based methods for genome engineering[J]. Trends in biotechnology,2013,31(7): 397-405.

[5] Mashimo T. Gene targeting technologies in rats: Zinc finger nucleases,transcription activator-like effector nucleases,and clustered regularly interspaced short palindromic repeats[J]. Development,growth & differentiation,2014,56(1): 46-52.

[6] Ain Q U,Chung J Y,Kim Y H. Current and future delivery systems for engineered nucleases ZFN,TALEN and RGEN[J]. Journal of Controlled Release,2015,205:120-127.

[7] Deng L,Ren R,Wu J,et al. CRISPR/Cas9 and TALE:beyond cut and paste[J]. Protein Cell 2015,6(3): 157-159.

[8] Ott de Bruin L M,Volpi S,Musunuru K. Novel genome-editing tools to model and correct primary immunodeficiencies[J]. Frontiers in Immunology,2015,6:250. Doi: 10.3389/fimmu.2015.00250.

[9] Kim Y G,Cha J,Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain [J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93: 1156-1160.

[10] Dreier B,Beerli R R,Segal D J,et al. Development of zinc finger domains for recognition of the 5'-ANN-3'family of DNA sequences and their use in the construction of artificial transcription factors[J]. The Journal of Biological Chemistry,2001,276: 29466-29478.

[11] Pabo C O,Peisach E,Grant R A. Design and selection of novel Cys2His2 zinc finger proteins[J]. Annual Review of Biochemistry,2001,70: 313-340.

[12] Carroll D. Progress and prospects: zinc-finger nucleases as gene therapy agents[J]. Gene therapy,2008,15(22): 1463-1468.

[13] Carroll D. Genome engineering with zinc-finger nucleases[J]. Genetics,2011,188(4): 773-782.

[14] Palpant N J,Dudzinski D. Zinc finger nucleases: looking toward translation[J]. Gene therapy,2013,20(2):121-127.

[15] Kim S,Kim J S. Targeted genome engineering via zinc finger nucleases[J]. Plant biotechnology reports,2011,5(1): 9-17.

[16] Rémy S,Tesson L,Ménoret S,et al. Zinc-finger nucleases:a powerful tool for genetic engineering of animals[J]. Transgenic research,2010,19(3): 363-371.

[17] Shen B,Zhang X,Du Y,et al. Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes[J]. PLoS ONE,2013,8(10): e77696.

[18] Porteus M H,Carroll D. Gene targeting using zinc finger nucleases[J]. Nature Biotechnology,2005,23: 967-973.

[19] Wu J,Kandavelou K,Chandrasegaran S. Custom-designed zinc finger nucleases: what is next?[J]. Cellular and Molecular Life Sciences,2007,64(22): 2933-2944.

[20] Wei C,Liu J,Yu Z,et al. TALEN or Cas9-rapid,efficient and specific choices for genome modifications[J]. Journal of Genetics and Genomics,2013,40(6): 281-289.

[21] Yang J,Zhang Y,Yuan P,et al. Complete decoding of TAL effectors for DNA recognition[J]. Cell research,2014,24(5): 628-631.

[22] Miller J C,Tan S,Qiao G,et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology,2011,29: 143-148.

[23] Bedell V M,Wang Y,Campbell J M,et al. In vivo genome editing using a high-efficiency TALEN system[J]. Nature,2012,491(7422): 114-118.

[24] Katsuyama T,Akmammedov A,Seimiya M,et al. An efficient strategy for TALEN-mediated genome engineering in Drosophila[J]. Nucleic acids research,2013,41(17): e163.

[25] Zu Y,Tong X,Wang Z,et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish[J]. Nature Methods,2013,10: 329-331.

[26] Zhang G Q,Lin Y P,Qi X N,et al. TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes[J]. ACS synthetic biology,2015. Doi: 10.1021/ acssynbio.5b00074

[27] Ding Q,Lee Y K,Schaefer E A K,et al. A TALEN genome-editing system for generating human stem cell-based disease models[J]. Cell stem cell,2013,12(2): 238-251.

[28] Ramalingam S,Annaluru N,Kandavelou K,et al. TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells [J]. Current gene therapy,2014,14(6): 461-472.

[29] Kim Y,Kweon J,Kim A,et al. A library of TAL effector nucleases spanning the human genome[J]. Nature biotechnology,2013,31(3): 251-258.

[30] Huang P,Xiao A,Zhou M,et al. Heritable gene targeting in zebrafish using customized TALENs[J]. Nature Biotechnology,2011,29: 699-700.

[31] Beumer K J,Trautman J K,Christian M,et al. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila[J]. G3: Genes Genomes Genetics,2013,3(10):1717-1725.

[32] Horvath P,Barrangou R. CRISPR/Cas,the immunesystem of bacteria and archaea[J]. Science,2010,327:167-170.

[33] Sampson T R,Saroj S D,Llewellyn A C,et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence[J]. Nature,2013,497: 254-257.

[34] Richter H,Randau L,Plagens A. Exploiting CRISPR/Cas:interference mechanisms and applications[J]. International journal of molecular sciences,2013,14(7): 14518-14531.

[35] Naito Y,Hino K,Bono H,et al. CRISP direct: software for designing CRISPR/Cas guide RNA with reduced off-target sites[J]. Bioinformatics,2014: btu743.

[36] Johnson R A,Gurevich V,F(xiàn)iller S,et al. Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta[J]. Plant molecular biology,2015,87(1-2): 143-156.

[37] Jiang W,Bikard D,Cox D,et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature biotechnology,2013,31(3): 233-239.

[38] Jiang W,Zhou H,Bi H,et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J]. Nucleic Acids Research,2013,41: e188.

[39] Kumar V,Jain M. The CRISPR-Cas system for plant genome editing: advances and opportunities[J]. Journal of experimental botany,2015,66(1): 47-57.

[40] Hwang W Y,F(xiàn)u Y,Reyon D,et al. Efficient in vivo genome editing using RNA-guided nucleases[J]. Nature biotechnology,2013,31(3): 227-229.

[41] Mali P,Yang L,Esvelt K M,et al. RNA-guided human genome engineering via Cas9[J]. Science,2013,339(6121):823-826.

[42] Schiml S,F(xiàn)auser F,Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny[J]. The Plant Journal,2014,80(6): 1139-1150.

[43] Hai T,Teng F,Guo R,et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Research,2014,24: 372-375.

[44] Cong L,Ran F A,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339: 819-823.

[45] Yan W,Smith C,Cheng L. Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing[J]. Scientific reports,2013,3: 2376.

[46] Ikmi A,McKinney S A,Delventhal K M,et al. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis[J]. Nature communications,2014,5: 5486.

[47] H?ndel E M,Cathomen T. Zinc-finger nuclease based genome surgery: it's all about specificity[J]. Current gene therapy,2011,11(1): 28-37.

[48] Liang P,Xu Y,Zhang X,et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell 2015,6(5): 363-372.

[49] Sizova I,Greiner A,Awasthi M,et al. Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases[J]. The Plant Journal,2013,73(5): 873-882.

[50] Reyon D,Kirkpatrick J,Sander J,et al. ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms[J]. BMC Genomics,2011,12(1): 83.

[51] Gao H,Wright D A,Li T,et al. TALE activation of endogenous genes in Chlamydomonas reinhardtii[J]. Algal Research,2014,5: 52-60.

[52] Gao H,Wang Y,F(xiàn)ei X,et al. Expression activation and functional analysis of HLA3,a putative inorganic carbon transporter in Chlamydomonas reinhardtii[J]. The Plant Journal,2015,82(1): 1-11.

[53] Daboussi F,Leduc S,Maréchal A,et al. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology[J]. Nature communications,2014,5: 3831.

[54] Weyman P D,Beeri K,Lefebvre S C,et al. Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis[J]. Plant biotechnology journal,2015,13:460-470.

[55] Jiang W,Brueggeman A J,Horken K M,et al. Successful Transient Expression of Cas9 and Single Guide RNA Genes in Chlamydomonas reinhardtii[J]. Eukaryotic cell,2014,13(11): 1465-1469.

[56] Zorin B,Hegemann P,Sizova I. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii[J]. Eukaryotic Cell,2005,4: 1264-1272.

[57] Zorin B,Lu Y,Sizova I,et al. Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene[J]. Gene,2009,432(1): 91-96.

[58] Plecenikova A,Mages W,Andrésson ó S,et al. Studies on recombination processes in two Chlamydomonas reinhardtii endogenous genes,NIT1 and ARG7[J]. Protist,2013,164(4): 570-582.

(本文編輯: 梁德海)

中圖分類號(hào):Q785

文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):1000-3096(2016)04-0149-07

doi:10.11759/hykx20151225001

收稿日期:2015-10-28; 修回日期: 2016-02-22

基金項(xiàng)目:國(guó)家高技術(shù)研究發(fā)展計(jì)劃項(xiàng)目(2014AA022001)

作者簡(jiǎn)介:林根妹(1990-),女,山東青島人,博士研究生,主要從事海洋微藻研究,電話: 13869896715,E-mail: Lin_agen@126.com; 楊官品,通信作者,教授,博士生導(dǎo)師,電話: 0532-82031636,E-mail:yguanpin@mail.ouc.edu.cn

Genome editing techniques and their application in microalgae

LIN Gen-mei,YANG Guan-pin
(College of Marine Life Sciences,Ocean University of China,Qingdao 266003,China)

Received: Oct. 28,2015

Key words:genome editing; ZFN; TALEN; CRISPR/Cas; microalga

Abstract:Genome editing techniques mainly include zinc finger nuclease (ZFN),transcription activator-like effector nuclease (TALEN),and clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) systems. These techniques are effective for verifying gene function and genetic modification in a wide range of species,e.g.,diverse models,economic animals and plants. They are also applicable in microalgae. In this study,we briefly describe these techniques and illustrate their application in microalgae,aiming to provide new methods for genetic modification and improvement in microalgae.

猜你喜歡
微藻
碳酸酐酶胞外酶影響下的巖溶湖泊微藻碳匯研究
代食品運(yùn)動(dòng)中微藻的科研與生產(chǎn)
絮凝法采收生物燃料微藻的研究進(jìn)展
微藻對(duì)低溫響應(yīng)的Ca2+信號(hào)傳導(dǎo)途徑研究進(jìn)展
微藻貼壁培養(yǎng)技術(shù)可大幅提高能源微藻產(chǎn)率
微藻能源技術(shù)研發(fā)展望
金山区| 张掖市| 卢氏县| 新化县| 扎兰屯市| 渭南市| 南宁市| 克东县| 屏山县| 怀仁县| 鲁山县| 达州市| 同仁县| 盐池县| 固安县| 双城市| 宁远县| 内江市| 渭源县| 富宁县| 慈利县| 大悟县| 天门市| 锡林郭勒盟| 桐城市| 靖州| 雷山县| 三门县| 滦平县| 那曲县| 康平县| 佛山市| 比如县| 汉沽区| 淮南市| 革吉县| 宝坻区| 灯塔市| 旅游| 舒兰市| 奈曼旗|