国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

肉類(lèi)食品中產(chǎn)氣莢膜梭菌及其控制研究進(jìn)展

2016-07-22 15:59賈珊珊李沛軍陳從貴
肉類(lèi)研究 2016年6期
關(guān)鍵詞:控制研究

賈珊珊++李沛軍++陳從貴

摘 要:產(chǎn)氣莢膜梭菌廣泛存在于自然界,且可以形成芽孢,是導(dǎo)致肉類(lèi)食物中毒和氣性壞疽等的主要病原菌。本文綜述了肉類(lèi)食品中產(chǎn)氣莢膜梭菌的污染情況、生長(zhǎng)影響因素以及控制其生長(zhǎng)的方法;指明了利用食用安全的天然物質(zhì),研發(fā)高效抑制產(chǎn)氣莢膜梭菌生長(zhǎng)的技術(shù)與方法,對(duì)保障肉制品安全和促進(jìn)肉類(lèi)工業(yè)健康發(fā)展的現(xiàn)實(shí)意義,旨在為人們選擇適合肉類(lèi)食品中抑制產(chǎn)氣莢膜梭菌生長(zhǎng)的途徑提供參考。

關(guān)鍵詞:產(chǎn)氣莢膜梭菌;肉類(lèi)食品;污染情況;控制研究

產(chǎn)氣莢膜梭菌(Clostridium perfringens,

C. perfringens)是一種屬于梭菌屬的革蘭氏陽(yáng)性菌,具有莢膜,可產(chǎn)生芽孢,不具有運(yùn)動(dòng)性。C. perfringens是引起人畜共患病的主要病原菌之一,該菌的致病因子是其所產(chǎn)生的外毒素[1]。目前,已發(fā)現(xiàn)C. perfringens產(chǎn)生的外毒素多達(dá)17 種[2],并以α型(CPA)、β型(CPB)、ε型(ETX)和ι型(ITX)4 種毒素最為常見(jiàn);C. perfringens還會(huì)產(chǎn)生其他多種毒素或者潛在的致毒因子,如腸毒素(CPE)[3]。根據(jù)所產(chǎn)毒素的不同,C. perfringens可分為5 種類(lèi)型,它們與5 種主要毒素的對(duì)應(yīng)關(guān)系見(jiàn)表1。5種C. perfringens均會(huì)導(dǎo)致特定的動(dòng)物患病,其中A型和C型C. perfringens可引起人患病,例如,腸毒素引起的食物中毒、水樣腹瀉以及嬰兒的突發(fā)性死亡,α型毒素引起的氣性壞疽及β型毒素引起的人壞死性腸炎[4]。

在美國(guó)和一些發(fā)展中國(guó)家,由A型C. perfringens菌引起的食物中毒是最常見(jiàn)報(bào)道的食物中毒之一,目前在美國(guó)排名第2位,每年可導(dǎo)致食物中毒約100 萬(wàn)例[5-6]。

C. perfringens引起眾多食物中毒事例的原因主要有:1)它廣泛存在于自然界,包括土壤、人以及動(dòng)物的腸道中[7];

2)它能在適宜的環(huán)境下快速生長(zhǎng),代時(shí)甚至小于

10 min[4,8];3)它可以產(chǎn)生多種毒素,導(dǎo)致人或動(dòng)物患病,尤其是A型C. perfringens[9]。

不僅如此,C. perfringens對(duì)生長(zhǎng)環(huán)境的要求較低,也是容易在食品中爆發(fā)的重要原因。其最適生長(zhǎng)pH值為6~7[10],但在pH 5~9范圍仍可生長(zhǎng);它可在15~50 ℃快速生長(zhǎng)[11],在15 ℃以下亦可緩慢生長(zhǎng),甚至可在6 ℃條件下生長(zhǎng)[12];其生長(zhǎng)的最低水分活度值為0.95。

C. perfringens芽孢能夠耐高溫,在煮沸15 min或更長(zhǎng)的時(shí)間仍可存活[13],并可在10~54 ℃溫度內(nèi)快速萌發(fā)和二次生長(zhǎng)[14]。此外,C. perfringens還對(duì)肉類(lèi)食品中各種防腐方法具有較高的抵抗能力[13-15]。

1 肉類(lèi)食品中C. perfringens的污染情況

由C. perfringens導(dǎo)致的食物中毒多與肉和禽肉制品相關(guān)[17-18]。調(diào)查美國(guó)1998—2010年由C. perfringens引起食物中毒的結(jié)果顯示,肉類(lèi)食品占食物總量的92%,其中牛肉制品占46%,禽肉制品占30%,豬肉制品占16%[19]。不僅肉制品容易被C. perfringens污染,原料肉由于富含蛋白質(zhì)也容易成為C. perfringens滋生的土壤[18,20]。富含蛋白質(zhì)的動(dòng)物在屠宰過(guò)程中會(huì)被來(lái)自其腸道或糞便中的C. perfringens污染[21];而原料食品和加工食品中

C. perfringens的污染率也分別高達(dá)30%和80%[22]。表2列出了近年來(lái)C. perfringens在部分國(guó)家肉樣品中的檢出率。

由表2可知,生鮮牛肉、豬肉、火雞肉和雞肉及各種肉制品中C. perfringens檢出率均超過(guò)10%,部分日本雞肉中檢出率甚至高達(dá)84%。

2 肉類(lèi)食品中C. perfringens生長(zhǎng)的影響因素

Bennett等[28]對(duì)1998—2008年在美國(guó)由

C. perfringens、金黃色葡萄球菌和蠟樣芽孢桿菌引起食物中毒事件的數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析。結(jié)果表明,無(wú)論是哪種致病菌,最常見(jiàn)引起食物中毒的錯(cuò)誤操作發(fā)生于食物加工和準(zhǔn)備的過(guò)程中,占所有因素的93%。比如,肉制品煮制后經(jīng)過(guò)不適當(dāng)冷卻工藝(44%);將肉制品放置于不合適貯藏溫度下(22%)。Li[22]和Mcclure[29]等也指出,肉制品煮制后不適當(dāng)冷卻工藝和不合適的貯藏溫度是C. perfringens暴發(fā)的最常見(jiàn)原因。

2.1 不適當(dāng)冷卻工藝

科學(xué)合理的冷卻工藝,應(yīng)能最大程度地抑制致病菌芽孢的萌發(fā)及二次生長(zhǎng)。熱加工可能無(wú)法完全致死

C. perfringens的芽孢,還可能誘導(dǎo)芽孢萌發(fā),使其在較高溫度下快速萌發(fā)并生長(zhǎng)。C. perfringens是肉制品降溫過(guò)程是否安全的指示菌。有研究表明,向煮熟牛肉糜中接種3 種可形成芽孢的致病菌(枯草芽孢桿菌、C. perfringens和肉毒梭狀芽孢桿菌)時(shí),經(jīng)歷長(zhǎng)達(dá)18 h的降溫過(guò)程后,C. perfringens數(shù)量增加了4~5(lg(CFU/g)),而其他2 種致病菌均無(wú)顯著生長(zhǎng)[30]。美國(guó)對(duì)煮制肉制品的冷卻工藝進(jìn)行了嚴(yán)格規(guī)定。對(duì)于非熏制的煮制肉及禽肉制品的冷卻過(guò)程,美國(guó)農(nóng)業(yè)部食品安全及檢驗(yàn)局明確規(guī)定:從54.4 ℃降至26.7 ℃不得超過(guò)1.5 h,從26.7 ℃降至4.4 ℃不超過(guò)5 h[31]。

肉和禽肉制品的不合適降溫是導(dǎo)致C. perfringens生長(zhǎng)進(jìn)而引起食物中毒事件的重要因素。Valenzuela-Martinez等[32]將數(shù)量約為2~2.5 (lg(CFU/g))的C. perfringens芽孢接種到真空包裝豬肉樣品中,75 ℃水浴加熱20 min誘導(dǎo)芽孢萌發(fā),隨后將樣品分別于12、15、18、21 h內(nèi)從54.4 ℃降至7.2 ℃,結(jié)果發(fā)現(xiàn),C. perfringens的數(shù)量分別增至6.08、7.25、8.21、8.45 (lg(CFU/g))。Xiao等[33]的研究中也得到了相似的結(jié)果,在9、12、15、18、21 h內(nèi)使樣品從54.4 ℃降至4 ℃,結(jié)果發(fā)現(xiàn),樣品中

C. perfringens芽孢的量從初始接種的2.0~2.5(lg(CFU/g))分別增加了4.50、5.78、7.05、7.88、8.19(lg(CFU/g))。

2.2 不合適的貯藏溫度

除了不適當(dāng)?shù)睦鋮s工藝,肉制品在貯藏過(guò)程中發(fā)生溫度波動(dòng)或貯藏溫度不合適亦會(huì)引起C. perfringens生長(zhǎng)繁殖,對(duì)食品安全造成威脅。Juneja等[34]將15 株C. perfringens接種到真空包裝牛肉中,放置于12 ℃溫度下貯藏,分別測(cè)定0、1、4、7 d樣品中C. perfringens的數(shù)量。結(jié)果顯示,無(wú)論哪一種C. perfringens,樣品中C. perfringens的數(shù)量均隨貯藏天數(shù)的增加而急劇增長(zhǎng)。Nieto-Lozano等[35]發(fā)現(xiàn),真空包裝的煮制火雞樣品在貯藏過(guò)程中,從4 ℃移至28 ℃的環(huán)境溫度中,貯藏12 h后,樣品中C. perfringens的量從2.0~2.5(lg(CFU/g))增至6.0(lg(CFU/g))。Mikelsaar等[36]發(fā)現(xiàn)將接種

C. perfringens的法蘭克福香腸分別貯藏于10 ℃溫度下60 d和15 ℃溫度下30 d,結(jié)果發(fā)現(xiàn)C. perfringens的量從約為4.0 (lg(CFU/g))分別增加至5.7 (lg(CFU/g))和6.3(lg(CFU/g))左右。

3 肉類(lèi)食品中C. perfringens的控制

3.1 原料肉源頭控制C. perfringens的方法

3.1.1 益生菌

益生菌是一類(lèi)對(duì)宿主有益的活性微生物的總稱(chēng),通過(guò)口服等方式定植于宿主腸道、生殖系統(tǒng)內(nèi),能夠抑制對(duì)人體有害微生物的生長(zhǎng),進(jìn)而對(duì)宿主發(fā)揮有益作用[36]。乳桿菌、雙歧桿菌和枯草芽孢桿菌均可作為益生菌,用于增強(qiáng)人體胃腸道中有益微生物的生長(zhǎng)[37-38]。但到目前為止,人們對(duì)益生菌作用機(jī)制的研究還不充分,主要認(rèn)為:益生菌通過(guò)與有害微生物競(jìng)爭(zhēng)營(yíng)養(yǎng)、降低胃腸道pH值以及產(chǎn)生某些特定的抑菌物質(zhì)等方式,來(lái)抑制有害微生物的生長(zhǎng)[39]。

有研究證實(shí),乳桿菌和雙歧桿菌能夠減少

C. perfringens的數(shù)量。Kim等[40]從健康豬胃腸道中分離出5 株乳桿菌和2 株雙歧桿菌,它們均可在體外模擬胃腸道環(huán)境下生長(zhǎng),其中,噬淀粉乳桿菌S6對(duì)C. perfringens的抑制作用要比金霉素和土霉素等抗生素更有效。Rinkinen等[41]的體外實(shí)驗(yàn)結(jié)果顯示,乳桿菌可通過(guò)降低黏附能力來(lái)抑制C. perfringens的生長(zhǎng)。

陽(yáng)艷林等[42]從健康雞的胃腸道中分離得到的一株枯草芽孢桿菌,可體外抑制C. perfringens ATCC 13124,并通過(guò)質(zhì)譜分析發(fā)現(xiàn),抑菌物質(zhì)的相對(duì)分子質(zhì)量約為960~980,且化學(xué)性質(zhì)穩(wěn)定。有公司以枯草芽孢桿菌PB6作為主要成分,生產(chǎn)出微生物制劑克洛生,并通過(guò)體外和體內(nèi)實(shí)驗(yàn),證明了它對(duì)抑制C. perfringens生長(zhǎng)的有效性[43-44]。

表3列出了可以抑制動(dòng)物體內(nèi)C. perfringens的益生菌。

3.1.2 益生元

益生元(prebiotics)作為一類(lèi)不易被人體消化吸收的食品成分,可選擇性地刺激一種或幾種腸道細(xì)菌的生長(zhǎng)和活性,而對(duì)寄主產(chǎn)生有益的影響[48]。許多體外實(shí)驗(yàn)以及哺乳動(dòng)物的體內(nèi)實(shí)驗(yàn)證實(shí),益生元對(duì)C. perfringens具有抑制作用。例如,與未添加的對(duì)照組相比,添加于動(dòng)物飲食中的果寡糖,可以顯著降低腸道中C. perfringens的數(shù)量[49];喂食添加有天然益生元糖類(lèi)物質(zhì)的動(dòng)物,其體內(nèi)C. perfringens的數(shù)量顯著少于對(duì)照組[50-53]。也有研究證實(shí),乳糖可用來(lái)抑制非哺乳動(dòng)物雞腸道內(nèi)C. perfringens的數(shù)量,顯示乳糖可能是一種適用于禽類(lèi)的益生元物質(zhì)[54]。

3.2 肉類(lèi)食品中抑制C. perfringens生長(zhǎng)的方法

3.2.1 有機(jī)酸及有機(jī)酸鹽

在新型的食品抑菌劑中,有機(jī)酸以及有機(jī)酸鹽被認(rèn)為是較好的選擇,因其具有較寬的抑菌譜,無(wú)毒、穩(wěn)定,并具有對(duì)食品的顏色和風(fēng)味無(wú)副作用等優(yōu)點(diǎn)[55]。乳酸鈉、乳酸鉀、二乙酸鈉等有機(jī)酸鹽,已被廣泛用于肉制品和禽肉制品,以抑制單核李斯特菌和其他腐敗菌,增強(qiáng)食品的微生物安全[56-57]。有機(jī)酸的抑菌機(jī)理可能是:有機(jī)酸能夠穿過(guò)細(xì)胞膜,使細(xì)胞內(nèi)的pH值降低,導(dǎo)致帶電離子的釋放,并使質(zhì)子不能穿過(guò)細(xì)胞膜,阻礙了代謝活動(dòng)從而抑制細(xì)胞的生長(zhǎng)[58]。目前被研究用來(lái)抑制

C. perfringens的有機(jī)酸鹽主要有:乳酸鈣、乳酸鉀、乳酸鈉、檸檬酸鈉、山梨酸和苯甲酸、磷酸酸鹽等[9, 31, 59-60]。

Saeed等[59]利用檸檬酸鈉緩沖溶液及其與二乙酸鈉的混合液,分別添加于烤牛肉中,結(jié)果發(fā)現(xiàn):接種了

2.5(lg(CFU/g))C. perfringens的樣品,在18 h內(nèi)從54.4℃降至7.2 ℃時(shí),烤牛肉對(duì)照組中C. perfringens的數(shù)量增加了3.70(lg(CFU/g));而添加了檸檬酸鈉緩沖液及其混合液的樣品中,C. perfringens的數(shù)量卻減少了2.47(lg(CFU/g))??梢?jiàn),檸檬酸鈉緩沖液及其與二乙酸鈉的混合物能夠顯著降低C. perfringens萌發(fā)和二次生長(zhǎng)的潛在危險(xiǎn)。

Valenzuela-Martinez等[32]觀察了乳酸鈣、乳酸鉀和乳酸鈉對(duì)豬肉降溫過(guò)程中C. perfringens芽孢萌發(fā)和二次生長(zhǎng)的影響情況,結(jié)果顯示,豬肉制品中添加2.0%的乳酸鈣或者3.0%的乳酸鉀或乳酸鈉,在54.4 ℃至7.2 ℃、長(zhǎng)達(dá)21 h的降溫過(guò)程中,可使產(chǎn)品中C. perfringens的增長(zhǎng)量保持在可接受范圍內(nèi);而對(duì)照組中C. perfringens卻增長(zhǎng)了6.30(lg(CFU/g))。

3.2.2 細(xì)菌素

細(xì)菌素通常被認(rèn)為是由細(xì)菌生成的多肽類(lèi)物質(zhì),能夠抑制或殺死近源性和其他微生物[61]。有研究證實(shí),羅伊氏菌素[62]、乳酸鏈球菌素[62-64]、乳酸片球菌素[35]、戊糖片球菌素[65]、乳酸乳球菌素[66]、糞腸球菌素[67]和芽孢桿菌素[68-69]等細(xì)菌素,均可體外抑制C. perfringens。片球菌素也能有效抑制單核李斯特菌、金黃色葡萄球菌、

C. perfringens等腐敗菌和致病菌[70-71]。

但是在體內(nèi)實(shí)驗(yàn)中,細(xì)菌素對(duì)C. perfringens的抑制作用非常有限[72]。細(xì)菌素可能被食品中內(nèi)源性蛋白酶降解,或者被肉和脂肪顆粒吸收[73],由此影響了細(xì)菌素對(duì)體內(nèi)C. perfringens的抑制效果。細(xì)菌素對(duì)體內(nèi)

C. perfringens的抑制作用值得進(jìn)一步研究。

3.2.3 殼聚糖

殼聚糖是由自然界幾丁質(zhì)脫乙酰作用得到的聚合物,食用安全,已廣泛應(yīng)用于食品領(lǐng)域。殼聚糖類(lèi)似于米糠、麥麩等膳食纖維,不能被人體吸收,可增加腸道中有益微生物的數(shù)量,并減少C. perfringens等致病菌的數(shù)量。Juneja等[74]將殼聚糖添加到培養(yǎng)基以及倉(cāng)鼠的食物中,通過(guò)體內(nèi)和體外實(shí)驗(yàn),觀察殼聚糖對(duì)C. perfringens生長(zhǎng)的影響,結(jié)果發(fā)現(xiàn),殼聚糖可以顯著抑制C. perfringens的體外生長(zhǎng),但對(duì)其體內(nèi)生長(zhǎng)量卻無(wú)顯著影響。

Aziz等[75]研究發(fā)現(xiàn),即使牛肉和雞肉經(jīng)歷了不合適的降溫過(guò)程,殼聚糖也能有效抑制產(chǎn)品中C. perfringens芽孢的萌發(fā)和二次生長(zhǎng)。Santos等[76]在體外實(shí)驗(yàn)中還發(fā)現(xiàn),殼聚糖能有效抑制C. perfringens、金黃色葡萄球菌以及大腸桿菌等革蘭氏陽(yáng)性致病菌。

3.2.4 植物提取物和香精油

有體外實(shí)驗(yàn)結(jié)果表明,植物提取物和植物香精油可以抑制C. perfringens的生長(zhǎng)[77-78],其中包括綠茶提取物[79]。植物提取物和香精油的抑菌效果與很多因素有關(guān),除了與植物類(lèi)型、生長(zhǎng)地理位置以及生長(zhǎng)環(huán)境相關(guān)外[21],還與提取方式、培養(yǎng)基種類(lèi)、pH值以及培養(yǎng)溫度有關(guān)[80]。

綠茶提取物具有抑制C. perfringens芽孢萌發(fā)及二次生長(zhǎng)的作用。有學(xué)者將不同濃度的綠茶提取物,添加于C. perfringens芽孢接種量約3(lg(CFU/g))的牛肉、雞肉和豬肉中,在煮制樣品經(jīng)歷12、15、18、21 h從54.4℃降至7.2 ℃后,實(shí)驗(yàn)觀察樣品中C. perfringens的變化情況,結(jié)果顯示:添加2%的綠茶提取物,3 種肉制品中

C. perfringens的數(shù)量均顯著低于對(duì)照組;且提取物濃度不同,抑菌效果也不同[81]。

Demirci等[81]利用土耳其唇形科糙蘇屬植物中提取的香精油,通過(guò)體外抑制食源性致病菌實(shí)驗(yàn),發(fā)現(xiàn)所提精油可以有效抑制C. perfringens、單核李斯特菌、蠟樣芽孢桿菌和大腸桿菌O157:H7等致病菌的生長(zhǎng)。Sebranek等[82]將冬季香薄荷精油添加到接種了C. perfringens A型菌株的意大利香腸中,在25 ℃貯藏30 d,觀察香腸中

C. perfringens在貯藏過(guò)程的數(shù)量變化,結(jié)果表明,該精油可以顯著抑制C. perfringens的生長(zhǎng),且在貯藏結(jié)束后,樣品中C. perfringens的數(shù)量?jī)H為2.80 (lg(CFU/g))。

4 結(jié) 語(yǔ)

C. perfringens在環(huán)境中分布廣泛,很容易污染富含蛋白的肉類(lèi)食品,對(duì)肉食品安全造成較大潛在威脅。現(xiàn)已研究證實(shí),有機(jī)酸及有機(jī)酸鹽、細(xì)菌素、殼聚糖和植物提取物等天然物質(zhì),可以有效抑制C. perfringens的生長(zhǎng),但其實(shí)際應(yīng)用還很有限。隨著人們對(duì)綠色食品和食品安全的日益重視,利用食用安全的天然成分,開(kāi)展其對(duì)

C. perfringens的抑制作用研究,將會(huì)成為熱點(diǎn)。而對(duì)于易受C. perfringens污染的肉及肉制品,研究與開(kāi)發(fā)高效的抑制方法,并應(yīng)用于實(shí)際生產(chǎn),對(duì)保障肉制品安全和促進(jìn)肉類(lèi)工業(yè)健康發(fā)展,更具有重要的現(xiàn)實(shí)意義。

參考文獻(xiàn):

[1] 陳小云, 關(guān)孚時(shí), 張存帥, 等. 產(chǎn)氣莢膜梭菌主要外毒素最新研究進(jìn)展[J]. 中國(guó)獸藥雜志, 2005, 39(6): 29-33. DOI: 10.3969/j.issn.1002-1280.2005.06.009.

[2] MCCLANE B A, UZAL F A, MIYAKAWA M E F, et al. The enterotoxic Clostridia[J]. Prokaryotes, 2006, 4: 698-752. DOI: 10.1007/springerreference_3743.

[3] UZAL F A, FREEDMAN J C, SHRESTHA A, et al. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease[J]. Future Microbiology, 2014, 9(3): 361-377. DOI: 10.2217/fmb.13.168.

[4] LINDSTR M M, HEIKINHEIMO A, LAHTI P, et al. Novel insights into the epidemiology of Clostridium perfringens type A food poisoning[J]. Food Microbiology, 2011, 28(2): 192-198. DOI: 10.1016/j.fm.2010.03.020.

[5] SCALLAN E, HOEKSTRA R M, ANGULO F J, et al. Foodborne illness acquired in the United States: major pathogens[J]. Emerging Infectious Diseases, 2011, 17(1): 7-15. DOI: 10.3201/eid1701.p11101.

[6] HOFFMANN S, BATZ M B, MORRJS J J G. Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens[J]. Journal of Food Protection, 2012, 75(7): 1292-1302. DOI: 10.4315/0362-028x.jfp-11-417.

[7] STEELE F, WRIGHT K. Cooling rate effect on outgrowth of Clostridium perfringens in cooked, ready-to-eat turkey breast roasts[J]. Poultry Science, 2001, 80(6): 813-816. DOI: 10.1093/ps/80.6.813.

[8] LABBE R G, HUANG T H. Generation times and modeling of enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens in laboratory media and ground beef[J]. Journal of Food Protection, 1995, 58(12): 1303-1306. DOI: 10.1093/ps/80.6.813.

[9] ALNOMAN M, UDOMPIJITKUL P, PAREDES-SABJA D, et al. The inhibitory effects of sorbate and benzoate against Clostridium perfringens type A isolates[J]. Food Microbiology, 2015, 48: 89-98. DOI: 10.1016/j.fm.2014.12.007.

[10] SAKURAI J, DUNCAN C L. Effect of carbohydrates and control of culture pH on beta toxin production by Clostridium perfringens type C[J]. Microbiology and Immunology, 1979, 23(5): 313-318. DOI: 10.1111/j.1348-0421.1979.tb00468.x.

[11] JUNEJA V K, MARKS H, THIPPAREDDI H. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured beef[J]. Food Microbiology, 2008, 25(1): 42-55. DOI: 10.1016/j.fm.2007.08.004.

[12] HUANG L. Estimation of growth of Clostridium perfringens in cooked beef under fluctuating temperature conditions[J]. Food Microbiology, 2003, 20(5): 549-559. DOI: 10.1016/s0740-0020(02)00155-7.

[13] SARKER M R, SHIVERS R P, SPARKS S G, et al. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes[J]. Applied and Environmental Microbiology, 2000, 66(8): 3234-3240. DOI: 10.1128/aem.66.12.5549-5549.2000.

[14] LI J, MCCLANE B A. Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes[J]. Applied and Environmental Microbiology, 2006, 72(12): 7620-7625. DOI: 10.1128/aem.01911-06.

[15] PAREDES-SABJA D, GONZALEZ M, SARKER M R, et al. Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringenstype A and Clostridium sporogenes in buffer solutions[J]. Journal of Food Science, 2007, 72(6): M202-M206. DOI: 10.1111/j.1750-3841.2007.00423.x.

[16] SONGER J G, UZAL F A. Clostridial enteric infections in pigs[J]. Journal of Veterinary Diagnostic Investigation, 2005, 17(6): 528-536. DOI: 10.1177/104063870501700602.

[17] McCLANE B A. Clostridium perfringens[M]. Food Science and Technology New York Marcel Dekker, 2003: 91-104. DOI: 10.1128/9781555815912.ch19.

[18] MIWA N, NISHINA T, KUBO S, et al. Most probable numbers of enterotoxigenic Clostridium perfringens in intestinal contents of domestic livestock detected by nested PCR[J]. Journal of Veterinary Medical Science, 1997, 59(7): 557-560. DOI: 10.1292/jvms.59.557.

[19] GRASS J E, GOULD L H, MAHON B E. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998—2010[J]. Foodborne Pathogens and Disease, 2013, 10(2): 131-136. DOI: 10.1089/fpd.2012.1316.

[20] MIKI Y, MIYAMOTO K, KANEKO-HIRANO I, et al. Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan[J]. Applied and Environmental Microbiology, 2008, 74(17): 5366-5372. DOI: 10.1128/aem.00783-08.

[21] ALLAART J G, van ASTEN A J A M, GR?NE A. Predisposing factors and prevention of Clostridium perfringens: associated enteritis[J]. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36(5): 449-464. DOI: 10.1016/j.cimid.2013.05.001.

[22] LI L, VALENZUELA-MARTINEZ C, REDONDO M, et al. Inhibition of Clostridium perfringens spore germination and outgrowth by lemon juice and vinegar product in reduced NaCl roast beef[J]. Journal of Food Science, 2012, 77(11): M598-M603. DOI: 10.1111/j.1750-3841.2012.02922.x.

[23] ARAS Z, HADIMLI H H. Detection and molecular typing of Clostridium perfringens isolates from beef, chicken and turkey meats[J]. Anaerobe, 2015, 32: 15-17. DOI: 10.1016/j.anaerobe.2014.11.004.

[24] MORERA J, RODR-GUEZ E, GAMBOA M M. Determination of Clostridium perfringens in pork sausages from the Metropolitan area of Costa Rica[J]. Archivos Latinoamericanos De Nutrición, 1999, 49(3): 279-282.

[25] STAGNITTA P V, MICALIZZI B, GUZMáN A M S D. Prevalence of enterotoxigenic Clostridium perfringens in meats in San Luis, Argentina[J]. Anaerobe, 2002, 8(5): 253-258. DOI: 10.1006/anae.2002.0433.

[26] WEN Q, Mc CLANE B A. Detection of enterotoxigenic Clostridium perfringenstype A isolates in American retail foods[J]. Applied and Environmental Microbiology, 2004, 70(5): 2685-2691. DOI: 10.1128/aem.70.5.2685-2691.2004.

[27] YUAN-TONG L, RONALD L. Enterotoxigenicity and genetic relatedness of Clostridium perfringens isolates from retail foods in the United States[J]. Applied and Environmental Microbiology, 2003, 69(3): 1642-1646. DOI: 10.1128/aem.69.3.1642-1646.2003.

[28] BENNETT S D, WALSH K A, L HANNAH G. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus-United States, 1998—2008[J]. Clinical Infectious Diseases An Official Publication of the Infectious Diseases Society of America, 2013, 57(3): 425-433. DOI: 10.1093/cid/cit244.

[29] MCCLURE P J, KERRY J, KERRY J, et al. Microbiological hazard identification in the meat industry[C]//Meat Processing: Improving Quality, 2002: 217-236. DOI: 10.1533/9781855736665.2.217.

[30] DOYLE E. Survival and growth of Clostridium perfringens during the cooling step of thermal processing of meat products: a review of the scientific literature[R]. University of Wisconsin, Madison, WI 53706: Food Research Institute. 2002.

[31] VELUGOTI PR, RAJAGOPAL L, JUNEJA V, et al. Use of calcium, potassium, and sodium lactates to control germination and outgrowth of Clostridium perfringens spores during chilling of injected pork[J]. Food Microbiology, 2007, 24(7): 687-694. DOI: 10.1016/j.fm.2007.04.004.

[32] VALENZUELA-MARTINEZ C, PENA-RAMOS A, JUNEJA V K, et al. Inhibition of Clostridium perfringensspore germination and outgrowth by buffered vinegar and lemon juice concentrate during chilling of ground turkey roast containing minimal ingredients[J]. Journal of Food Protection, 2010, 73(3): 470-476.

[33] XIAO Y, WAGENDORP A, ABEE T, et al. Differential outgrowth potential of Clostridium perfringens food-borne isolates with various cpe-genotypes in vacuum-packed ground beef during storage at

12 ℃[J]. International Journal of Food Microbiology, 2015, 194C: 40-45.

DOI: 10.1016/j.ijfoodmicro.2014.11.008.

[34] JUNEJA V K, MAJKA W M. Outgrowth of Clostridium perfringens spores in cook-in-bag beef products[J]. Journal of Food Safety, 1995, 15(1): 21-34. DOI: 10.1111/j.1745-4565.1995.tb00118.x.

[35] NIETO-LOZANO J C, REGUERA-USEROS J I. The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters[J]. Food Control, 2010, 21(5): 679-685.

[36] MIKELSAAR M, ZILMER M. Lactobacillus fermentum ME-3: an antimicrobial and antioxidative probiotic[J]. Microbial Ecology in Health and Disease, 2009, 21(1): 1-27. DOI: 10.3402/mehd.v21i1.7573.

[37] HOA N T, BACCIGALUPI L, HUXHAM A, et al. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders[J]. Applied and Environmental Microbiology, 2000, 66(12): 5241-5247. DOI: 10.1128/aem.66.12.5241-5247.2000.

[38] SAARELA M, MOGENSEN G, FOND N R, et al. Probiotic bacteria: safety, functional and technological properties[J]. Journal of Biotechnology, 2000, 84(3): 197-215. DOI: 10.1016/s0168-1656(00)00375-8.

[39] CROST E, PUJOL A, LADIR M, et al. Production of an antibacterial substance in the digestive tract involved in colonization-resistance against Clostridium perfringens[J]. Anaerobe, 2010, 16(6): 597-603. DOI: 10.1016/j.anaerobe.2010.06.009.

[40] KIM P I, MIN Y J, CHANG Y H, et al. Probiotic properties of Lactobacillus and Bifidobacterium strains isolated from porcine gastrointestinal tract[J]. Applied Microbiology and Biotechnology, 2007, 74(5): 1103-1111. DOI: 10.1007/s00253-006-0741-7.

[41] RINKINEN M, WESTERMARCK E, SALMINEN S, et al. Absence of host specificity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus[J]. Veterinary Microbiology, 2004, 97(1): 55-61. DOI: 10.1016/s0378-1135(03)00183-4.

[42] 陽(yáng)艷林, 肖建根. 不同枯草芽孢桿菌制劑對(duì)產(chǎn)氣莢膜梭菌的抑制作用[J]. 中國(guó)畜牧雜志, 2011, 47(12): 55-56.

[43] 黃廣明, 張媛媛, 鄢紅國(guó), 等. 3省份豬場(chǎng)產(chǎn)氣莢膜梭菌感染狀況的調(diào)查分析[J]. 養(yǎng)豬, 2014, 1(1): 103-104. DOI: 10.13257/j.cnki.21-1104/s.2014.01.001.

[44] SATHISHKUMAR J, GOKILA T, HANNAH K, et al. Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis[J]. Poultry Science, 2013, 92(2): 370-374. DOI: 10.3382/ps.2012-02528.

[45] KLOSE V, BAYER K, BRUCKBECK R, et al. In vitro antagonistic activities of animal intestinal strains against swine-associated pathogens[J]. Veterinary Microbiology, 2010, 144(3): 515-521. DOI: 10.1016/j.vetmic.2010.02.025.

[46] BIAGI G, PIVA A, MOSCHINI M, et al. Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate[J]. Journal of Animal Science, 2007, 85(5): 1184-1191. DOI: 10.2527/jas.2006-378.

[47] GIBSON G R, BEATTY E R, WANG X, et al. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin[J]. Gastroenterology, 1995, 108(4): 975-982. DOI: 10.1016/0016-5085(95)90192-2.

[48] SWANSON K S, GRIESHOP C M, BAUER L L, et al. Supplemental fructooligosaccharides and mannano-ligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs[J]. Journal of Nutrition, 2002, 132(5): 980-989.

[49] BIGGS P, PARSONS C, FAHEY G. The effects of several oligosaccharides on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks[J]. Poultry Science, 2007, 86(11): 2327-2336. DOI: 10.3382/ps.2007-00427.

[50] FLICKINGER E A, JAN V L, FAHEY G C. Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review[J]. Critical Reviews in Food Science and Nutrition, 2003, 43(1): 19-60. DOI: 10.1080/10408690390826446.

[51] GóMEZ-CONDE M S, GARCíA J, CHAMORRO S, et al. Neutral detergent-soluble fiber improves gut barrier function in twenty-five-day-old weaned rabbits[J]. Journal of Animal Science, 2007, 85(12): 3313-3321. DOI: 10.2527/jas.2006-777.

[52] SHINOHARA K, OHASHI Y, KAWASUMI K, et al. Effect of apple intake on fecal microbiota and metabolites in humans[J]. Anaerobe, 2010, 16(5): 510-515. DOI: 10.1016/j.anaerobe.2010.03.005.

[53] MCREYNOLDS J L, BYRD J A, GENOVESE K J, et al. Dietary lactose and its effect on the disease condition of necroticenteritis[J]. Poultry Science, 2007, 86(8): 1656-1661. DOI: 10.1093/ps/86.8.1656.

[54] NORHANA M N W, POOLE S E, DEETH H C, et al. Effects of nisin, EDTA and salts of organic acids on Listeria monocytogenes, Salmonella and native microflora on fresh vacuum packaged shrimps stored at 4 ℃[J]. Food Microbiology, 2012, 31(1): 43-50. DOI: 10.1016/j.fm.2012.01.007.

[55] HARMAYANI E, SOFOS J N, SCHMIDT G R. Fate of Listeria monocytogenes in raw and cooked ground beef with meat processing additives[J]. International Journal of Food Microbiology, 1993, 18(3): 223-232. DOI: 10.1016/0168-1605(93)90047-k.

[56] SCHLYTER J H, GLASS K A, LOEFFELHOLZ J, et al. The effects of diacetate with nitrite, lactate, or pediocin on the viability of Listeria monocytegenes in turkey slurries[J]. International Journal of Food Microbiology, 1993, 19(4): 271-281. DOI: 10.1016/0168-1605(93)90019-d.

[57] BIGGS P, PARSONS C. The effects of several organic acids on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks[J]. Poultry Science, 2008, 87(12): 2581-2589. DOI: 10.3382/ps.2008-00080.

[58] THIPPAREDDI H, JUNEJA V, PHEBUS R K, et al. Control of Clostridium perfringens germination and outgrowth by buffered sodium citrate during chilling of roast beef and injected pork[J]. Journal of Food Protection, 2003, 66(3): 376-381.

[59] SAEED A, DANIEL P S, SARKER M R. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth[J]. Food Microbiology, 2008, 25(6): 802-808. DOI: 10.1016/j.fm.2008.04.006.

[60] BALCIUNAS E M, MARTINEZ F A C, TODOROV S D, et al. Novel biotechnological applications of bacteriocins: a review[J]. Food Control, 2013, 32(1): 134-142. DOI: 10.1016/j.foodcont.2012.11.025.

[61] GARDE S, GóMEZ-TORRES N, HERNáNDEZ M, et al. Susceptibility of Clostridium perfringens to antimicrobials produced by lactic acid bacteria: reuterin and nisin[J]. Food Control, 2014, 44: 22-25. DOI: 10.1016/j.foodcont.2014.03.034.

[62] MARTA A, NATALIA G T, MARTA H, et al. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species[J]. International Journal of Food Microbiology, 2014, 172(7): 70-75. DOI: 10.1016/j.ijfoodmicro.2013.12.002.

[63] UDOMPIJITKUL P, PAREDES-SABJA D, SARKER M R. Inhibitory effects of nisin against Clostridium perfringensfood poisoning and nonfood-borne isolates[J]. Journal of Food Science, 2012, 77(1): M51-M56. DOI: 10.1111/j.1750-3841.2011.02475.x.

[64] GRILLI E, MESSINA MR, CATELLI E, et al. Pediocin A improves growth performance of broilers challenged with Clostridium perfringens[J]. Poultry Science, 2009, 88(10): 2152-2158. DOI: 10.3382/ps.2009-00160.

[65] SPELHAUGS R, HARLANDERS K. Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceous[J]. Journal of Food Protection, 1989, 52(12): 856-862.

[66] CINTAS L M, CASAUS P, HAVARSTEIN L S, et al. Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum[J]. Applied and Environmental Microbiology, 1997, 63(11): 4321-4330.

[67] BIZANI D, BRANDELLI A. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A[J]. Journal of Applied Microbiology, 2002, 93(3): 512-519. DOI: 10.1046/j.1365-2672.2002.01720.x.

[68] XIE J, ZHANG R, SHANG C, et al. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens[J]. African Journal of Biotechnology, 2009, 8(20): 5611-5619.

[69] JUNEJA V K, DWIVEDI H P, YAN X. Novel natural food antimicrobials[J]. Annual review of Food Science and Technology, 2012, 3: 381-403. DOI: 10.1146/annurev-food-022811-101241.

[70] TIWARI B K, VALDRAMIDIS V P, ODONNELL C P, et al. Application of natural antimicrobials for food preservation[J]. Journal of Agricultural and Food Chemistry, 2009, 57(14): 5987-6000. DOI: 10.1079/9781845937690.0204.

[71] NIETO-LOZANO J C, REGUERA-USEROS J I, PELAEZ-MARTINEZ M D C, et al. Effect of a bacteriocin produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens on Spanish raw meat[J]. Meat Science, 2006, 72(1): 57-61. DOI: 10.1016/j.meatsci.2005.06.004.

[72] ZHANG J, LIU G, SHANG N, et al. Purification and partial amino acid sequence of pentocin 31-1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31-1[J]. Journal of Food Protection, 2009, 72(12): 2524-2529.

[73] GUO-JANE T, SAN-PIN H. In vitro and in vivo antibacterial activity of shrimp chitosan against some intestinal bacteria[J]. Fisheries Science, 2004, 70(4): 675-681. DOI: 10.1111/j.1444-2906.2004.00856.x.

[74] JUNEJA V K, HARSHAVARDHAN T, LATIFUL B, et al. Chitosan protects cooked ground beef and turkey against Clostridium perfringens spores during chilling[J]. Journal of Food Science, 2006, 71(6): M236-M240. DOI: 10.1111/j.1750-3841.2006.00109.x.

[75] AZIZ M A, CABRAL J D, BROOKS H J L, et al. Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(1): 280-287. DOI: 10.1128/aac.05463-11.

[76] SANTOS G, MIRNA A, MARIVEL G, et al. Inhibition of growth, enterotoxin production, and spore formation of Clostridium perfringens by extracts of medicinal plants[J]. Journal of Food Protection, 2002, 65(10):1667-1669.

[77] SI W, NI X, GONG J, et al. Antimicrobial activity of essential oils and structurally related synthetic food additives towards Clostridium perfringens[J]. Journal of Applied Microbiology, 2009, 106(1): 213-220. DOI: 10.1111/j.1365-2672.2008.03994.x.

[78] AH Y J, SAKANAK S, KIM M J, et al. Effect of green tea extract on growth of intestinal bacteria[J]. Microbial Ecology in Health and Disease, 2009, 3(6): 335-338. DOI: 10.3402/mehd.v3i6.7559.

[79] BURT S. Essential oils: their antibacterial properties and potential applications in foods: a review[J]. International Journal of Food Microbiology, 2004, 94(3): 223-253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.

[80] JUNEJA V K, BARI M L, INATSU Y, et al. Control of Clostridium perfringens spores by green tea leaf extracts during cooling of cooked ground beef, chicken, and pork[J]. Journal of Food Protection, 2007, 70(6): 1429-1433.

[81] DEMIRCI F, GUVEN K, DEMIRCI B, et al. Antibacterial activity of two Phlomis essential oils against food pathogens[J]. Food Control, 2008, 19(12): 1159-1164. DOI: 10.1016/j.foodcont.2008.01.001.

[82] SEBRANEK J G, BACUS J N. Cured meat products without direct addition of nitrate or nitrite: what are the issues?[J]. Meat Science, 2007, 77(1): 136-147. DOI: 10.1016/j.meatsci.2007.03.025.

猜你喜歡
控制研究
建設(shè)項(xiàng)目工程造價(jià)控制的研究
關(guān)于工程造價(jià)計(jì)價(jià)模式和造價(jià)的控制研究
影響工程測(cè)量精度的因素及控制研究
施工企業(yè)工程成本核算與控制研究
薄壁高橋墩穩(wěn)定行為及施工控制技術(shù)研究
電力施工企業(yè)工程預(yù)算管理及控制研究
電氣自動(dòng)化儀器儀表控制的研究
企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)防范與控制探究