鄭莉莉, 宋明華, 尹譚鳳, 于飛海,*
1 北京林業(yè)大學(xué)自然保護(hù)區(qū)學(xué)院,北京 100083 2 中國(guó)科學(xué)院地理科學(xué)與資源研究所生態(tài)網(wǎng)絡(luò)觀測(cè)與模擬重點(diǎn)實(shí)驗(yàn)室,北京 100101
?
青藏高原高寒草甸門源草原毛蟲取食偏好及其與植物C、N含量的關(guān)系
鄭莉莉1, 宋明華2, 尹譚鳳2, 于飛海1,*
1 北京林業(yè)大學(xué)自然保護(hù)區(qū)學(xué)院,北京100083 2 中國(guó)科學(xué)院地理科學(xué)與資源研究所生態(tài)網(wǎng)絡(luò)觀測(cè)與模擬重點(diǎn)實(shí)驗(yàn)室,北京100101
摘要:草食性昆蟲對(duì)不同植物物種的取食存在偏好,這種取食偏好可能受其自身對(duì)蛋白質(zhì)和碳水化合物的需求及二者平衡的調(diào)節(jié)。以青藏高原高寒矮嵩草草甸31種常見植物及門源草原毛蟲為對(duì)象,通過飼喂實(shí)驗(yàn),研究了草食性昆蟲對(duì)不同物種和不同功能群植物的取食偏好,及其與植物葉片C、N含量和C∶N之間的關(guān)系。在31種植物中,門源草原毛蟲對(duì)19種植物進(jìn)行了取食,尤其對(duì)矮嵩草、紅棕薹草、藏異燕麥和垂穗披堿草四種植物表現(xiàn)出強(qiáng)烈的取食偏好,而對(duì)另外12種植物未進(jìn)行任何取食。在物種水平上,門源草原毛蟲取食量與植物葉片N含量呈顯著負(fù)相關(guān),與葉片C∶N呈正相關(guān)。從功能群水平上看,門源草原毛蟲對(duì)莎草類的取食偏好最大,而對(duì)豆科植物取食偏好最低;相應(yīng)地,莎草類植物葉片N含量最低、C∶N最高,而豆科植物葉片N含量最高、C∶N最低。因此,即使在土壤有效氮匱乏、植物生長(zhǎng)受氮素限制的高寒草甸生態(tài)系統(tǒng),植物體內(nèi)N含量的增加也可能不利于草食性昆蟲的取食。門源草原毛蟲對(duì)優(yōu)勢(shì)植物矮嵩草和垂穗披堿草的取食對(duì)高寒矮嵩草草甸物種共存和生物多樣性維持可能具有重要的作用。
關(guān)鍵詞:草食性昆蟲;適口性;植物功能群;取食行為;高山植物;幼蟲
植物體內(nèi)養(yǎng)分元素含量,尤其是碳(C)和氮(N)元素含量,是影響其適口性以及草食動(dòng)物取食偏好的重要生物因素[1- 10]。其部分原因在于,植物體內(nèi)富含N的蛋白質(zhì)和富含C的糖類是草食動(dòng)物所需的兩類基本物質(zhì),是其活動(dòng)的能量來源,并影響其生長(zhǎng)、發(fā)育和生殖[11]。很多研究表明,植物體內(nèi)N含量增加或C∶N降低會(huì)提高草食動(dòng)物對(duì)植物的取食偏好[10- 14]。然而,高的N含量并不是必然對(duì)應(yīng)著高的草食動(dòng)物取食偏好[9, 15- 17]。例如,研究表明,食物中過高的植物N含量可導(dǎo)致亞洲草原一種蝗蟲(Oedaleusasiaticus)生長(zhǎng)的減緩[9]。
對(duì)大多數(shù)草食性動(dòng)物,尤其是草食昆蟲,其食物都存在一個(gè)最佳N含量,當(dāng)食物N含量大于或小于此最佳含量時(shí)均不利于其生長(zhǎng)或發(fā)育[16, 18- 21]。因此,覓食那些蛋白質(zhì)和碳水化合物含量或比例適合的食物是草食性動(dòng)物所面臨的主要挑戰(zhàn)[21- 24]。對(duì)單食性和寡食性昆蟲而言,其取食植物的種類有限,因而植物體蛋白質(zhì)和碳水化物含量的較大變化會(huì)對(duì)草食性昆蟲蛋白質(zhì)/碳水化合物平衡造成顯著影響[25]。而對(duì)于多食性昆蟲來說,由于其取食的植物種類較多,而不同植物種類C、N含量存在很大的差異,因此昆蟲對(duì)不同植物種的偏好對(duì)維持其自身蛋白質(zhì)/碳水化合物的平衡具有重要意義。目前很多室內(nèi)喂食實(shí)驗(yàn)主要圍繞著草食昆蟲對(duì)單個(gè)或少數(shù)幾個(gè)植物物種的取食偏好展開的[19- 21],而一些野外喂食實(shí)驗(yàn)雖包含多種植物,但多數(shù)僅就取食偏好進(jìn)行了觀測(cè),沒有把取食偏好與葉片養(yǎng)分元素含量進(jìn)行關(guān)聯(lián)[26- 27]。此外,草食昆蟲是否對(duì)不同功能群植物存在取食偏好目前也并不清楚。
門源草原毛蟲(G.menyuanensisYan et Zhou)隸屬鱗翅目(Lepidoptera)毒蛾科(Lymantriidae),是高寒草甸生態(tài)系統(tǒng)中常見的草食性昆蟲[26- 28],對(duì)牧草生長(zhǎng)和群落初級(jí)生產(chǎn)力有十分顯著的影響[26- 27]。青藏高原高寒草甸生態(tài)系統(tǒng)由于海拔高,年均溫低,有機(jī)質(zhì)分解慢,土壤缺乏速效N[29]。植物生長(zhǎng),尤其在春季受到低土壤有效N的限制[29],故植物體N含量相對(duì)較低。因此,青藏高原高寒草甸植物體內(nèi)N含量很可能不足以超過門源草原毛蟲的食物最佳N含量[16, 18- 21]?;谝陨戏治?,提出如下假設(shè):門源草原毛蟲可能對(duì)高葉片N含量的植物物種和功能群有更高的取食偏好。
為驗(yàn)證這些假說,在青藏高原矮嵩草草甸選取了31種常見植物,在野外開展了門源草原毛蟲飼喂實(shí)驗(yàn),并對(duì)這31種植物的葉片C、N含量進(jìn)行了測(cè)定。本文擬回答以下科學(xué)問題:(1)門源草原毛蟲對(duì)矮嵩草草甸不同物種是否存在取食偏好?(2)如果存在,其取食偏好與植物葉片C含量、N含量和C∶N是否存在相關(guān)性?(3)門源草原毛蟲是否存在植物功能群水平上的取食偏好?(4)如果存在,植物功能群水平上的取食偏好是否與功能群水平的葉片C含量、N含量及C∶N相關(guān)?
1材料與方法
1.1研究地概況
研究地位于海北高寒草甸生態(tài)系統(tǒng)定位研究站(簡(jiǎn)稱“海北站”; 37°37′ N,101°19′ E)。該站位于青藏高原東北隅的祁連山南坡谷地,海拔3200 m,屬于典型高原大陸性氣候,暖季短暫而涼爽,冷季寒冷而漫長(zhǎng)。年平均氣溫-1.7 ℃,年極端最高氣溫27.6 ℃,極端最低氣溫-37.1 ℃。年降水量426—860 mm,80%集中于植物生長(zhǎng)季的5—9月,蒸發(fā)量1160.3 mm。無絕對(duì)無霜期,年平均日照2462.7 h。由于其特殊的自然環(huán)境,多年生草本植物適應(yīng)寒冷嚴(yán)酷的生境,形成了以矮嵩草(K.humilis)、金露梅(Potentillafruticosa)及藏嵩草(K.tibetica)為主要建群種的植物群落類型。土壤是草氈寒凍雛形土,土壤發(fā)育年青、土層薄、有機(jī)質(zhì)含量高。牧草生長(zhǎng)低矮,群落結(jié)構(gòu)簡(jiǎn)單,初級(jí)生產(chǎn)力低[30]。
1.2飼喂實(shí)驗(yàn)
2013年6月底,選取海北站附近矮嵩草草甸31種常見植物進(jìn)行飼喂實(shí)驗(yàn),所選植物種類及其功能群類型詳見表1。6月30日—7月5日,每天在植被均勻一致的草地上剪取上述31種植物的葉片,立即用自封袋裝起來,帶回室內(nèi)用4 ℃的冰箱儲(chǔ)存。對(duì)于每個(gè)植物種,從每天所取葉片樣品中隨機(jī)選取一部分用于C含量、N含量和比葉面積的測(cè)量,共計(jì)6個(gè)重復(fù)。
飼喂實(shí)驗(yàn)在六個(gè)透明有機(jī)玻璃盒里開展。每個(gè)盒子為長(zhǎng)100 cm、寬100 cm、高25 cm的無蓋長(zhǎng)方體,其底面鋪有泡沫板和濾紙,用于固定植物葉片片段和保持葉片片段的新鮮。為方便操作,在濾紙上用鉛筆劃出5 cm × 5 cm 的方格,每個(gè)植物片段固定在方格的一個(gè)角上。在每個(gè)盒子內(nèi),每種植物放置10個(gè)葉片片段,31種植物的310個(gè)葉片片段完全隨機(jī)擺放。植物葉片片段用大頭針固定,使其緊貼濾紙,濾紙定期噴水霧以保持濕潤(rùn)。每個(gè)葉片片段總面積大致相同,約0.5 cm2。寬葉植物剪成1 cm × 0.5 cm 的長(zhǎng)方形,用大頭針扎在其中心固定。對(duì)于禾本科等狹窄葉片,由于其寬度往往小于0.5 cm,按照其寬度剪成合適長(zhǎng)度,最終保證總?cè)~面積為0.5 cm2。例如,早熟禾葉片平均寬度為0.2 cm,將其葉片剪成2.5 cm長(zhǎng)的片段固定,而針茅葉片平均寬度僅為0.05 cm,則將葉片剪成長(zhǎng)度為5 cm的兩段,將這兩段葉片用大頭針扎成十字形固定[31- 32]。
由于剪取葉片片段和固定葉片片段的工作量很大,以及為了盡可能保證植物葉片的新鮮,在晚上將當(dāng)天選取的植物葉片進(jìn)行分段和固定,并保持濾紙濕潤(rùn)。在第2天9:00,即毛蟲取食高峰到來之前,將取自野外樣地并已饑餓24h的20只門源草原毛蟲幼蟲放入盒子的中央,開始實(shí)驗(yàn)。一天布置1個(gè)盒子,共計(jì)6個(gè)重復(fù)(盒子),每個(gè)盒子持續(xù)飼喂72h。實(shí)驗(yàn)結(jié)束后,估算每個(gè)葉片片段的被取食面積百分比。為了減小誤差,所有估算均由同一個(gè)人完成。
1.3植物性狀測(cè)定
將采集的每種植物的若干新鮮葉片用掃描儀掃描后計(jì)算總?cè)~面積,隨后將這些葉片烘干稱重,計(jì)算比葉面積(Specific leaf area,即單位重量葉面積)。植物葉片烘干后用球磨儀粉碎,然后采用元素分析儀測(cè)定每種植物每個(gè)樣品中的C、N含量,每種植物測(cè)量6個(gè)樣品。
1.4數(shù)據(jù)分析
每個(gè)物種每個(gè)重復(fù)(盒子)中10個(gè)植物片段累計(jì)取食量(面積百分比)的平均值除以每個(gè)物種的平均比葉面積,得到每種植物每個(gè)重復(fù)的葉片取食量(leaf consumption,(g))。同時(shí),將31種植物分為莎草、禾草、豆科植物和雜類草4個(gè)常用的功能類群[33- 34]。
采用單因素方差分析(one- way ANOVA)檢驗(yàn)門源草原毛蟲葉片取食量、植物葉片C含量、N含量和C∶N在物種之間和功能群之間的差異;多重比較采用Tukey法。通過回歸分析,研究葉片取食量與葉片C含量、N含量及C∶N之間的關(guān)系。所有分析采用SPSS version 17.0進(jìn)行。
2結(jié)果
2.1門源草原毛蟲對(duì)不同物種的取食偏好
門源草原毛蟲對(duì)31種高寒草甸植物的取食偏好存在顯著差異(F30,155=22.6,P<0.001;表1)。矮嵩草的葉片取食量最高,顯著高于藏異燕麥和紅棕薹草;而藏異燕麥和紅棕薹草與垂穗披堿草無顯著差異,但顯著高于珠芽蓼和早熟禾(表1)。珠芽蓼和早熟禾與二裂委陵菜和異針茅無顯著差異,但顯著高于甘肅棘豆和微孔草(表1)。二裂委陵菜和異針茅與甘肅棘豆和微孔草無顯著差異,但顯著高于其余的21種植物;甘肅棘豆和微孔草與其余的21種植物無顯著差異(表1)。
2.2不同植物葉片N含量、C含量和C∶N的差異
高寒草甸植物葉片中N含量、C含量及C∶N均存在顯著的種間差異(N含量:F31,160=878.7,P<0.001;C含量:F31,160=180.0,P<0.001;C: N∶F31,160=703.5,P<0.001;表1)。披針葉黃華的葉片N含量最高(4.18%),顯著高于花苜蓿(3.91%)和微孔草(3.81%),以上3個(gè)物種葉片N含量顯著高于高山豆(3.69%)和甘肅棘豆(3.63%,表1),而藏異燕麥和矮嵩草的N含量最低,均為1.8%(表1)。線葉龍膽葉片C含量最高,達(dá)49.2%,平車前最低,為40.7%(表1)。矮嵩草葉片C∶N最高(25.9),而微孔草的最低(10.9,表1)。
表1用于飼喂實(shí)驗(yàn)的31種植物種名、科名、功能群類型、門源草原毛蟲取食量、葉片碳(C)含量、氮(N)含量和C∶N
Table 1Species name, family name, functional type, leaf consumption byG.menyuanensis, leaf carbon (C) and nitrogen (N) contents and C∶N of the 31 plant species used for the feeding experiment
種名Species科名Family功能群Func.group取食量/gConsumption葉片碳(C)含量/%Leafcarbon(C)content葉片氮(N)含量/%Leafnitrogen(N)content葉片C∶NLeafC∶N矮嵩草Kobresiahumilis莎草科Cyperaceae莎草sedge0.35±0.01a45.89±0.03d1.77±0.01o25.19±0.15a異針茅Stipaaliena禾本科Gramineae禾草grass0.05±0.01def46.56±0.03c2.05±0.00n22.75±0.04b垂穗披堿草Elymusnutans禾本科Gramineae禾草grass0.15±0.01bc45.18±0.02ef2.36±0.01k19.15±0.05g早熟禾Poaannua禾本科Gramineae禾草grass0.08±0.01cde45.74±0.01d2.11±0.01mn21.68±0.13cd藏異燕麥Helictotrichontibetic-um禾本科Gramineae禾草grass0.18±0.02b45.03±0.04ef1.79±0.01o25.21±0.15a紅棕薹草Carexprzewalskii莎草科Cyperaceae莎草sedge0.19±0.01b45.07±0.04ef2.11±0.01mn21.35±0.08de卷鞘鳶尾Irispotaninii鳶尾科Iridaceae雜類草forb0±0.00f45.84±0.01d2.76±0.01e16.59±0.04lm鈴鈴香青Anaphalishancockii菊科Compositae雜類草forb0±0.00f42.96±0.14k2.43±0.00jk17.66±0.04ijk披針葉黃華Thermopsislanceo-lata豆科Leguminosae豆科植物legume0±0.00f46.79±0.01c4.18±0.00a11.20±0.00qr柔軟紫菀Astertataricus菊科Compositae雜類草forb0±0.00f44.48±0.04ghi2.44±0.00jk18.27±0.03hij麻花艽Gentianastraminea龍膽科Gentianaceae雜類草forb0±0.00f47.52±0.05b3.02±0.01d15.72±0.02n肉果草Lanceatibetica玄參科Scrophulariaceae雜類草forb0±0.00f47.47±0.03b2.05±0.00n23.12±0.03b平車前Plantagodepressa車前科Plantaginaceae雜類草forb0±0.00f40.68±0.01n2.58±0.00ghi15.76±0.02mn疏齒銀蓮花Anemoneobtusiloba毛茛科Ranunculaceae雜類草forb0±0.00f44.05±0.02ij2.64±0.01fgh16.70±0.03l微孔草Microulasikkimensis紫草科Boraginaceae雜類草forb0.02±0.01ef41.57±0.03l3.81±0.02b10.92±0.05r箭葉橐吾Ligulariasagitta菊科Compositae雜類草forb0±0.00f43.97±0.01ij3.06±0.01d14.38±0.03o瑞苓草Saussureanigrescens菊科Compositae雜類草forb0±0.00f45.14±0.02ef2.75±0.01e16.41±0.03lmn高山唐松草Thalictrumalpi-num毛茛科Ranunculaceae雜類草forb0±0.00f45.02±0.01ef2.56±0.01hi17.58±0.07jk二裂委陵菜Potentillabifurca薔薇科Rosaceae雜類草forb0.06±0.01def45.79±0.02d2.10±0.00mn21.83±0.04cd甘肅棘豆Oxytropiskansuensis豆科Leguminosae豆科植物legume0.02±0.00ef44.18±0.03hij3.63±0.00c12.17±0.01p花苜蓿Medicagoruthenica豆科Leguminosae豆科植物legume0±0.00f45.15±0.01ef3.91±0.00b11.56±0.00pqr高山豆Tibetiahimalaica豆科Leguminosae豆科植物legume0±0.00f43.74±0.01j3.69±0.00c11.87±0.01pq美麗風(fēng)毛菊Saussureapulchra菊科Compositae雜類草forb0±0.00f45.00±0.02efg2.22±0.00l20.27±0.03f矮火絨草Leontopodiumnanum菊科Compositae雜類草forb0±0.00f42.86±0.10k2.24±0.00l19.17±0.06g蒲公英Taraxacummongolicum菊科Compositae雜類草forb0±0.00f43.11±0.02k2.51±0.01ij17.15±0.03kl線葉龍膽Gentianafarreri龍膽科Gentianaceae雜類草forb0±0.00f49.22±0.04a2.20±0.01lm22.39±0.08bc圓萼刺參Morinachinensis川續(xù)斷科Dipsacaceae雜類草forb0±0.00f43.80±0.06j2.38±0.01k18.43±0.11ghi雪白委陵菜Potentillanivea薔薇科Rosaceae雜類草forb0±0.00f44.34±0.00hi2.68±0.00efg16.54±0.02lmn美麗毛茛Ranunculuspulchellus毛茛科Ranunculaceae雜類草forb0±0.00f44.25±0.00hij2.35±0.01k18.80±0.06gh鵝絨委陵菜Potentillaansrina薔薇科Rosaceae雜類草forb0.01±0.00f45.40±0.01de2.20±0.01lm20.64±0.04ef珠芽蓼Polygonumviviparum蓼科Polygonaceae雜類草forb0.10±0.01cd44.67±0.02fgh2.72±0.01ef16.43±0.08lmn
所給數(shù)值為均值±標(biāo)準(zhǔn)誤;不同字母表示均值存在顯著差異
2.3門源草原毛蟲取食與植物N含量、C含量及C∶N的關(guān)系
門源草原毛蟲葉片取食量與植物葉片N含量呈顯著負(fù)相關(guān)關(guān)系(R2=0.16,P=0.017;圖1),與葉片C∶N呈顯著正相關(guān)關(guān)系(R2=0.26,P=0.001;圖1)。然而,門源草原毛蟲取食量與植物葉片C含量沒有顯著的相關(guān)關(guān)系(R2=0.02,P=0.06;圖1)。
圖1 門源草原毛蟲對(duì)31種植物葉片取食量與其葉片氮(N)含量、碳(C)含量以及C∶N之間的相關(guān)關(guān)系Fig.1 Relationships of leaf consumption by G. menyuanensis with leaf nitrogen (N) content, carbon (C) content and C∶N of the 31 plant species
2.4門源草原毛蟲對(duì)不同功能群植物的取食偏好
門源草原毛蟲對(duì)高寒草甸植物4種功能群的取食偏好存在顯著差異(F3,185=97.6,P<0.001;圖2)。對(duì)莎草類的取食量顯著高于禾草類(高1.3倍),對(duì)禾草類的取食量顯著高于豆科(高16.9倍)和雜類草(高11.8倍),而對(duì)豆科植物和雜類草的取食量沒有顯著差異(圖2)。
2.5不同植物功能群葉片N含量、C含量及C∶N的差異
高寒草甸植物4個(gè)功能群之間的N含量及C∶N均存在顯著差異(N含量:F3,185=101.9,P<0.001;C∶N:F3,185=81.28,P<0.001)。豆科植物的葉片N含量為3.85%,顯著高于雜類草,而雜類草顯著高于莎草和禾草,但禾草和莎草間無顯著差異(圖2)。莎草和禾草的的C∶N分別為23.6和22.2,無顯著差異,但均顯著高于雜類草(圖2)。雜類草的C∶N顯著高于豆科植物(圖2)。4個(gè)功能群的葉片C含量無顯著差異(圖2)。
圖2 門源草原毛蟲對(duì)高寒草甸莎草、禾草、豆科植物和雜類草四類功能群植物的葉片取食量,以及四類功能群植物葉片N含量、C含量和C∶N的均值和標(biāo)準(zhǔn)誤Fig.2 Leaf consumptions of the four plant functional groups (sedges, grasses, legumes and forbs) by G. menyuanensis, and leaf N and C contents and C∶N of the four functional groups不同字母表示均值在P=0.05水平上(Tukey 檢驗(yàn))存在顯著差異
3討論
門源草原毛蟲取食了青藏高原矮嵩草草甸31種常見植物中的19種植物,表明門源草原毛蟲的食性是廣譜性的,屬于多食性昆蟲[26- 27]。盡管門源草原毛蟲表現(xiàn)出多食性,但其僅對(duì)矮嵩草、紅棕薹草、藏異燕麥和垂穗披堿草兩種功能群的四種莎草或禾草植物種表現(xiàn)出很強(qiáng)的取食偏好(72小時(shí)內(nèi)取食量超過0.1 g),其中對(duì)莎草類植物矮嵩草的取食量最大。然而,門源草原毛蟲對(duì)豆科植物的取食量很少或基本不取食。因此,在功能群水平上門源草原毛蟲對(duì)莎草類的取食偏好最大,禾草類其次,而對(duì)豆科類植物取食偏好最低。
一般認(rèn)為,如果葉片中以N為基礎(chǔ)的蛋白質(zhì)和氨基酸含量低,那么植物N含量能較好地預(yù)測(cè)草食動(dòng)物的取食偏好[12]。在這種情況下,植物葉片N含量和昆蟲的成活率,生長(zhǎng)發(fā)育將呈顯著正相關(guān)關(guān)系[12- 13, 35- 36]。對(duì)青藏高原高寒草甸,植物生長(zhǎng)受到土壤中低N的限制[37]。然而,我們發(fā)現(xiàn),無論在物種水平還是功能群水平,門源草原毛蟲取食量與青藏高原高寒草甸植物葉片N含量均呈現(xiàn)負(fù)相關(guān)關(guān)系。這些結(jié)果否定了我們的假設(shè),表明即使在土壤有效氮匱乏、植物生長(zhǎng)受N限制的高寒草甸生態(tài)系統(tǒng),草食性昆蟲也可能偏好取食葉片N含量低的植物。然而,要深入理解高寒植物葉片N含量與門源草原毛蟲取食偏好之間的內(nèi)在聯(lián)系,還需進(jìn)一步開展更加深入的生理和生化實(shí)驗(yàn)研究。
昆蟲對(duì)植物種的不同取食偏好原因比較復(fù)雜,除了植物體內(nèi)N含量和C∶N之外,很多其他因素也起作用[1- 9, 11, 38]。一般而言,營(yíng)養(yǎng)物質(zhì)含量高(包括蛋白質(zhì)、氨基酸、脂肪酸、碳水化合物、總能量、水、微量元素和維生素)、無毒、易被昆蟲消化吸收的植物易被昆蟲選擇取食[39]。因此,一些物種的取食量隨著N含量的增加而增加[4- 6]。然而,碳水化合物是為草食動(dòng)物快速提供能量、維持自身機(jī)能的重要物質(zhì)。因此,草食動(dòng)物一般來說都會(huì)有一個(gè)物種專一性的蛋白質(zhì)/碳水化合物的帶譜[19]。最優(yōu)化的蛋白質(zhì)與碳水化合物比例對(duì)于草食動(dòng)物正常生長(zhǎng)、發(fā)育和繁殖具有重要意義[19]。例如,螞蟻?zhàn)陨硐埠酶咛妓衔锏氖澄?,但?dāng)它們被持續(xù)供應(yīng)高蛋白質(zhì)的食物時(shí),就會(huì)遭受高的死亡率[40- 42]。此外,植物的一些次級(jí)代謝產(chǎn)物也會(huì)影響草食昆蟲的取食[43]。例如,C組成的次級(jí)代謝產(chǎn)物酚類、單寧等是適口性重要的控制因素[4],而單寧不容易消化[44- 46],可作為抵御物質(zhì)降低適口性[47]。經(jīng)過長(zhǎng)期的與自然環(huán)境和植物的協(xié)同進(jìn)化,門源草原毛蟲對(duì)食物的選擇已經(jīng)特化,這種特化的利用方式比普食性昆蟲的利用效率更高[26, 48]。也有研究表明門源草原毛蟲對(duì)其喜食的植物轉(zhuǎn)化率最高[26]。另外,門源草原毛蟲由于要抵御高寒草甸寒冷的自然條件,將較多資源分配給能提供能量的碳水化合物及非結(jié)構(gòu)性蛋白質(zhì)。究竟是哪種因素對(duì)門源草原毛蟲食物選擇起主導(dǎo)作用,尚待開展更加深入的生物化學(xué)方面的研究工作。
門源草原毛蟲對(duì)不同植物物種取食偏好的差異可以影響高寒草地植物群落的結(jié)構(gòu)和功能,并進(jìn)一步影響整個(gè)生態(tài)系統(tǒng)的功能的發(fā)揮[27, 49]。從門源草原毛蟲的食物譜和選食特征上看,其取食量較高的物種是矮嵩草和垂穗披堿草,而這些植物種是高寒矮嵩草草甸的優(yōu)勢(shì)物種,也是高寒草甸生態(tài)系統(tǒng)中的主要家畜牦牛和藏系綿羊(綿羊的藏系品種)喜食的優(yōu)良牧草[27, 49]。這些草食性消費(fèi)者對(duì)優(yōu)勢(shì)物種的大量取食,會(huì)顯著地降低優(yōu)勢(shì)物種的優(yōu)勢(shì)度和地上生物量,當(dāng)高密度草原毛蟲發(fā)生時(shí)會(huì)引起矮嵩草草甸的嚴(yán)重退化[1]。而從另一方面看,毛蟲的適當(dāng)取食也對(duì)優(yōu)勢(shì)物種的擴(kuò)張起到了抑制作用,使得多度較低的物種和稀有物種得以共存,從而維持了高寒矮嵩草草甸物種的共存和較高的多樣性。因此,門源草原毛蟲的取食偏好對(duì)青藏高原高寒矮嵩草草甸植物物種共存和生物多樣性的維持可能有重要的意義。為此,需要進(jìn)一步開展野外觀測(cè)和實(shí)驗(yàn),研究門源草原毛蟲取食對(duì)高寒草甸群落結(jié)構(gòu)(如物種組成和均勻度)和功能(如生產(chǎn)力)的影響。
參考文獻(xiàn)(References):
[1]嚴(yán)林, 劉長(zhǎng)中, 吳靜. 單寧酸對(duì)門源草原毛蟲生長(zhǎng)發(fā)育和存活的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2009, 18(4): 43- 47.
[2]郭文卿, 楊亞軍, 徐紅星, 鄭許松, 呂仲賢. 稻縱卷葉螟幼蟲對(duì)不同含氮糖人工飼料的取食選擇行為. 浙江農(nóng)業(yè)學(xué)報(bào), 2012, 24(6): 1069- 1073.
[3]Meyer G A. Interactive effects of soil fertility and herbivory onBrassicanigra. Oikos, 2000, 88(2): 433- 441.
[4]Sch?dler M, Jung G, Auge H, Brandl R. Palatability, decomposition and insect herbivory: patterns in a successional old-field plant community. Oikos, 2003, 103(1): 121- 132.
[5]Noret N, Meerts P, Tolrà R, Poschenrieder C, Barceló J, Escarre J. Palatability ofThlaspicaerulescensfor snails: influence of zinc and glucosinolates. New Phytologist, 2005, 165(3): 763- 771.
[6]Albrectsen B R, Gutierrez L, Fritz R S, Fritz R D, Orians C M. Does the differential seedling mortality caused by slugs alter the foliar traits and subsequent susceptibility of hybrid willows to a generalist herbivore? Ecological Entomology, 2007,32(2): 211- 220.
[7]Clissold F J, Sanson G D, Read J. The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust. Journal of Animal Ecology, 2006, 75(4): 1000- 1013.
[8]李旭林, 彭逸生, 萬如, 伍卡蘭, 陳桂珠. 兩種相手蟹對(duì)不同紅樹植物葉片取食的偏好性. 生態(tài)學(xué)報(bào), 2010, 30(14): 3752- 3759.
[9]Cease A J, Elser J J, Ford C F, Hao S G, Kang L, Harrison J F. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science, 2012, 335(6067): 467- 469.
[10]Kursar T A, Coley P D. Nitrogen content and expansion rate of young leaves of rain forest species: implications for herbivory. Biotropica, 1991, 23(2): 141- 150.
[11]婁永根, 程家安. 植物的誘導(dǎo)抗蟲性. 昆蟲學(xué)報(bào), 1997, 40(3): 320- 331.
[12]Mattson W J Jr. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 1980, 11: 119- 161.
[13]White T C R. The Inadequate Environment: Nitrogen and the Abundance of Animals. Berlin, Germany: Springer-Verlag, 1993.
[14]陳珊, 陳雙林, 郭子武. 林地覆蓋經(jīng)營(yíng)對(duì)雷竹葉片營(yíng)養(yǎng)質(zhì)量及食葉害蟲適口性的影響. 生態(tài)學(xué)雜志, 2014, 33(5): 1253- 1259.
[15]Raubenheimer D, Simpson S J. The geometry of compensatory feeding in the locust. Animal Behaviour, 1993, 45(5): 953- 964.
[16]Raubenheimer D, Simpson S J. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth.The Journal of Experimental Biology, 2003, 206(10): 1669- 1681.
[17]Leroy C, Carrias J F, Corbara B, Pelozuelo L, Dezerald O, Brouard O, Dejean A, Cereghino R. Mutualistic ants contribute to tank-bromeliad nutrition. Annals of Botany, 2013,112(5): 919- 926.
[18]Lee K P, Behmer S T, Simpson S J. Nutrient regulation in relation to diet breadth: a comparison ofHeliothissister species and a hybrid. The Journal of Experimental Biology, 2006, 209(11): 2076- 2084.
[19]Behmer S T, Joern A. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 1977- 1982.
[20]Behmer S T. Insect herbivore nutrient regulation. Annual Review of Entomology, 2009, 54(1): 165- 187.
[21]Simpson S J, Raubenheime D. TheNature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity. Princeton, New Jersey: Princeton University Press, 2012.
[22]Chown S L, Nicolson S W. Insect Physiological Ecology: Mechanisms and Patterns. Oxford, UK: Oxford University Press, 2004.
[23]Karasov W H, del Rio C M. Physiological Ecology: How Animals Process Energy, Nutrients, and Toxins. Princeton, New Jersey: Princeton University Press, 2007.
[24]Price P W, Denno R F, Eubanks M D, Finke D L, Kaplan I. InsectEcology: Behavior, Populations and Communities. Cambridge, UK: Cambridge University Press, 2011.
[25]欽俊德. 植食性昆蟲的食性和營(yíng)養(yǎng). 昆蟲學(xué)報(bào), 1962, 11(2): 169- 185.
[26]嚴(yán)林, 劉振魁, 梅潔人, 蘭景華. 野外扣籠條件下草原毛蟲對(duì)食物的選擇. 草地學(xué)報(bào), 1995, 3(4): 257- 268.
[27]萬秀蓮, 張衛(wèi)國(guó). 草原毛蟲幼蟲的食性及其空間格局. 草地學(xué)報(bào), 2006, 14(1): 84- 88.
[28]嚴(yán)林, 江小蕾, 王剛. 門源草原毛蟲幼蟲發(fā)育特性的研究. 草業(yè)學(xué)報(bào), 2005, 14(2): 116- 120.
[29]周興民. 中國(guó)嵩草草甸. 北京: 科學(xué)出版社, 2001: 137- 161.
[30]李英年, 趙新全, 曹廣民, 趙亮, 王勤學(xué). 海北高寒草甸生態(tài)系統(tǒng)定位站氣候、植被生產(chǎn)力背景的分析. 高原氣象, 2004, 23(4): 558- 567.
[31]Grime J P, Cornelissen J H C, Thompson K, Hodgson J G. Evidence of a causal connection between anti- herbivore defence and the decomposition rate of leaves. Oikos, 1996,77(3): 489- 494.
[32]Cornelissen J H C, Pérez-harguindeguy N, Díaz S, Grime J P, Marzano B, Cabido M, Vendramini F, Cerabolini B. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist, 1999, 143(1): 191- 200.
[33]Tilman D, Knops J, Wedin D,Reich P, Ritchie M, Siemann E. The influence of functional diversity and composition on ecosystem processes. Science, 1997, 277(5330): 1300- 1302.
[34]Hector A, Schmid B, Beierkuhnlein C, Caldeira M C, Diemer M, Dimitrakopoulos P G, Finn J A, Freitas H, Giller P S, Good J, Harris R, H?gberg P, Huss-Danell K, Joshi J, Jumpponen A, K?rner C, Leadley P W, Loreau M, Minns A, Mulder C P H, O′Donovan G, Otway S J, Pereira J S, Prinz A, Read D J, Scherer-Lorenzen M, Schulze E -D, Siamantziouras A -S D, Spehn E M, Terry A C, Troumbis A Y, Woodward F I, Yachi S, Lawton J H. Plant diversity and productivity experiments in European grasslands. Science, 1999, 286(5442): 1123- 1127.
[35]Scriber J M, Slansky F Jr. The nutritional ecology of immature insects. Annual Review of Entomology, 1981, 26(1): 183- 211.
[36]Mattson W J, Scriber J M. Nutritional ecology of insect folivores of woody plants: nitrogen, water, fiber, and mineral considerations // Slansky F Jr, Rodriques J G, eds. Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. New York: Wiley, 1987: 105- 146.
[37]Song M H, Xu X L, Hu Q W, Tian Y Q, Ouyang H, Zhou C P. Interactions of plant species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow. Plant and Soil, 2007, 297(1/2): 127- 137.
[38]張建萍, 王進(jìn)軍, 趙志模, 陳洋, 豆威. 模擬酸雨對(duì)朱砂葉螨寄主植物三月早茄生理生化的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(3): 450- 454.
[39]Slansky F Jr, Scriber J M. Food consumption and utilization // Kerkut G A, Gilbert L I, eds. Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Oxford, UK: Pergamon Press, 1985: 87- 163.
[40]Dussutour A, Simpson S J. Communal nutrition in ants. Current Biology, 2009, 19(9): 740- 744.
[41]Dussutour A, Simpson S J. Ant workers die young and colonies collapse when fed a high-protein diet. Proceedings of the Royal Society B- Biological Sciences, 2012, 279(1737): 2402- 0408.
[42]Cook S C, Eubanks M D, Gold R E, Behmer S T. Colony level macronutrient regulation in ants: mechanisms, hoarding and associated costs. Animal Behaviour, 2010, 79(2): 429- 437.
[43]Throop H L,Holland E A, Parton W J, Ojima D S, Keough C A. Effects of nitrogen deposition and insect herbivory on patterns of ecosystem- level carbon and nitrogen dynamics: results from the CENTURY model. Global Change Biology, 2004, 10(7): 1092- 1105.
[44]Schultz J C. Tannin - insect interactions // Hemmingway R W, Karchesy J J, Branham S J, eds. Chemistry and Significance of Condensed Tannins. Springer, US: Plenum Press, 1989: 417- 433.
[45]Clausen T P, Reichardt P B, Bryant J P, Provenza F. Condensed tannins in plant defense: a perspective on classical theories // Hemingway R W, Laks P E, eds. Plant Polyphenols: Synthesis, Properties, Significance. New York: Plenum Press, 1992: 639- 651.
[46]Reed J D. Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science, 1995, 73(5): 1516- 1528.
[47]Moles A T, Westoby M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos, 2000, 90(3): 517- 524.
[48]Scriber J M. Integrating ancient patterns and current dynamics of insect-plant interactions: taxonomic and geographic variation in herbivore specialization. Insect Science, 2010,17(6): 471- 507.
[49]張棋麟, 袁明龍. 草原毛蟲研究現(xiàn)狀與展望. 草業(yè)科學(xué), 2013, 30(4): 638- 646.
Feeding preference ofGynaephoramenyuanensisand its relationships with plant carbon and nitrogen contents in an alpine meadow on the Tibetan plateau
ZHENG Lili1, SONG Minghua2, YIN Tanfeng2, YU Feihai1,*
1SchoolofNatureConservation,BeijingForestryUniversity,Beijing100083,China2KeyLaboratoryofEcosystemNetworkObservationandModeling,InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,China
Abstract:Phytophagous insects show feeding preference for different plant species, and such preference may be regulated by their demands for proteins and carbohydrates and the balance between them. Therefore, feeding preference of phytophagous insects may be closely related to carbon (C) content, nitrogen (N) content, and the C∶N ratio of plants. Although many studies have investigated feeding preference of phytophagous insects for different plant species, relatively few have examined how plant functional groups affect feeding preference of phytophagous insects and whether their leaf C and N content, and C∶N ratio matter. To examine feeding preference of phytophagous insects for different plant species and for different functional groups and its relationships with leaf C, N, and the C∶N ratio of plants and functional groups, we conducted a feeding experiment in which we fed the larvae of a phytophagous insect, Gynaephora menyuanensis (Lymantriidae), with leaves of 31 common herbaceous plant species of four functional groups (sedges, grasses, legumes and forbs) collected in an alpine meadow dominated by Kobresia humilis on the Tibetan plateau. Fresh leaves of the 31 plant species were cut into pieces of the similar area (about 0.5 cm2) and fixed randomly on the arenas made of foam boards installed at the inner bottoms of six glass boxes (each measuring 1 m long × 1 m wide × 0.25 m high). Each box was treated as a block, containing ten leaf pieces of each of the 31 plant species collected on the same day. We put on the arena of each box 20 larvae of G. menyuanensis that were collected in the same meadow and had been starved for 24 hours, and measured consumption of each leaf piece (i.e., the percentage of leaf area loss) after 72 hours. Leaf area consumed by the larvae was further transformed into dry mass based on the relationship between leaf area and dry mass of each plant species. Of the 31 plant species, 19 were consumed by the larvae to different degrees, but the other 12 were not. The larvae showed strong feeding preference only for four species, i.e., K. humilis, Carex przewalskii, Helictotrichon tibeticum and Elymus nutans. At the species level, leaf consumption by the larvae was significantly negatively related with plant leaf N content and significantly positively related with the leaf C∶N ratio. At the functional-group level, the sedges had the highest leaf consumption by the larvae, the lowest leaf N content and the highest leaf C∶N ratio, whereas the legumes had the lowest leaf consumption, the highest leaf N, and the lowest leaf C∶N ratio. We conclude that increasing N content of plants may not increase the feeding preference of phytophagous insects even in alpine meadow ecosystems where plant growth is highly limited due to the lack of soil available N. Our results also suggest that the strong feeding preference of G. menyuanensis larvae for the dominant species K. humilis and E. nutans may help in maintaining species coexistence and biodiversity in the alpine meadow dominated by K. humilis.
Key Words:phytophagous insects; palatability; plant functional group; feeding behavior; alpine plants; larvae
基金項(xiàng)目:中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(TD-JC-2013-1); 國(guó)家自然科學(xué)基金面上項(xiàng)目(31270503)
收稿日期:2014- 10- 08; 網(wǎng)絡(luò)出版日期:2015- 08- 18
*通訊作者
Corresponding author.E-mail: feihaiyu@bjfu.edu.cn
DOI:10.5846/stxb201410081973
鄭莉莉, 宋明華, 尹譚鳳, 于飛海.青藏高原高寒草甸門源草原毛蟲取食偏好及其與植物C、N含量的關(guān)系.生態(tài)學(xué)報(bào),2016,36(8):2319- 2326.
Zheng L L, Song M H, Yin T F, Yu F H.Feeding preference ofGynaephoramenyuanensisand its relationships with plant carbon and nitrogen contents in an alpine meadow on the Tibetan plateau.Acta Ecologica Sinica,2016,36(8):2319- 2326.