董林水,宋愛(ài)云,周金星,姜鑫貴(.濱州學(xué)院,山東省黃河三角洲生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室,25660,山東濱州;2.北京林業(yè)大學(xué)水土保持學(xué)院,水土保持與荒漠化防治教育部重點(diǎn)實(shí)驗(yàn)室,0008,北京;.中國(guó)林業(yè)科學(xué)研究院荒漠化研究所,0009,北京)
?
青藏工程走廊沿線不同植被類型帶土壤典型理化特征
董林水1,宋愛(ài)云1,周金星2?,姜鑫貴3
(1.濱州學(xué)院,山東省黃河三角洲生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室,256603,山東濱州;2.北京林業(yè)大學(xué)水土保持學(xué)院,水土保持與荒漠化防治教育部重點(diǎn)實(shí)驗(yàn)室,100083,北京;3.中國(guó)林業(yè)科學(xué)研究院荒漠化研究所,100091,北京)
摘要:為制訂科學(xué)合理的青藏工程走廊沿線植被恢復(fù)策略,掌握沿線土壤的理化特征及其與植被分布的相關(guān)關(guān)系,本文研究沿線不同植被類型帶的土壤典型理化特征,共設(shè)置樣帶27條,測(cè)定指標(biāo)包括有機(jī)質(zhì)、全氮、全磷、全鉀、pH值、陽(yáng)離子交換量和碳酸鈣質(zhì)量分?jǐn)?shù)。結(jié)果表明,沿線土壤有機(jī)質(zhì)和全氮質(zhì)量分?jǐn)?shù),由北至南均表現(xiàn)出逐漸增高的趨勢(shì),并與植被類型密切相關(guān),土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)多在10.0~40.0 g/kg之間,全氮?jiǎng)t多介于0.4~2.0 g/kg之間。線性模型擬合結(jié)果表明:有機(jī)質(zhì)和全氮呈明顯的線性相關(guān);全磷質(zhì)量分?jǐn)?shù)多在0.3~0.8 g/kg之間,由北至南呈“兩端高,中間低”變化趨勢(shì);全鉀質(zhì)量分?jǐn)?shù)多介于13.0~30.0 g/kg,由北至南增高趨勢(shì)明顯;土壤pH值則表現(xiàn)為“北高南低”;沿線陽(yáng)離子交換量多在6.0~24.0 cmol(+)/kg之間;碳酸鈣質(zhì)量分?jǐn)?shù)呈現(xiàn)“南北迥異”的變化規(guī)律,北部樣帶多在8.0% ~15.0%之間,南部樣帶則多只有1.0% ~3.0%,這與土壤鈣積作用密切相關(guān)。綜上所述,沿線土壤各理化指標(biāo)表現(xiàn)出不同的變化規(guī)律,部分指標(biāo)與植被類型存在一定的相關(guān)性。
關(guān)鍵詞:青藏工程走廊;土壤理化特征;植被類型;樣帶
項(xiàng)目名稱:林業(yè)公益性行業(yè)科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目“青藏鐵路沿線沙害綜合防治技術(shù)研發(fā)與示范”(201504401);國(guó)家自然科學(xué)基金“青藏鐵路沿線外來(lái)植物空間擴(kuò)散機(jī)理模型研究”(30870231)
自從20世紀(jì)50年代青藏公路建成以來(lái),公路沿線區(qū)域又先后建設(shè)完成蘭西拉光纜、110輸變線、格拉輸油管道、青藏鐵路以及其他的一些線性工程;沿線北起格爾木市,南到拉薩市,形成一條長(zhǎng)約1 120 km的帶狀走廊,被稱為“青藏工程走廊”[1]。沿線為開(kāi)展青藏高原生態(tài)學(xué)研究,提供了非常便利的條件,作為寶貴的“條形樣帶”,具有重要的生態(tài)學(xué)研究?jī)r(jià)值。
青藏工程走廊地帶植被、土壤受自然氣候及人為干擾等因素影響,由北至南存在一定程度的植被、土地退化現(xiàn)象,比如“黑土灘”、土地沙化和荒漠化等[2 6],只有系統(tǒng)掌握沿線的土壤理化特征,才能制定科學(xué)合理的植被恢復(fù)策略;因而,筆者對(duì)沿線不同植被類型帶進(jìn)行系統(tǒng)研究,共計(jì)調(diào)查樣帶27條,分析了土壤有機(jī)質(zhì)、全氮、全磷、全鉀、pH值、陽(yáng)離子交換量和碳酸鈣等理化指標(biāo),分析總結(jié)沿線土壤典型理化特征的變化規(guī)律,以期為沿線自然植被的保護(hù)和恢復(fù)提供一定的理論依據(jù)。
青藏工程走廊除格爾木至南山口屬于柴達(dá)木盆地南緣外,其余地段均屬于青藏高原。其中,走廊北端南山口到西大灘和南端羊八井、再到拉薩段,均為坡降較大的河谷地形,中部地段昆侖山至羊八井段,總體上呈現(xiàn)為高準(zhǔn)平原地貌,地形開(kāi)闊、平坦[7]。沿線土壤類型自北向南,依次為柴達(dá)木凍漠土、高寒草原土、高寒草甸土以及拉薩附近的阿嘎土、寒氈土等,生長(zhǎng)的植被類型依次為荒漠植被、高寒草原、高寒草甸、沼澤草甸以及灌叢草原等。
研究地點(diǎn)為青藏工程走廊沿線區(qū)域,自南山口至拉薩段,每間隔一定距離,設(shè)置一條樣帶,共設(shè)置樣帶27條,具體情況見(jiàn)表1。每條樣帶調(diào)查20 m× 20 m樣地?cái)?shù)量為8個(gè),在各樣地內(nèi),按0~20 cm和20~40 cm的土層,隨機(jī)各取土樣5次,分別混合后各做為一個(gè)土樣。在土壤調(diào)查的同時(shí),采用樣方法調(diào)查各樣地的植物群落特征、各樣帶位置分布及植被特征(見(jiàn)表1)。測(cè)定的土壤理化指標(biāo)包括土壤有機(jī)質(zhì)、全氮、全磷、全鉀、pH值、陽(yáng)離子交換量和碳酸鈣等指標(biāo)。各土壤理化指標(biāo)分析方法,主要采用經(jīng)典的土壤農(nóng)業(yè)化學(xué)分析方法[8 9]。
3.1土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)變化特征
對(duì)比分析沿線不同植被類型帶的土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)特征,由圖1可知,沿線土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù),由北至南呈逐漸增高的趨勢(shì),沿線土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)多介于10.0~40.0 g/kg。
表1 沿線各樣帶位置及植被類型Tab.1 Location and vegetation types of each transect along Qinghai-Tibet Engineering Corridor(QTEC)
沿線表層土壤(0~20 cm,下同)有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)對(duì)比分析表明,扎加藏布以北各高山草原、草甸樣帶,表層土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)多在10.0~30.0 g/kg之間。其中:五道梁、開(kāi)心嶺樣帶均為高山嵩草草甸,其質(zhì)量分?jǐn)?shù)相對(duì)較高,而青海境內(nèi)其他以高寒草原植被為主的樣帶,質(zhì)量分?jǐn)?shù)則相對(duì)較低;最北端南山口、納赤臺(tái)荒漠樣帶則更低,均在5.0 g/kg以下。南部扎加藏布至拉薩之間樣帶,其質(zhì)量分?jǐn)?shù)在20.0~40.0 g/kg之間,明顯高于北部青海境內(nèi)各樣帶。沿各樣帶下層土壤(20~40 cm,下同)有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)多小于表層的質(zhì)量分?jǐn)?shù),其多變動(dòng)在10.0~30.0 g/kg之間。南部西藏境內(nèi),各樣帶表層與下層土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)差異更為明顯。
3.2土壤全氮質(zhì)量分?jǐn)?shù)變化特征
沿線表層土壤全氮質(zhì)量分?jǐn)?shù),由北至南呈逐漸增高的趨勢(shì)(圖2),其質(zhì)量分?jǐn)?shù)多數(shù)介于0.4~2.0 g/kg。北段多數(shù)樣帶,其質(zhì)量分?jǐn)?shù)在1.0 g/kg以下;而安多以南地區(qū),則多在1.0~2.0 g/kg之間。其中,扎加藏布樣帶土壤全氮質(zhì)量分?jǐn)?shù)較低,只有0.3~0.4 g/kg,該樣帶為海拔接近5 000 m的高山草原,土壤較為貧瘠,因而,土壤氮素質(zhì)量分?jǐn)?shù)較低。
圖1 沿線不同植被類型帶土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)Fig.1 Content of soil organic matter in different vegetation types along QTEC
圖2 沿線不同植被類型帶土壤全氮質(zhì)量分?jǐn)?shù)Fig.2 Content of total nitrogen in the soil of different vegetation types along QTEC
由對(duì)比圖1和圖2可知,沿線土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)與全氮質(zhì)量分?jǐn)?shù)動(dòng)態(tài)變化規(guī)律非常相似;因而,沿線土壤全氮質(zhì)量分?jǐn)?shù)與植被類型相關(guān)性也比較高,即高山嵩草草甸樣帶土壤全氮質(zhì)量分?jǐn)?shù)較高,而高山草原樣帶質(zhì)量分?jǐn)?shù)則相對(duì)較低,荒漠樣帶質(zhì)量分?jǐn)?shù)則更低。同有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)類似,沿線表層土壤全氮質(zhì)量分?jǐn)?shù)多數(shù)大于下層。相關(guān)分析(圖3)表明,沿線土壤有機(jī)質(zhì)和全氮質(zhì)量分?jǐn)?shù)呈明顯的線性相關(guān),可用如下線性模型擬合: 1)y=0.031x+0.133,R2=0.827;2)y=0.035x,R2=0.802。
3.3土壤全磷質(zhì)量分?jǐn)?shù)變化特征
我國(guó)土壤全磷質(zhì)量分?jǐn)?shù)變動(dòng)在0.17~1.1 g/kg之間,最高可達(dá)1.8 g/kg[10],當(dāng)土壤全磷質(zhì)量分?jǐn)?shù)低于0.3 g/kg時(shí),土壤往往缺磷。從圖4可知,沿線表層和下層土壤全磷質(zhì)量分?jǐn)?shù)在0.3~0.8 g/kg之間,多數(shù)樣帶處于0.3~0.6 g/kg之間,處于全國(guó)土壤磷素質(zhì)量分?jǐn)?shù)的中低水平。隨著高寒草場(chǎng)退化面積的急劇增加,以及磷素在生產(chǎn)中表現(xiàn)出顯著提高草地生產(chǎn)力、延緩?fù)嘶^(guò)程的獨(dú)特作用,人們開(kāi)始認(rèn)識(shí)到磷素貧乏,是限制高寒草甸生產(chǎn)力的重要因子[11 16]。
圖3 沿線不同植被類型帶土壤全氮質(zhì)量分?jǐn)?shù)與有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)相關(guān)性分析Fig.3 Correlation analysis between the content of soil total nitrogen and the content of organic matter at different vegetation types along QTEC
此外,土壤全磷質(zhì)量分?jǐn)?shù)與有機(jī)質(zhì)、全氮質(zhì)量分?jǐn)?shù)變化規(guī)律有所不同,沿線由北至南呈現(xiàn)“兩端高,中間低”的變化規(guī)律,即北端荒漠樣帶和南端西藏烏瑪塘以南各樣帶質(zhì)量分?jǐn)?shù),要明顯高于中間不凍泉至烏瑪塘之間的樣帶?!皟啥恕睒訋з|(zhì)量分?jǐn)?shù)多在0.5~0.8 g/kg之間,而“中間”樣帶則多在0.3~0.5 g/kg之間。另外,沿線土壤表層和下層全磷質(zhì)量分?jǐn)?shù)多數(shù)比較接近。
圖4 沿線不同植被類型帶土壤全磷質(zhì)量分?jǐn)?shù)Fig.4 Content of total phosphorus in the soil of different vegetation types along QTEC
3.4土壤全鉀質(zhì)量分?jǐn)?shù)變化特征
土壤鉀素全部以無(wú)機(jī)形態(tài)存在,而且其數(shù)量遠(yuǎn)遠(yuǎn)高于氮磷。由圖5可知:沿線那曲以北樣帶,土壤全鉀質(zhì)量分?jǐn)?shù)多在13.0~22.0 g/kg之間,而那曲以南各樣帶質(zhì)量分?jǐn)?shù)則多介于22.0~30.0 g/ kg;由北至南,沿線土壤全鉀質(zhì)量分?jǐn)?shù)呈現(xiàn)非常明顯的增高趨勢(shì)。與全磷質(zhì)量分?jǐn)?shù)類似,各樣帶表層土壤和下層全鉀質(zhì)量分?jǐn)?shù)也多比較接近。有關(guān)學(xué)者對(duì)青海、西藏部分地區(qū)進(jìn)行抽樣調(diào)查,結(jié)果顯示,區(qū)域土壤全鉀質(zhì)量分?jǐn)?shù)介于17.7~27.5 g/kg之間,屬全鉀比較豐富的區(qū)域[16 18]。青藏地區(qū)土壤全鉀含量豐富,主要是由于母質(zhì)中鉀素含量豐富所致;另外,與土壤有機(jī)質(zhì)積累和碳酸鈣質(zhì)量分?jǐn)?shù)也存在一定的關(guān)系。
圖5 沿線不同植被類型帶土壤全鉀質(zhì)量分?jǐn)?shù)Fig.5 Content of total potassium in the soil of different vegetation types along QTEC
3.5土壤pH值變化特征
沿線土壤pH值多為青海境內(nèi)樣帶高于西藏境內(nèi)樣帶(圖6),其中,南山口、納赤臺(tái)、西大灘樣帶pH值在7.2~7.8之間。而自不凍泉至嘎恰之間各樣帶土壤pH值在7.8~8.6之間,而嘎恰以南各樣帶土壤 pH值多在7.0~8.0之間,只有寧中樣帶(沼澤草甸)pH值偏高,為8.6。青海境內(nèi)各樣帶土壤pH值偏高,與該地區(qū)土壤碳酸鈣質(zhì)量分?jǐn)?shù)較高有關(guān)系。
萬(wàn)運(yùn)帆等對(duì)那曲地區(qū)土壤分析表明,該地區(qū)土壤pH值多在7.5~8.3之間[19]。青海沙珠玉地區(qū)的研究結(jié)果表明,土壤 pH值在8.5~9.0之間[20]。這些研究結(jié)果與本研究比較接近。
3.6土壤陽(yáng)離子交換量變化特征
沿線各樣帶土壤陽(yáng)離子交換量在6.0~24.0 cmol(+)/kg之間(圖7),表層土壤陽(yáng)離子交換量多變動(dòng)在10.0~15.0 cmol(+)/kg之間,下層土壤的變化波動(dòng)幅度要大一些。各樣帶下層土壤陽(yáng)離子交換量與表層多比較接近。有關(guān)研究認(rèn)為,高寒草原帶的土壤陽(yáng)離交換量與土壤有機(jī)質(zhì)密切相關(guān)[20];本文大尺度范圍內(nèi)的研究結(jié)果,并未顯示出明顯的相關(guān)性。
圖6 沿線不同植被類型帶土壤pH值Fig.6 pH value of soil in different vegetation types along QTEC
圖7 沿線不同植被類型帶土壤陽(yáng)離子交換量Fig.7 Exchange capacity of soil cation in different vegetation types along QTEC
3.7土壤碳酸鈣質(zhì)量分?jǐn)?shù)變化特征
沿線由北至南,土壤碳酸鈣質(zhì)量分?jǐn)?shù)呈現(xiàn)非常有規(guī)律的變化(圖8);北部南山口至扎加藏布之間各樣帶,其質(zhì)量分?jǐn)?shù)多在8.0% ~15.0%之間,而安多以南各樣帶質(zhì)量分?jǐn)?shù)多數(shù)只有1.0%左右,寧中和拉薩東嘎樣帶略高,也只有2.0%左右。西藏那曲以北多數(shù)樣帶,下層土壤碳酸鈣質(zhì)量分?jǐn)?shù)高于表層,而那曲以南各樣帶上下層質(zhì)量分?jǐn)?shù)則差異不明顯。沿線北部土壤碳酸鈣質(zhì)量分?jǐn)?shù)較高,一方面與母質(zhì)有一定關(guān)系,另一方面主要受土壤鈣積作用的影響。
1)沿線土壤有機(jī)質(zhì)和全氮質(zhì)量分?jǐn)?shù),由北至南呈逐漸增高趨勢(shì);土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)多在10.0~40.0 g/kg范圍內(nèi)變動(dòng),全氮質(zhì)量分?jǐn)?shù)則多介于0.4~2.0 g/kg,沿線土壤有機(jī)質(zhì)和全氮質(zhì)量分?jǐn)?shù),均與沿線植被類型密切相關(guān),線性模型擬合表明,兩者呈現(xiàn)明顯的線性相關(guān)。
圖8 沿線不同植被類型帶土壤碳酸鈣質(zhì)量分?jǐn)?shù)Fig.8 Content of soil calcium carbonate in different vegetation types along QTEC
2)沿線土壤全磷質(zhì)量分?jǐn)?shù),由北至南呈“兩端高,中間低”的變化趨勢(shì),質(zhì)量分?jǐn)?shù)在0.3~0.8 g/kg之間。沿線土壤全鉀質(zhì)量分?jǐn)?shù),由北至南呈現(xiàn)非常明顯的增高趨勢(shì),質(zhì)量分?jǐn)?shù)多在13.0~30.0 g/kg之間。各樣帶土壤上下兩層全磷、全鉀質(zhì)量分?jǐn)?shù)多比較接近。
3)沿線土壤 pH值,多為北部青海境內(nèi)各樣帶高于南端西藏境內(nèi)各樣帶。沿線各樣帶土壤陽(yáng)離子交換量在6.0~24.0 cmol(+)/kg之間。沿線土壤碳酸鈣質(zhì)量分?jǐn)?shù),由北至南呈現(xiàn)“南北迥異”的特點(diǎn)。西藏那曲以北多數(shù)樣帶,下層土壤碳酸鈣質(zhì)量分?jǐn)?shù)明顯要高于表層,而那曲以南各樣帶,上下層質(zhì)量分?jǐn)?shù)則差異不明顯。
綜上所述,沿線各樣帶土壤典型理化特征表現(xiàn)出非常有規(guī)律的變化,今后應(yīng)及時(shí)開(kāi)展沿線土壤理化特征的長(zhǎng)期動(dòng)態(tài)監(jiān)測(cè)研究,為制定區(qū)域生態(tài)環(huán)境保護(hù)對(duì)策,提供理論依據(jù)[21 23]。
[1]Jin Huijun,Yu Qihao,Wang Shaoling,et al.Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming[J].Cold Regions Science and Technology,2008,53(3):317.
[2]趙會(huì)林,魯新蕊,樊祥船.西藏地區(qū)水土流失現(xiàn)狀及防治對(duì)策[J].中國(guó)水土保持科學(xué),2012,10(3):120.Zhao Huilin,Lu Xinrui,F(xiàn)an Xiangchuan.Current situation of soil erosion and its counter measures in Tibet[J].Science of Soil and Water Conservation,2012,10(3): 120.(in Chinese)
[3]Ren Guohua,Shang Zhanhuan,Long Ruijun,et al.The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai-Tibetan Plateau,China[J].Environmental Earth Sciences,2013,69(1):235.
[4]胡宜剛,李睿,辛玉琴,等.青藏鐵路植被恢復(fù)和“黑土型”退化草地治理的實(shí)踐與啟示[J].草業(yè)科學(xué),2015,32(9):1413.Hu Yigang,Li Rui,Xin Yuqin,et al.Management and restoration of degradation vegetation on the Tibetan Plateau[J].Pratacultural Science,2015,32(9):1413.(in Chinese)
[5]謝勝波,屈建軍,劉冰,等.青藏鐵路沙害及其防治研究進(jìn)展[J].中國(guó)沙漠,2014,34(1):42.Xie Shengbo,Qu Jianjun,Liu Bing,et al.Advances in research on the sand hazards and its controls along the Qinghai-Tibet Railway[J].Journal of Desert Research,2014,34(1):42.(in Chinese)
[6]Shang Zhanhuan,Long Ruijun.Formation causes and recovery of the“Black Soil Type”degraded alpine grassland in Qinghai-Tibetan Plateau[J].Frontiers of Agriculture in China,2007,1(2):197.
[7]沈渭?jí)?,張慧,鄒長(zhǎng)新,等.青藏鐵路建設(shè)對(duì)沿線高寒生態(tài)系統(tǒng)的影響及恢復(fù)預(yù)測(cè)方法研究[J].科學(xué)通報(bào),2004,49(9):909.Shen Weishou,Zhang Hui,Zou Changxin,et al.Ecological impact of Qinghai-Tibet railway to the alpine ecosystem and the prediction method of ecosystem restoration [J].Chinese Science Bulletin,2004,49(9):909.(in Chinese)
[8]魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社,2000:149 190.Lu Rukun.Analytical methods of soil and agricultural chemistry[M].Beijing:China Agricultural Science and Technology Press,2000:149 190.(in Chinese)
[9]中國(guó)科學(xué)院南京土壤研究所.土壤理化分析[M].上海:上??茖W(xué)出版社,1978:62 72.Institute of Soil Sciences,Chinese Academy of Sciences.Soil physical and chemical analysis[M].Shanghai: Shanghai Science and Technology Press,1978:6272.(in Chinese)
[10]張慎舉,卓開(kāi)榮.土壤肥料[M].北京:化學(xué)工業(yè)出版社,2009:138 142.Zhang Shenju,Zhuo Kairong.Soil and fertilizer[M].Beijing:Chemical Industry Press,2009:138 142.(in Chinese)
[11]曹廣民,張金霞,鮑新奎,等.高寒草甸生態(tài)系統(tǒng)磷素循環(huán)[J].生態(tài)學(xué)報(bào),1999,19(4):514.Cao Guangmin,Zhang Jinxia,Bao Xinkui,et al.The phosphorus cycling in an alpine meadow ecosystem[J].Acta Ecologica Sinica,1999,19(4):514.(in Chinese)
[12]張小川,蔡蔚祺,徐琪,等.草原生態(tài)系統(tǒng)土壤 植物組分中氮磷鉀鈣鎂的循環(huán)[J].土壤學(xué)報(bào),1990,27 (2):140.Zhang Xiaochuan,Cai Weiqi,Xu Qi,et al.Cycling of nitrogen,phosphorus,potassium,calcium and magnesium in grassland soil-vegetation systems[J].Acta Pedologica Sinica,1990,27(2):140.(in Chinese)
[13]譚鑫,張宏.我國(guó)高寒草甸土壤磷素研究進(jìn)展[J].草業(yè)與畜牧,2009(3):1.Tan Xin,Zhang Hong.Perspectives on the soil phosphorus of alpine meadow in China[J].Prataculture&Animal Husbandry,2009(3):1.(in Chinese)
[14]傅林謙.草原生態(tài)系統(tǒng)磷素循環(huán)的研究[J].植物學(xué)通報(bào),1993,10(4):27.Fu Linqian.Studies on the phosphorus cycling in grassland ecosystem[J].Chinese Bulletin of Botany,1993,10(4):27.(in Chinese)
[15]王長(zhǎng)庭,龍瑞軍,王啟基,等.高寒草甸不同海拔梯度土壤有機(jī)質(zhì)氮磷的分布和生產(chǎn)力變化及其與環(huán)境因子的關(guān)系[J].草業(yè)學(xué)報(bào),2005,14(4):15.Wang Changting,Long Ruijun,Wang Qiji,et al.Distribution of organic matter、nitrogen and phosphorus along an altitude gradient and productivity change and their relationships with environmental factors in the Alpine meadow[J].Acta Prataculturae Sinica,2005,14 (4):15.(in Chinese)
[16]劉世全,高麗麗,蒲玉琳,等.西藏土壤磷素和鉀素養(yǎng)分狀況及其影響因素[J].水土保持學(xué)報(bào),2005,19 (1):75.Liu Shiquan,Gao Lili,Pu Yulin,et al.Status of soil P and K nutrient and their influencing factors in Tibet[J].Journal of Soil and Water Conservation,2005,19(1): 75.(in Chinese)
[17]高麗麗,劉世全,張世熔.西藏土壤鉀素狀況及其影響因素分析[J].四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,22(2): 165.Gao Lili,Liu Shiquan,Zhang Shirong.Status of soil potassium and its affecting factors in Tibet[J].Journal of Sichuan Agricultural University,2004,22(2):165.(in Chinese)
[18]龐寧菊,洪世奇.青海耕作土壤不同形態(tài)鉀素儲(chǔ)量及其影響因素[J].青海農(nóng)林科技,1997,27(2):9.Pang Ningju,Hong Shiqi.The content of different potassium forms in plough layer of Qinghai province[J].Science and Technology of Qinghai Agriculture and Forestry,1997,27(2):9.(in Chinese)
[19]萬(wàn)運(yùn)帆,高清竹,林而達(dá),等.西藏那曲地區(qū)草地植被及土壤養(yǎng)分狀況調(diào)查[J].草業(yè)科學(xué),2006,23(5):7.Wan Yunfan,Gao Qingzhu,Lin Erda,et al.Investigation of grassland growth and soil nutrient situation in Naqu prefecture of Tibet[J].Pratacultural Science,2006,23(5):7.(in Chinese)
[20]齊雁冰,常慶瑞,魏欣.高寒地區(qū)人工植被恢復(fù)對(duì)風(fēng)沙土區(qū)土壤理化性狀的影響[J].農(nóng)業(yè)工程科學(xué),2005,21(8):404.Qi Yanbing,Chang Qingrui,Wei Xin.Effect of artificial vegetation restoration on sandy soil characteristics in high frigid regions of China[J].Chinese Agricultural Science Bulletin,2005,21(8):404.(in Chinese)
[21]周金星,董林水,張旭東,等.青藏鐵路唐古拉山南段沿線植被多樣性及蓋度特征分析[J].北京林業(yè)大學(xué)學(xué)報(bào),2008:30(3):24.Zhou Jinxing,Dong Linshui,Zhang Xudong,et al.An analysis of vegetation cover and species diversity of roadsidevegetationinsouthernsectionofTanggula Mountains along the Qinghai-Tibet Railway[J].Journal of Beijing Forestry University,2008:30(3):24.(in Chinese)
[22]周金星,易作明,李冬雪,等.青藏鐵路沿線原生植被多樣性分布格局研究[J].水土保持學(xué)報(bào),2007,21 (3):173.Zhou Jinxing,Yi Zuoming,Li Dongxue,et al.Distribution patterns of species diversity of natural vegetation along Qinghai-Tibetan railway[J].Journal of Soil and Water Conservation,2007,21(3):173.(in Chinese)
[23]董林水,張旭東,周金星,等.青藏鐵路沿線北段植被物種豐富度及蓋度的動(dòng)態(tài)變化[J].長(zhǎng)江流域資源與環(huán)境,2008,17(4):551.Dong Linshui,Zhang Xudong,Zhou Jinxing,et al.Species richness and vegetation coverage of transects along the Qinghai-Tibet railway in the Tibet plateau[J].Resources and Environment in the Yangtze Basin,2008,17(4):551.(in Chinese)
Soil physicochemical characteristics of different vegetation types along Qinghai-Tibet Engineering Corridor
Dong Linshui1,Song Aiyun1,Zhou Jinxing2,Jiang Xingui3
(1.Key Laboratory of Eco-environmental Science for Yellow River Delta,Shandong Province,Binzhou University,256603,Binzhou,Shandong,China; 2.School of Soil and Water Conservation,Beijing Forestry University,Key Laboratory of Soil and Water Conservation&Desertification Combating,Ministry of Education,100083,Beijing,China;3.Institute of Desertification Studies,Chinese Academy of Forestry,100091,Beijing,China)
Abstract:[Background]It is necessary to analyze the soil physicochemical characteristics along the Qinghai-Tibet EngineeringCorridor(QTEC)for formulatingscientificandreasonablevegetation restoration measures.[Methods]Soil physicochemical characteristics of different vegetation types along QTEC were surveyed.Altogether 27 transects were set up,8 plots of 20 m×20 m were selected in each transect,randomly sampling 5 times in the soil layer of 0-20 cm and 20-40 cm of each plot,then 5 samples were mixed into 1 soil sample.The soil sample in each transect was tested,the detection indexes of soil samples including the contents of soil organic matter,total nitrogen,total phosphorus,total potassium,pH value,cation exchange capacity,and calcium carbonate content were analyzed.Also the vegetation types,community structure of each transect were investigated.[Results]The results showedthat the contents of soil organic matter and total nitrogen increased gradually from north to south along QTEC,and were closely correlated to vegetation types.The content of soil organic matter changed in the range of 10.0-40.0 g/kg.And the content of total nitrogen distributed within the scope of 0.4-2.0 g/ kg.The contents of soil organic matter and total nitrogen presented a significantly linear correlation with each other.The content of soil total phosphorus mostly was in the range of 0.3-0.8 g/kg.From north to south,there was significant uptrend of the soil total potassium content along QTEC,the total potassium of the transects in south of Nagqu mostly was among 22.0-30.0 g/kg,however,the value in the north transects of Nagqu was in the range of 13.0-22.0 g/kg.The soil pH value of the transects in the northern part of QTEC were mostly higher than the transects in the southern part.The soil cation exchange capacity of the transects along QTEC was in the range of 6.0-24.0 cmol(+)/kg.The content of soil calcium carbonate mostly was among 8.0% -15.0%,but the southern part from Gaqia to Lhasa mostly was only in the range of 1.0% -3.0%,this obvious distinction was mainly concerned with the soil calcium deposition.[Conclusions]In summary,there were very regular dynamic change discipline of soil chemical characteristics along the QTEC.The result showed that some soil indexes were closely correlated to vegetation types,such as organic matter,total nitrogen,et al,while other indexes had no obvious correlation with the vegetation types like exchange capacity of soil cation.In the future,the dynamic monitoring of soil physical and chemical characteristics should be further proceeded.
Keywords:Qinghai-Tibet Engineering Corridor;soil physicochemical characteristics;vegetation type; transect
中圖分類號(hào):S151.9
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-3007(2016)03-0109-07
DOI:10.16843/j.sswc.2016.03.014
收稿日期:2015 12 03修回日期:2016 03 25
第一作者簡(jiǎn)介:董林水(1976—),男,博士,副教授。主要研究方向:植物生態(tài)學(xué)。E-mail:donglinshui@163.com
通信作者?簡(jiǎn)介:周金星(1972—),男,博士,教授。主要研究方向:水土保持與荒漠化防治,石漠化治理及生態(tài)修復(fù)工程。E-mail:zjx9277@126.com