国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

野外放水條件下坡面流水動(dòng)力學(xué)特征

2016-07-19 03:51戴矜君程金花張洪江相瑩敏周柱棟楊帆北京林業(yè)大學(xué)水土保持學(xué)院100083北京
中國(guó)水土保持科學(xué) 2016年3期
關(guān)鍵詞:雷諾數(shù)沖刷坡面

戴矜君,程金花,張洪江,相瑩敏,周柱棟,楊帆(北京林業(yè)大學(xué)水土保持學(xué)院,100083,北京)

?

野外放水條件下坡面流水動(dòng)力學(xué)特征

戴矜君,程金花?,張洪江,相瑩敏,周柱棟,楊帆
(北京林業(yè)大學(xué)水土保持學(xué)院,100083,北京)

摘要:坡面流是土壤侵蝕的主要?jiǎng)恿σ蛩刂唬彩乔治g泥沙搬運(yùn)、農(nóng)業(yè)面源污染的重要載體,為探討坡面流水力學(xué)特征變化規(guī)律,本文通過(guò)徑流小區(qū)放水沖刷試驗(yàn),研究不同坡面覆蓋和放水條件下坡面流水動(dòng)力學(xué)特征。結(jié)果表明:坡面流雷諾數(shù)和弗勞德數(shù)受植被覆蓋情況和坡面坡度的影響較小,受放水流量影響較顯著。其中,坡面流入流斷面雷諾數(shù)和弗勞德數(shù)隨時(shí)間基本保持不變;出流斷面雷諾數(shù)動(dòng)態(tài)變化呈增加趨勢(shì),弗勞德數(shù)呈緩慢下降趨勢(shì),其動(dòng)態(tài)變化幅度隨植株密度增加而趨于平緩,植株布設(shè)方式對(duì)雷諾數(shù)和弗勞德數(shù)的動(dòng)態(tài)變化影響較小。流量和植株密度增加會(huì)引起阻力系數(shù)增長(zhǎng),阻力系數(shù)隨沖刷歷時(shí)呈增長(zhǎng)趨勢(shì),坡度和植株密度可以控制這種增長(zhǎng)趨勢(shì)。

關(guān)鍵詞:坡面流;徑流小區(qū);放水沖刷試驗(yàn);流態(tài);雷諾數(shù);弗勞德數(shù);阻力系數(shù);動(dòng)態(tài)變化

項(xiàng)目名稱:北京高等學(xué)校青年英才計(jì)劃“北方土石山區(qū)坡面侵蝕水動(dòng)力學(xué)機(jī)理研究”(YETP0750)

坡面流是土壤侵蝕的主要?jiǎng)恿σ蛩刂?,也是侵蝕泥沙搬運(yùn)、農(nóng)業(yè)面源污染的重要載體[1]。研究野外實(shí)際沖刷條件下,坡面流水動(dòng)力學(xué)特征對(duì)定量預(yù)測(cè)土壤流失,建立土壤流失方程具有重要意義[2]。目前,坡面流相關(guān)研究以室內(nèi)人工降雨結(jié)合模擬變坡土槽為主[3 4],結(jié)合經(jīng)驗(yàn)分析和水文模型計(jì)算對(duì)坡面流水力學(xué)特征值的平均狀態(tài)進(jìn)行半定量性統(tǒng)計(jì)分析[5]。如李勉等[6]通過(guò)室內(nèi)放水沖刷試驗(yàn),研究表明,坡面流同時(shí)存在層流、紊流和過(guò)渡流3種流態(tài)。Hu Shixiong等[7]采用阻力分割方法,發(fā)現(xiàn)阻力系數(shù)與含沙量呈正相關(guān)關(guān)系,并得出坡面流阻力的計(jì)算模型。王玲玲等[8]通過(guò)室內(nèi)放水試驗(yàn),發(fā)現(xiàn)有植被坡面的阻力系數(shù)隨放水流量的增加而減少,裸坡的阻力系數(shù)隨放水流量的增加而增加。李毅等[9]通過(guò)室內(nèi)模擬降雨試驗(yàn),研究表明植被增加能改善坡面流水力性質(zhì),增加坡面阻力和粗糙度,降低坡面流紊動(dòng)性。

限于野外原型坡面水流流動(dòng)十分復(fù)雜,獲取的相關(guān)參數(shù)準(zhǔn)確度較低,因此,坡面流研究多采用變坡土槽進(jìn)行室內(nèi)模擬試驗(yàn),忽略下滲和侵蝕動(dòng)態(tài)變化對(duì)坡面流水動(dòng)力學(xué)特征參數(shù)的影響[10 11],但野外實(shí)際坡面流條件下,坡面侵蝕、下滲都會(huì)引起坡面流水動(dòng)力學(xué)參數(shù)變化。由于水力侵蝕中,坡面流的侵蝕力和攜沙力主要是受坡面流水動(dòng)力學(xué)性質(zhì)影響[12 15],要準(zhǔn)確描述實(shí)際情況下坡面流的侵蝕輸沙規(guī)律,建立侵蝕模型,就必須研究實(shí)際坡面下,坡面流的水動(dòng)力學(xué)平均狀態(tài)和動(dòng)態(tài)變化[16 19]。本研究設(shè)定不同放水流量、坡度、植株密度和植物布設(shè)方式,研究野外條件下,坡面流水動(dòng)力學(xué)特征和動(dòng)態(tài)變化,對(duì)揭示坡面侵蝕機(jī)理、建立侵蝕模型具有重要意義。

1 研究區(qū)概況

野外模擬沖刷試驗(yàn)在北京市高廟屯小流域上辛莊水土保持教育基地進(jìn)行(E116°3'11″~116°4'19″,N40°26'19″~40°27'26″),研究區(qū)屬典型華北土石山區(qū),地貌類型主要為山地;大陸性季風(fēng)氣候,年均降水量467 mm,時(shí)空分布不均;土壤類型為褐土,土壤機(jī)械組成見(jiàn)表1。研究區(qū)內(nèi)植被覆蓋良好,以灌草、農(nóng)作物和林地為主;區(qū)域內(nèi)以水力侵蝕為主,土壤侵蝕模數(shù)為530 t/(km2·a)。

2 研究方法

2.1試驗(yàn)設(shè)計(jì)

試驗(yàn)坡面覆蓋植物采用紫色苜蓿(Medicago sativa L.),研究方法采用野外徑流小區(qū)放水沖刷試驗(yàn)。試驗(yàn)沖刷坡面設(shè)計(jì)如表2;試驗(yàn)沖刷過(guò)程中流量設(shè)定3種(1.0,2.0,3.0 m3/h)。于2014年春季按照實(shí)驗(yàn)設(shè)計(jì)種植紫花苜蓿。為避免坡面礫石覆蓋對(duì)坡面流的影響,試驗(yàn)前對(duì)坡面礫石進(jìn)行清理。

表1 土壤機(jī)械組成Tab.1 Soil mechanical composition %

表2 試驗(yàn)組設(shè)計(jì)Tab.2 Design of experimental treatments

2.2試驗(yàn)方法

為保證低流量下沖刷坡面水流連續(xù),經(jīng)過(guò)預(yù)試驗(yàn)設(shè)定沖刷區(qū)寬度為0.7 m、沖刷區(qū)長(zhǎng)度為4 m。利用鋼板垂直砸入土壤20 cm,將試驗(yàn)徑流小區(qū)(5 m× 2 m)分割為2個(gè)寬度為0.7 m的條狀地塊。條狀地塊上部設(shè)置溢流槽(0.3 m×0.7 m×0.3 m),下部10 cm處設(shè)置入流觀測(cè)斷面;地塊下部設(shè)置梯形集水槽(0.7 m×0.5 m),上部10 cm處設(shè)置出流觀測(cè)斷面;每一觀測(cè)斷面水平布置5個(gè)水深和流速觀測(cè)點(diǎn)。坡上部配置潛水泵(WQD25102.2QG)對(duì)坡面供流,連接DN40流量計(jì)保證水流恒定。坡面布置如圖1。

圖1 試驗(yàn)坡面布置圖Fig.1 Layout for the arrangement of experimental slope

放水沖刷過(guò)程中,每30 s測(cè)定并記錄各觀測(cè)斷面基礎(chǔ)數(shù)據(jù),并記錄水溫,計(jì)算相關(guān)水動(dòng)力學(xué)特征參數(shù)。

2.3數(shù)據(jù)獲取及計(jì)算

水深:假定水深均勻連續(xù)狀態(tài)下,坡面流水深測(cè)定采用游標(biāo)卡尺(精度0.02 mm),每30 s測(cè)定一次各觀測(cè)點(diǎn)水深,取5個(gè)觀測(cè)點(diǎn)的平均值為觀測(cè)時(shí)段內(nèi)該觀測(cè)斷面的平均水深。

流速:采用高錳酸鉀染色法進(jìn)行測(cè)定,3次重復(fù),根據(jù)流態(tài)乘以修正系數(shù)(層流取0.67,過(guò)渡流取0.70,紊流取0.80[20]),由于實(shí)測(cè)流速誤差較大,采用公式(1)對(duì)流速進(jìn)行修正:

式中:V為觀測(cè)時(shí)段內(nèi)平均流速,m/s;Q為斷面瞬時(shí)流量,m3/s,入流斷面取放水流量,出流斷面取集水區(qū)收集到的徑流量;B為過(guò)水?dāng)嗝鎸挾龋?.7 m;h為觀測(cè)斷面5個(gè)觀測(cè)點(diǎn)平均水深,m。

雷諾數(shù)(Reynolds Number):Re為流體慣性力與黏滯力的比值,用以判斷坡面流流態(tài)[21]。

弗勞德數(shù):Fr為流體慣性力和重力的比值,用以判斷慣性力和重力對(duì)流體的主導(dǎo)作用[22 23]。式中:Fr為坡面流弗勞德數(shù)(Froude Number);g為重力加速度,取9.8 m/s2。

阻力系數(shù):根據(jù)試驗(yàn)實(shí)測(cè)雷諾數(shù),判定沖刷過(guò)程中流態(tài)為層流與過(guò)渡流;因此,選用Darcy-Weisbach阻力系數(shù)對(duì)阻力進(jìn)行研究[25 27]

式中:f為阻力系數(shù);J為水力坡度。

3 結(jié)果與分析

3.1雷諾數(shù)變化特征

根據(jù)前人研究[22 24],坡面流上臨界雷諾數(shù)取6 500;下臨界雷諾數(shù)取575。對(duì)24組沖刷試驗(yàn)數(shù)據(jù)進(jìn)行分析,得到雷諾數(shù)總體特征和動(dòng)態(tài)變化(表3和圖2)。

表3所示,不同坡面下,各坡面入流斷面雷諾數(shù)隨時(shí)間變化不明顯,基本穩(wěn)定在 300~330(1 m3/ h)、620~740(2 m3/h)、940~990(3 m3/h)之間,表明坡面流入流斷面流態(tài)與放水流量關(guān)系密切,與坡面覆蓋情況和坡度關(guān)系不明顯。不同地表覆蓋情況下,各坡面出流斷面雷諾數(shù)基本穩(wěn)定在240~300(1 m3/h)、550~650(2 m3/h)、800~1 000(3 m3/h)之間;流量為1 m3/h時(shí),出流斷面坡面流流態(tài)為層流,流量為2 m3/h時(shí),流態(tài)介于層流和過(guò)渡流之間,流量為3 m3/h時(shí),坡面流流態(tài)為過(guò)渡流,出流斷面流態(tài)受放水流量影響較明顯;相較于入流斷面,在相同植被布設(shè)和放水流量下,出流斷面雷諾數(shù)較入流斷面小,表明坡面流經(jīng)過(guò)沖刷區(qū)后,流體的紊動(dòng)性降低,這是由于坡面流流動(dòng)過(guò)程中,阻力降低了流體的動(dòng)能。

表3 各坡面雷諾數(shù)統(tǒng)計(jì)特征Tab.3 Statistical characteristics of Reynolds number in each slope

不同坡面覆蓋情況下,坡面流出流斷面雷諾數(shù)動(dòng)態(tài)變化過(guò)程如圖2。橫向?qū)Ρ?個(gè)坡面出流斷面雷諾數(shù)增加趨勢(shì),4號(hào)坡面(30株/m2,行排列)<2號(hào)坡面(20株/m2,行排列)≈3號(hào)坡面(20株/m2,隨機(jī)排列)<1號(hào)坡面(裸坡),表明植被密度越小,坡面流雷諾數(shù)的增加趨勢(shì)越明顯,其中,植株行排列和隨機(jī)排列對(duì)雷諾數(shù)動(dòng)態(tài)變化過(guò)程的影響并不明顯,說(shuō)明植被布設(shè)方式對(duì)雷諾數(shù)動(dòng)態(tài)變化的影響較小。放水流量為1 m3/h時(shí),5°裸坡(1號(hào)坡面)雷諾數(shù)變化于23~375、均值283,低于10°裸坡(5號(hào)坡面)變化于178~427、均值337;有植被5°坡面雷諾數(shù)均值分別為268(20株/m2、行排列)、241(20株/ m2、隨機(jī)排列)和232(30株/m2、行排列),低于同放水流量下10°坡面的308(20株/m2、行排列)、311 (20株/m2、隨機(jī)排列)和 266(30株/m2、行排列),表明放水流量一定時(shí),坡度對(duì)坡面流流態(tài)影響較大,坡度增加,坡面流的慣性力相對(duì)較大,流動(dòng)趨于紊亂;同時(shí),隨著植株密度的增加,雷諾數(shù)下降,當(dāng)變化相同植株密度時(shí),5°坡面較10°坡面雷諾數(shù)變化小,這表明植被增加,能有效降低坡面流的紊動(dòng)性,其中,坡度越大,植株減低流體紊動(dòng)性的作用越明顯。3.2弗勞德數(shù)變化特征

不同坡面覆蓋情況下,2個(gè)觀測(cè)斷面的弗勞德數(shù)均<1,屬緩流。各坡面入流斷面弗勞德數(shù)基本穩(wěn)定在0.3(1 m3/h)、0.4(2 m3/h)和0.5(3 m3/h)左右,隨放水歷時(shí)增加無(wú)明顯的定向趨勢(shì),表明入流斷面坡面流弗勞德數(shù),只隨放水流量的增加而增加,與坡面地表覆蓋情況、地面坡度關(guān)系不明顯。

圖2 雷諾數(shù)動(dòng)態(tài)變化Fig.2 Dynamic changes of Reynolds number at different section

不同坡面覆蓋情況下,坡面流出流斷面弗勞德數(shù)動(dòng)態(tài)變化過(guò)程如圖3。出流斷面弗勞德數(shù)除前期(0~1 min)波動(dòng)不穩(wěn)定外,沖刷過(guò)程弗勞德數(shù)基本呈緩慢下降趨勢(shì)。對(duì)比4個(gè)坡面的變化趨勢(shì),4號(hào)坡面(30株/m2,行排列)<2號(hào)坡面(20株/m2,行排列)≈3號(hào)坡面(20株/m2,隨機(jī)排列)<1號(hào)坡面(裸坡),表明隨植株密度增加,弗勞德數(shù)的動(dòng)態(tài)變化趨于平緩,其中,植株布設(shè)方式對(duì)弗勞德數(shù)動(dòng)態(tài)變化過(guò)程影響不顯著。

3.3阻力系數(shù)變化特征

為探究坡面流阻力動(dòng)態(tài)變化影響因素,選擇坡度、放水流量、植株密度、植株布設(shè)方式和沖刷時(shí)間為因變量,對(duì)坡面流阻力系數(shù)進(jìn)行逐步回歸分析。

f=2.350t0.012q-3.178c0.084n=480R2=0.538式中:t為放水沖刷時(shí)間,s;q為放水沖刷流量,m3/ h;c為植株密度,株/m2。

逐步回歸結(jié)果表明:坡面流阻力系數(shù)與放水流量、植株密度關(guān)系密切,受坡度、植株布設(shè)方式的影響較小。阻力系數(shù)公式中,時(shí)間因子 t的指數(shù)為0.012,表明阻力系數(shù)動(dòng)態(tài)變化呈增加趨勢(shì),對(duì)各坡面沖刷流量為1 m3/h時(shí)的阻力系數(shù)動(dòng)態(tài)變化數(shù)據(jù)做回歸分析,結(jié)果如表4。坡度為5°時(shí),坡面流阻力系數(shù)動(dòng)態(tài)變化的時(shí)間指數(shù)分別為 0.971(裸坡)、0.633(20株/m2,行排列)、0.884(20株/m2,隨機(jī)排列)、0.433(30株/m2,行排列)略大于同坡面覆蓋情況下10°坡面的時(shí)間指數(shù)0.869(裸坡)、0.584(20 株/m2,行排列)、0.658(20株/m2,隨機(jī)排列)、0.418(30株/m2,行排列),表明隨坡度增加,坡面流阻力系數(shù)動(dòng)態(tài)變化趨于平緩;時(shí)間 t的指數(shù)隨植被覆蓋增加而降低,表明植被能有效控制阻力系數(shù)的增加趨勢(shì)。對(duì)比相同植株密度、不同植被布設(shè)方式下阻力系數(shù)的動(dòng)態(tài)變化過(guò)程,3號(hào)坡面(5°,20株/ m2,行排列)的時(shí)間因子指數(shù)>2號(hào)坡面(5°,20株/ m2,隨機(jī)排列),7號(hào)(10°,20株/m2,行排列)的時(shí)間因子指數(shù)>6號(hào)坡面(10°,20株/m2,隨機(jī)排列),表明坡面流阻力系數(shù)與植株布設(shè)方式關(guān)系密切,其中,植株隨機(jī)布設(shè)坡面的阻力系數(shù)變化較行排列布設(shè)坡面更平穩(wěn)。

圖3 弗勞德數(shù)動(dòng)態(tài)變化Fig.3 Dynamic changes of Froude number

表4 坡面流阻力系數(shù)動(dòng)態(tài)變化關(guān)系Tab.4 Dynamic changes of resistance coefficient in the slopes

4 結(jié)論與討論

1)坡面流入流斷面流態(tài)與地表覆蓋情況、坡度關(guān)系不顯著,只與放水流量關(guān)系密切,雷諾數(shù)隨時(shí)間基本保持平穩(wěn)。出流斷面雷諾數(shù)與沖刷流量、坡度和植株密度關(guān)系密切,雷諾數(shù)動(dòng)態(tài)變化呈明顯增加趨勢(shì),增加幅度隨植株增加而趨緩,其中,植株布設(shè)方式對(duì)其動(dòng)態(tài)變化影響較小。

2)入流斷面弗勞德數(shù)只隨放水流量的增加而增加,與地表覆蓋情況、坡度關(guān)系不顯著,弗勞德數(shù)動(dòng)態(tài)變化無(wú)明顯定向趨勢(shì)。出流斷面弗勞德數(shù)呈現(xiàn)緩慢下降趨勢(shì),隨植株密度增加,動(dòng)態(tài)變化趨于平緩,其中,植株布設(shè)方式對(duì)弗勞德數(shù)動(dòng)態(tài)變化過(guò)程影響不明顯。

3)坡面流阻力系數(shù)與放水流量、植株密度關(guān)系密切;坡度、植株布設(shè)方式對(duì)阻力系數(shù)的影響較小。阻力系數(shù)動(dòng)態(tài)變化呈增加趨勢(shì),坡度和植株密度的增加能控制阻力系數(shù)增加趨勢(shì),其中,植株隨機(jī)排列坡面的阻力系數(shù)動(dòng)態(tài)變化相對(duì)行排列坡面更平穩(wěn)。這與李勉等[28]通過(guò)室內(nèi)放水試驗(yàn)的研究結(jié)論不一致:有草被覆蓋坡面阻力系數(shù)隨時(shí)間呈增加趨勢(shì)。這是由于本實(shí)驗(yàn)為野外試驗(yàn),根據(jù)華北地區(qū)的水文條件,選定沖刷單寬流量為1.43、2.86、4.29 m2/h,文獻(xiàn)[28]的試驗(yàn)區(qū)選定為黃土高原,采取室內(nèi)模擬試驗(yàn),設(shè)定沖刷單寬流量為0.384、0.624 m2/h。

5 參考文獻(xiàn)

[1]Savat J.Resistance to flow in rough supercritical sheet flow[J].Earth Surface Processes,1980,2(5):103.

[2]Smith W M,Cox J N,Bracken J L.Applying flow resistance equations to overland flows[J].Progress in Geography,2007,31(4):363.

[3]徐震.草被冠層和根系對(duì)坡面徑流輸沙的影響[D].陜西楊凌:西北農(nóng)林科技大學(xué),2011:51 54.Xu Zheng.Effects of canopies and roots of grass on runoff and sediment transport over slope lands[D].Yangling Shaanxi:Northwest A&F University,2011:51 54.(in Chinese)

[4]Hu Shixiong,Abrahams A D.Resistance to overland flow due to bed-load transport on plane mobile beds[J].Earth Surface Processes and Landforms,2004,29(13):1691.

[5]汪邦穩(wěn),肖勝生,張光輝,等.南方紅壤區(qū)不同利用土地產(chǎn)流產(chǎn)沙特征試驗(yàn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(2):239.Wang Bangwen,Xiao Shengsheng,Zhang Guanghui,et al.Study on runoff and sediment yield characteristics under different land uses in red soil area of Southern China [J].Transactions of the CSAE,2012,28(2):239.(in Chinese)

[6]李勉,姚文藝,楊劍鋒,等.草被覆蓋對(duì)坡面流流態(tài)影響的人工模擬試驗(yàn)研究[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2009,17(4):513.Li Mian,Yao Wenyi,Yang Jianfeng,et al.Experimental study on the effect of grass cover on the overland flow pattern in the hillslope-gully side erosion system[J].Journal of Basic Science and Engineering,2009,17(4):513.(in Chinese)

[7]Hu Shixiong,Abrahams A D.Partitioning resistance to overland flow on rough mobile beds[J].Earth Surface Processes and Landforms,2006,31(10):1280.

[8]王玲玲,姚文藝,申震洲,等.草被覆蓋度對(duì)坡面流水力學(xué)參數(shù)的影響及其減沙效應(yīng)[J].中國(guó)水土保持科學(xué),2009,7(1):80.Wang Lingling,Yao Wenyi,Shen Zhenzhou,et al.Effects of grass coverage on shallow flow hydraulic parameters and sediment reduction[J].Science of Soil and Water Conservation,2009,7(1):80.(in Chinese)

[9]李毅,邵明安.草地覆蓋坡面流水動(dòng)力參數(shù)的室內(nèi)降雨試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):1.Li Yi,Shao Mingan.Hydro-dynamic parameters of overland flow during laboratory rainfall experiments under grass coverage[J].Transactions of the CSAE,2008,24 (10):1.(in Chinese)

[10]張穎.黃土地區(qū)森林植被對(duì)坡面土壤侵蝕過(guò)程影響機(jī)理研究[D].北京:北京林業(yè)大學(xué),2007:17 23.Zhang Ying.Dynamic effects of forest vegetation on hillslop water erosion in loess area[D].Beijing:Beijing Forestry University,2007:17 23.(in Chinese)

[11]Tang Hongwu,Wang Hao,Liang Dongfang,et al.Incipient motion of sediment in the presence of emergent rigid vegetation[J].Journal of Hydro-environment Research,2013,7(3):202.

[12]Fattet M,F(xiàn)u Y,Ghestem M,et al.Effects of vegetation type on soil resistance to erosion:Relationship between aggregate stability and shear strength[J].Catena,2011,87(1):60.

[13]Pan Chengzhong,Shangguan Zhouping,Lei Tingwu.Influences of grass and moss on runoff and sediment yield on sloped loess surfaces under simulated rainfall[J].Hydrological Processes,2006,20(18):3815.

[14]姚文藝,肖培青,申震洲,等.坡面產(chǎn)流過(guò)程及產(chǎn)沙臨界對(duì)立地條件的響應(yīng)關(guān)系[J].水利學(xué)報(bào),2011,42( 12):1438.Yao Wenyi,Xiao Peiqing,Shen Zhenzhou,et al.Responses of runoff process and threshold of sediment generation for different vegetation-covered plot[J].Journal of Hydraulic,2011,42(12):1438.(in Chinese)

[15]肖培青,姚文藝,申震洲,等.植被影響下坡面侵蝕臨界水流能量試驗(yàn)研究[J].水科學(xué)進(jìn)展,2011,22(2): 229.Xiao Peiqing,Yao Wenyi,Shen Zhenzhou,et al.Experimental study of critical flow energy for slope erosion under the influence of vegetation cover[J].Advances in Water Science,2011,22(2):229.(in Chinese)

[16]Li Mian,Yao Wenyi,Ding Wenfeng,et al.Effect of grass coverage on sediment yield in the hillslope-gully side erosion system[J].Journal of Geographical Sciences,2009,19(3):321.

[17]張寬地,王光謙,孫曉敏,等.模擬植被覆蓋條件下坡面流水動(dòng)力學(xué)特性[J].水科學(xué)進(jìn)展,2014,25(6): 825.Zhang Kuandi,Wang Guangqian,Sun Xiaoming,et al.Hydraulic characteristic of overland flow under different vegetation coverage[J].Advances in Water Science,2014,25(6):825.(in Chinese)

[18]孫佳美,余新曉,樊登星,等.模擬降雨下植被蓋度對(duì)坡面流水動(dòng)力學(xué)特性的影響[J].生態(tài)學(xué)報(bào),2015,35 (8):2574.Sun Jiamie,Yu Xingxiao,F(xiàn)an Dengxing,et al.Impact of vegetation cover on surface runoff hydraulic characteristics with simulated rainfall[J].Acta Ecologica Sinica,2015,35(8):2574.(in Chinese)

[19]閆旭峰,周蘇芬,黃爾,等.植被條件下坡面薄層水流動(dòng)力學(xué)特性試驗(yàn)研究[J].四川大學(xué)學(xué)報(bào),2012,44 (2):26.Yan Xufeng,Zhou Sufen,Huang Er,et al.Experimental study on the effects of vegetation on hydraulic characteristics of overland flow[J].Journal of Sichuan University:Engineering Science Edition,2012,44(2):26.(in Chinese)

[20]Li Gang,Abrahams A D,Atkinson J F.Correction factors in the determination of mean velocity of overland flow [J].Earth Surface Processes Landforms,1996,21(6): 509.

[21]郭雨華,趙廷寧,孫保平,等.草地坡面水動(dòng)力學(xué)特性及其阻延地表徑流機(jī)制研究[J].水土保持研究,2006,13(4):264.Guo Yuhua,Zhao Tingning,Sun Baoping,et al.Study on the dynamic characteristics of overland flow and resistance to overland flow of grass slope[J].Research of Soil and Water Conservation,2006,13(4):264.(in Chinese)

[22]敬向鋒,呂宏興,張寬地,等.不同糙率坡面水力學(xué)特征的試驗(yàn)研究[J].水土保持通報(bào),2007,27(2):33.Jing Xiangfeng,Lyu Hongxing,Zhang Kuandi,et al.Experimental study of overland flow hydromechanics under different degrees of roughness[J].Bulletin of Soil and Water Conservation,2007,27(2):33.(in Chinese)

[23]翟艷賓.緩坡面薄層水流水動(dòng)力學(xué)特性的試驗(yàn)研究[D].陜西楊凌:西北農(nóng)林科技大學(xué),2013:43 45.Qu Yanbing.Study on hydrodynamic characteristics of sheet flowonlowerscopesurface[D].Yangling Shaanxi:Northwest A&F University,2013:43 45.(in Chinese)

[24]魏霞,李勛貴,李占斌,等.黃土高原坡溝系統(tǒng)徑流水動(dòng)力學(xué)特性試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(10): 19.Wei Xia,Li Xungui,Li Zhanbin,et al.Experiments on hydraulic characteristics of runoff in slope-gully systems in Loess Plateau[J].Transactions of the CSAE,2009,25(10):19.(in Chinese)

[25]蔣昌波,隆院男,胡世雄,等.坡面流阻力研究進(jìn)展[J].水力學(xué)報(bào),2012,43(2):189.Jiang Changbo,Long Yuannan,Hu Shixiong,et al.Recent progress in studies of overland flow resistance [J].Journal of Hydraulic,2012,43(2):189.(in Chinese)

[26]Noarayanan L,Murali K,Sundar V.Manning's‘n’coefficient for flexible emergent vegetation in tandem configuration[J].Journal of Hydro-environment Research,2011,6(1):51.

[27]羅榕婷,張光輝,曹穎.坡面含沙水流水動(dòng)力學(xué)特性研究進(jìn)展[J].地理科學(xué)進(jìn)展,2009,28(4):567.Luo Rongting,Zhang Guanghui,Cao Ying.Progress in the research of hydrodynamic characteristics of sedimentladen overland flow[J].Progress in Geography,2009,28(4):567.(in Chinese)

[28]李勉,姚文藝,陳江南,等.草被覆蓋下坡面 溝坡系統(tǒng)坡面流阻力變化特征試驗(yàn)研究[J].水利學(xué)報(bào),2007,38(1):112.Li Mian,Yao Wenyi,Chen Jiangnan,et al.Experimental study on runoff resistance of hilly slope-gullied surface with grass coverage[J].Journal of Hydraulic,2007,38(1):112.(in Chinese)

Hydrodynamic characteristics of surface runoff on field scour

Dai Jinjun,Cheng Jinhua,Zhang Hongjiang,Xiang Yingmin,Zhou Zhudong,Yang Fan
(College of Soil and Water Conservation,Beijing Forestry University,100083,Beijing,China)

Abstract:[Background]Soil erosion harms the development of national economy.Water erosion is the most important form of soil erosion in China.Overland flow is the main driving force of water erosion and main carrier of sediment transport which is a key factor of water erosion.Reynolds number,F(xiàn)roude number and resistance coefficient of overland flow are important parameters reflecting overland flow characteristics.[Methods]To investigate mechanical properties of overland flow,the study on the dynamic changes of Reynolds number,F(xiàn)roude number and resistance coefficient with 3 plant density(0,20,and 30 plants/m2),2 vegetation distributions(row arrangement and random arrangement),two slopes(5°and 10°)and 3 scouring flow(1,2,3 m3/h)were studied by field scour simulation experiment.[Results]The results showed that effect on Reynolds number of inflow section by plant coverage density and slope was not significant,and only effected by flow rate.Dynamic changes on Reynolds number of inflow section remained stable over time,while that in outflow section showed an increasing trend which was affected by plant density.And the increasing rate of dynamic changes in outflow section slowed down with the increase of the plant density,however,influence by plant arrangement was not significant.Compared to the inflow section,Reynolds number of outflow section was smaller,indicating that the kinetic energy of the overland flow reduced during scouring process.Froude number was both less than 1 in two observation section,which were slow flow.Froude number of inflow section only increased with flow rate increasing,and the influences on Froude number of inflow section byplant coverage density and slope were not significant.The same as Reynolds number of inflow section,F(xiàn)roude number of inflow section also remained stable over time.The dynamic change of Froude number in outflow section decreased with time slowly,which was effected by plant densiy significantly,and the influence on it by plant arrangement was not significant.The dynamic changes of Froude number leveled off even plant density increased.Effect on resistance coefficient by slope was not significant,which was effected by plant density and flow rate,and the influence of plant arrangement was not significant.Stepwise regression analysis on resistance coefficient showed that f=2.350t0.012q-3.178c0.084,indicating that dynamic changes of resistance coefficient showed an increase trend that could be controlled by increase of slope and plant density.[Conclusions]Dynamic changes of resistance coefficient on bare slope had greater increase rate than slopes covered by vegetation,and resistance coefficient changing with time tend to be gentle with the plant density increased.Meanwhile,change range of resistance coefficient in plant random arrangement slope was smaller than slope in plant row arrangement.

Keywords:overland flow;runoff plots;scouring experiment;flow pattern;Reynolds number;Froude number;resistance coefficient;dynamic changes

中圖分類號(hào):S157.1

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1672-3007(2016)03-0052-08

DOI:10.16843/j.sswc.2016.03.007

收稿日期:2015 05 29修回日期:2016 03 03

第一作者簡(jiǎn)介:戴矜君(1992—),女,碩士研究生。主要研究方向:土壤侵蝕。E-mail:645059050@qq.com

通信作者?簡(jiǎn)介:程金花(1979—),女,副教授,碩士生導(dǎo)師。主要研究方向:土壤侵蝕與植被恢復(fù)。E-mail:jinhua_cheng@ 126.com

猜你喜歡
雷諾數(shù)沖刷坡面
黃土丘陵區(qū)凍土坡面侵蝕過(guò)程特征研究
深水坡面巖基礎(chǔ)施工方法
非接觸機(jī)械密封端面間流體膜流動(dòng)狀態(tài)臨界雷諾數(shù)的討論*
地表粗糙度對(duì)黃土坡面產(chǎn)流機(jī)制的影響
透射槽波探測(cè)技術(shù)對(duì)煤層沖刷帶的研究與應(yīng)用
基于Transition SST模型的高雷諾數(shù)圓柱繞流數(shù)值研究
氣泡對(duì)點(diǎn)蝕狀態(tài)管道沖刷腐蝕的數(shù)值模擬
亞臨界雷諾數(shù)圓柱繞流遠(yuǎn)場(chǎng)氣動(dòng)噪聲實(shí)驗(yàn)研究
民機(jī)高速風(fēng)洞試驗(yàn)的阻力雷諾數(shù)效應(yīng)修正
水庫(kù)壩區(qū)沖刷漏斗的形成機(jī)理