阮曙峰,丁選勝
(中國藥科大學(xué)基礎(chǔ)醫(yī)學(xué)與臨床藥學(xué)學(xué)院,江蘇 南京 210009)
?
◇綜述◇
糖尿病腎病與性激素相關(guān)性研究進(jìn)展
阮曙峰,丁選勝
(中國藥科大學(xué)基礎(chǔ)醫(yī)學(xué)與臨床藥學(xué)學(xué)院,江蘇 南京210009)
摘要:糖尿病腎病是糖尿病導(dǎo)致的腎臟損害,是糖尿病最常見、最嚴(yán)重的并發(fā)癥之一,性激素在體內(nèi)能量代謝中起到重要作用。該文將對糖尿病狀態(tài)下性激素變化趨勢進(jìn)行介紹,重點(diǎn)綜述調(diào)節(jié)性激素平衡對于糖尿病腎病發(fā)生發(fā)展作用機(jī)制研究進(jìn)展,旨在為性激素替代治療糖尿病腎病的深入研究提供參考。
關(guān)鍵詞:糖尿病腎?。徊G酮;雌二醇
糖尿病腎病(diabetic nephropathy,DN)是糖尿病導(dǎo)致的腎臟損害,是糖尿病最常見、最嚴(yán)重的并發(fā)癥之一。與其他許多疾病的并發(fā)癥不同,DN一旦發(fā)生將伴隨糖尿病患者終生,成為糖尿病患者主要的死亡原因。由于DN患者的發(fā)病率高、治療困難、預(yù)后差、社會(huì)負(fù)擔(dān)重,在美國、加拿大等發(fā)達(dá)國家DN已成為終末期腎功能衰竭的首位病因[1],在我國DN已成為腎衰的主要原因之一。DN一旦進(jìn)入終末期腎功能衰竭,將主要依靠透析和腎移植治療,因此,如何防治DN,已成為全世界亟待解決的難題[2]。雌性動(dòng)物卵巢主要分泌兩種性激素-雌二醇為主的雌激素與孕激素,雄性動(dòng)物睪丸主要分泌以睪酮為主的雄激素,性激素在體內(nèi)調(diào)節(jié)能量代謝平衡,促進(jìn)細(xì)胞增殖與分化,促進(jìn)性器官發(fā)育成熟,影響神經(jīng)系統(tǒng)發(fā)育。糖尿病狀態(tài)下長期存在的高血糖以及胰島素的不足導(dǎo)致一系列的組織功能病變,其中包括性器官結(jié)構(gòu)和功能的改變[3-4]?;谛约に厥Ш鈱τ贒N發(fā)生發(fā)展的影響,平衡糖尿病患者以及動(dòng)物體內(nèi)性激素水平可能在一定程度上起到延緩或治療糖尿病腎臟損傷的作用[5]。
1糖尿病狀態(tài)下性激素的變化趨勢
糖尿病(diabetes mellitus,DM)是一種由遺傳和環(huán)境因素相互作用所導(dǎo)致的內(nèi)分泌疾病,由于胰島素分泌絕對或者相對不足以及靶組織細(xì)胞對胰島素敏感性降低,引起糖、脂、蛋白質(zhì)、水和電解質(zhì)等一系列代謝紊亂。糖尿病引起性激素的變化失衡,其中男性糖尿病患者表現(xiàn)出睪酮水平顯著降低,雌二醇水平顯著升高,女性患者表現(xiàn)出睪酮水平顯著升高,雌二醇水平顯著降低,1型糖尿病和2型糖尿病存在相似的變化趨勢[6-9],提示糖尿病與性激素失衡有關(guān)。
性激素的合成以膽固醇為原料,通過CYP11A轉(zhuǎn)化為孕烯醇酮,這一步需要轉(zhuǎn)運(yùn)體從線粒體膜外到線粒體膜內(nèi)的跨膜轉(zhuǎn)運(yùn),且是整個(gè)性激素合成的關(guān)鍵步驟,之后可通過孕酮,17α-羥孕酮和羥基孕烯醇酮,脫氫表雄酮兩條途徑生成雄烯二酮,雄烯二酮通過17HSD3酶轉(zhuǎn)化成睪酮,睪酮可通過芳香化酶轉(zhuǎn)化為雌二醇[10-11],見圖1。
圖1 性激素的合成圖
研究發(fā)現(xiàn),高血糖狀態(tài)下,超氧化物顯著增多,抑制葡萄糖-6-磷酸脫氫酶活性,導(dǎo)致抗氧化物減少,活性氧(Reactive oxygen species,ROS)顯著增多,造成間質(zhì)細(xì)胞線粒體功能障礙[12],線粒體跨膜是性激素合成的關(guān)鍵環(huán)節(jié),線粒體功能障礙導(dǎo)致性激素合成減少,主要表現(xiàn)在男性糖尿病患者睪酮水平的顯著降低,而女性糖尿病患者雌二醇水平的顯著降低。
糖尿病的主要特點(diǎn)是胰腺β細(xì)胞產(chǎn)生的胰島素水平降低,胰島素在能量平衡中起著關(guān)鍵作用,胰島素缺乏導(dǎo)致血糖升高,代謝紊亂。下丘腦-垂體-性腺功能軸(hypothalamic-pituitary-gonadal axis,HPGA)主要由下丘腦產(chǎn)生促性腺激素釋放激素,促進(jìn)垂體產(chǎn)生促性腺激素,促性腺激素主要有兩種,包括促黃體生成素和促卵泡生成素,促黃體生成素主要是促進(jìn)性腺間質(zhì)細(xì)胞產(chǎn)生性激素,促卵泡生成素與精子生成有關(guān)[13]。胰島素主要通過胰島素信號(hào)通路調(diào)節(jié)能量代謝,胰島素與胰島素受體結(jié)合,激活酪氨酸蛋白激酶(protein tyrosine kinase,PTK),PTK磷酸化胰島素受體底物(insulin receptor substrate,IRS-2)使其激活,IRS-2激活PI3K,進(jìn)而調(diào)控能量代謝。PI3K通過作用于大腦下丘腦,使下丘腦促性腺激素釋放激素產(chǎn)生增加,進(jìn)而刺激垂體釋放促黃體生成素和促卵泡生成素,促進(jìn)性腺產(chǎn)生性激素[14]。糖尿病狀態(tài)下,胰島素顯著降低,促性腺激素釋放激素釋放減少,血清中促黃體生成素水平降低,性激素的產(chǎn)生減少[15]。瘦素是調(diào)節(jié)能量代謝的重要脂肪因子,由脂肪細(xì)胞產(chǎn)生,它通過下丘腦調(diào)節(jié)生殖功能[16]。體內(nèi)體外實(shí)驗(yàn)均表明,胰島素降低時(shí),瘦素的產(chǎn)生也減少[17-18]。下丘腦中瘦素通過瘦素受體作用于IRS-2激活PI3K進(jìn)而刺激下丘腦釋放促性腺激素釋放激素[19]。糖尿病狀態(tài)下,胰島素缺乏導(dǎo)致瘦素水平的降低,通過HGPA使性激素產(chǎn)生減少[20]。
芳香化酶是催化雄激素生成雌激素的唯一酶類,人類雌激素的生物合成受到芳香化酶的控制[21],芳香化酶主要在性腺組織中表達(dá),但在腎臟組織中也存在芳香化酶的表達(dá)[22]。在糖尿病大鼠的研究中發(fā)現(xiàn),雌性大鼠體內(nèi)芳香化酶的活性顯著降低,而雄性大鼠體內(nèi)芳香化酶的活性顯著升高,芳香化酶作為雄激素轉(zhuǎn)化為雌激素的關(guān)鍵酶,提示高血糖狀態(tài)下雌性大鼠睪酮水平顯著升高,雄性大鼠雌二醇水平顯著升高[23]。
2性激素變化對雄性DN的影響
男性糖尿病患者無伴隨腎病血清總睪酮以及游離睪酮水平較正常男性顯著降低,而伴隨有微量蛋白尿或大量蛋白尿的腎病患者血清睪酮水平下降更為顯著,其中1型糖尿病男性患者血清降低的睪酮水平是微量蛋白尿發(fā)展至大量蛋白尿的一個(gè)重要標(biāo)志,而升高的雌二醇水平是大量蛋白尿發(fā)展至終末期腎病的重要標(biāo)志[24]。有研究表明,慢性腎臟疾病男性患者相比正常人以及腎移植患者的血清睪酮水平降低[25],提示在腎病發(fā)展過程中雄性激素水平是降低的,同時(shí)在慢性腎臟疾病伴隨性功能障礙的男性患者的血清睪酮水平降低,而血清促黃體生成素,促卵泡生成素水平升高,睪丸間質(zhì)細(xì)胞對于促黃體生成素反應(yīng)敏感性降低,提示腎臟疾病伴隨性激素變化的同時(shí)存在下丘腦-垂體-性腺功能軸(hypothalamic-pituitary-gonadal axis,HPGA)障礙[26],HPGA障礙形成的性激素失衡與慢性腎臟疾病之間相互推動(dòng),也有研究表明雄性腎臟損傷與雌二醇的升高有關(guān)。同時(shí)也有研究報(bào)道睪酮對于雄性腎臟起到保護(hù)作用[27],急性腎臟損傷研究中表明睪酮水平的恢復(fù)能夠明顯改善腎臟損傷[28]。
糖尿病引起性激素的變化失衡,而失衡的性激素進(jìn)一步加重腎病的發(fā)展,性激素的失衡主要體現(xiàn)在睪酮水平降低以及雌二醇水平升高兩個(gè)方面[29],在鏈脲佐菌素(streptozotocin,STZ)誘導(dǎo)的1型糖尿病研究中,小劑量補(bǔ)充睪酮能夠明顯改善腎小球及腎小管纖維化,降低轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)、Ⅰ型及Ⅳ型膠原蛋白,以及減少白介素6(interleukin-6,IL-6),腫瘤壞死因子α(tumor necrosis factor α,TNF-α)等炎癥因子,而大劑量補(bǔ)充睪酮起到相反的作用,提示小劑量補(bǔ)充睪酮能夠改善STZ誘導(dǎo)的1型DN[30]。同時(shí)在另一項(xiàng)研究中,通過抑制芳香化酶的作用,抑制睪酮轉(zhuǎn)化為雌二醇,也能明顯改善STZ誘導(dǎo)的1型DN[23],同時(shí)補(bǔ)充二氫睪酮和芳香化酶抑制劑能夠起到相比單用睪酮補(bǔ)充或芳香化酶抑制劑更好的抗纖維化以及抗炎作用,對糖尿病引起的腎病起到更好的改善作用[15]。性激素對于DN作用的中心環(huán)節(jié)是對于TGF-β的調(diào)節(jié)[31],在睪酮改善心肌纖維化的研究中,睪酮通過雄激素受體(androgen receptor,AR)抑制TGF-β/PI3K/Akt以及AngⅡ/p38/Smad2兩條通路抑制心肌細(xì)胞的分化,同時(shí)通過抑制TGF-β增強(qiáng)基質(zhì)金屬蛋白酶2(matrix metalloprotein-2,MMP-2)的表達(dá),加強(qiáng)了基質(zhì)的降解,從而抑制心肌纖維化[32]。在急性傷口恢復(fù)的研究中,雄激素通過AR作用于真皮成纖維細(xì)胞降低TGF-β的表達(dá),其中TGF-β以及下游的Smad信號(hào)通路不僅與細(xì)胞外基質(zhì)的沉積相關(guān),同時(shí)能夠激活炎癥因子引起炎癥反應(yīng)[33],提示性激素可能通過下調(diào)TGF-β的表達(dá)起到對腎臟纖維化及腎臟炎癥的改善作用。
3性激素變化對雌性DN的影響
對于雌性DN而言,雌激素的升高能夠?qū)N起到保護(hù)作用,其中雌二醇通過激活酪氨酸激酶2(casein kinase 2,CK2)抑制TGF-β的合成,進(jìn)而抑制膠原蛋白Ⅳ(CollagenⅣ)RNA的轉(zhuǎn)錄,降低膠原蛋白的表達(dá),改善DN纖維化的程度,對DN起到保護(hù)作用[34]。同時(shí),雌二醇可以通過上調(diào)CK2表達(dá)以及促進(jìn)P53的磷酸化逆轉(zhuǎn)TGF-β引起的系膜細(xì)胞凋亡,對DN起到保護(hù)作用[35]。雌二醇通過MAPK/AP-1信號(hào)通路抑制膠原蛋白Ⅰ(CollagenⅠ)的合成,減少膠原蛋白的來源,起到腎臟保護(hù)作用[36]。雌二醇通過激活MAPK/AP-2促進(jìn)MMP-2的表達(dá),同時(shí)刺激基質(zhì)金屬蛋白酶9(MMP-9)的合成,降低纖維化水平,改善DN[37]。雌激素通過雌激素受體α(estrogen receptor α,ER-α)上調(diào)內(nèi)皮一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的mRNA水平增加其蛋白水平,加速一氧化氮(nitric oxide,NO)的釋放,改善NO引起的腎臟損傷[38]。雌激素通過降低血管緊張素2的水平,減少內(nèi)皮素的合成,抑制腎臟血管收縮以及降低腎臟炎癥反應(yīng)[39]。雌激素通過抑制還原型輔酶Ⅱ(NADPH)的氧化激活,降低腎臟超氧陰離子的水平,超氧陰離子是腎臟主要的活性氧成分,降低ROS水平改善氧化應(yīng)激,改善DN腎臟損傷[40]。Mankhey等[41]研究表明,STZ誘導(dǎo)的雌性大鼠補(bǔ)充17-β雌二醇可改善DN損傷。
4結(jié)語
DN發(fā)生發(fā)展中性激素起到關(guān)鍵的作用,動(dòng)物實(shí)驗(yàn)已經(jīng)表明以激素替代療法為主的治療方案對于DN的腎功能具有明顯的改善作用[30]。然而,DN狀態(tài)下性激素變化在性別之間差異性的原理并沒有得到完全的闡釋,同時(shí)一些作用于性激素的新靶點(diǎn)也需要再發(fā)現(xiàn),為DN的治療提供新的思路以及廣闊的前景。
參考文獻(xiàn)
[1]Collins AJ,Kasiske B,Herzog C,et al.United States Renal Data System 2011 Annual Data Report:Atlas of chronic kidney disease & end-stage renal disease in the United States[J].American Journal of Kidney Diseases the Official Journal of the National Kidney Foundation,2012,59(1 Suppl 1):A7,e1-420.
[2]Cooper ME.Diabetes:Treating diabetic nephropathy-still an unresolved issue[J].Nature Reviews Endocrinology,2012,8(9):515-516.
[3]Ricci G,Catizone A,Esposito R,et al.Diabetic rat testes:morphological and functional alterations[J].Andrologia,2009,41(6):361-368.
[4]朱金海,方軍,左澤平,等.小劑量持續(xù)服用他達(dá)拉非對糖尿病性勃起功能障礙的療效觀察[J].安徽醫(yī)藥,2014,18(6):1138-1140.
[5]Manigrasso MB,Sawyer RT,Marbury DC,et al.Inhibition of estradiol synthesis attenuates renal injury in male streptozotocin-induced diabetic rats[J].American Journal of Physiology Renal Physiology,2011,301(3):F634-F640.
[6]Dhindsa S,Reddy A,Karam JS,et al.Prevalence of subnormal testosterone concentrations in men with type 2 diabetes and chronic kidney disease[J].European Journal of Endocrinology,2015,173(3):359-366.
[7]Hackett G,Heald AH,Sinclair A,et al.Serum testosterone,testosterone replace-ment therapy and all-cause mortality in men with type 2 diabetes:retrospective consideration of the impact of PDE5 inhibitors and statins[J].International Journal of Clinical Practice,2016,70(3):244-253.
[8]Holt SK,Natalya L,James H,et al.Prevalence of low testosterone and predisposing risk factors in men with type 1 diabetes mellitus:findings from the DCCT /EDIC[J].Journal of Clinical Endocrinology & Metabolism,2014,99(9):E1655-E1660.
[9]Torkel V,Henrik S,Inger N,et al.Low testosterone and sex hormone-binding globulin levels and high estradiol levels are independent predictors of type 2 diabetes in men[J].European Journal of Endocrinology,2010,162(4):747-754.
[10] Payne AH,Hales DB.Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones[J].Endocrine Reviews,2004,25(6):947-970.
[11] Papadopoulos V,Baraldi M,Guilarte TR,et al.Translocator protein (18 kDa):new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function[J].Trends in Pharmacological Sciences,2006,27(8):402-409.
[12] Alves MG,Martins AD,Rato L,et al.Molecular mechanisms beyond glucose transport in diabetes-related male infertility[J].Biochimi Biophysi Acta,2013,1832(5):626-635.
[13] Schoeller EL,Schon S,Moley KH.The effects of type 1 diabetes on the hypothalamic,pituitary and testes axis[J].Cell & Tissue Research,2012,349(3):839-847.
[14] Boura-Halfon S,Zick Y.Phosphorylation of IRS proteins,insulin action,and insulin resistance[J].American Journal of Physiology Endocrinology & Metabolism,2009,296(4):E581-E591.
[15] Brüning JC,Gautam D,Burks DJ,et al.Role of brain insulin receptor in control of body weight and reproduction[J].Science,2000,289(5487):2122-2125.
[16] German JP,Wisse BE,Thaler JP,et al.Leptin deficiency causes insulin resistance induced by uncontrolled diabetes[J].Diabetes,2010,59(7):1626-1634.
[17] Cammisotto PG,Bukowiecki LJ.Mechanisms of leptin secretion from white adipocytes[J].Ajp Cell Physiology,2002,283(1):C244-C250.
[18] Kolaczynski JW,Nyce MR,Considine RV,et al.Acute and chronic effects of insulin on leptin production in humans:Studies in vivo and in vitro[J].Diabetes,1996,45(5):699-701.
[19] Carvalheira JB,Torsoni MA,Ueno M,et al.Cross-Talk between the Insulin and Leptin Signaling Systems in Rat Hypothalamus[J].Obesity Research,2005,13(1):48-57.
[20] Quennell JH,Mulligan AC,Tups A,et al.Leptin indirectly regulates gonadotropin-releasing hormone neuronal function[J].Endocrinology,2009,150(150):2805-2812.
[21] Beck DT,Yarrow JF,Beggs LA,et al.Influence of Aromatase Inhibition on the Bone Protective Effects of Testosterone[J].Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research,2014,29 (11):2405-2413.
[22] Prabhu A,Xu Q,Manigrasso MB,et al.Expression of aromatase,androgen and estrogen receptors in peripheral target tissues in diabetes[J].Steroids,2010,75(11):779-787.
[23] Manigrasso MB,Sawyer RT,Hutchens ZM,et al.Combined inhibition of aromatase activity and dihydrotestosterone supplementation attenuates renal injury in male streptozotocin (STZ)-induced diabetic rats[J].American Journal of Physiology Renal Physiology,2012,302(9):F1203-F1209.
[24] Christine M,Carol F,Lena T,et al.Association between testosterone,estradiol and sex hormone binding globulin levels in men with type 1 diabetes with nephropathy[J].Steroids,2010,75(11):772-778.
[25] Park MG,Koo HS,Lee B.Characteristics of testosterone deficiency syndrome in men with chronic kidney disease and male renal transplant recipients:a cross-sectional study[J].Transplantation Proceedings,2013,45(8):2970-2974.
[26] Suzuki E,Nishimatsu H,Oba S,et al.Chronic kidney disease and erectile dysfunction[J].World Journal of Nephrology,2014,3(4):220-229.
[27] Periklis D,Konstantina T,Costas F,et al.Role of testosterone in the pathogenesis,progression,prognosis and comorbidity of men with chronic kidney disease[J].Therapeutic Apheresis & Dialysis,2014,18(3):220-230.
[28] Meuwese CL,Carrero JJ.Chronic Kidney Disease and Hypothalamic-Pituitary Axis Dysfunction:The Chicken or the Egg? [J].Archives of Medical Research,2013(44):591-600.
[29] Neugarten J,Golestaneh L.Gender and the prevalence and progression of renal disease[J].Adv Chronic Kidney Dis,2013,20(5):390-395.
[30] Qin X,Anjali P,Shujing X,et al.Dose-dependent effects of dihydrotestosterone in the streptozotocin-induced diabetic rat kidney[J].Ajp Renal Physiology,2009,297(2):F307-F315.
[31] Diamond-Stanic MK,You YH,Sharma K.Sugar,sex,and TGF-β in diabetic nephropathy[J].Seminars in Nephrology,2012,32(3):261-268.
[32] Cheng-Chih C,Rung-Chieh H,Yu-Hsun K,et al.Androgen attenuates cardiac fibroblasts activations through modulations of transforming growth factor-β and angiotensin Ⅱ signaling[J].International Journal of Cardiology,2014,176(2):386-393.
[33] Kuo TM,Yeh KT,Hsu HT,et al.ALPK1 affects testosterone mediated regulati-on of proinflammatory cytokines production[J].Journal of Steroid Biochemistry & Molecular Biology,2015,154:150-158.
[34] Zdunek M,Silbiger S,Lei J,et al.Protein kinase CK2 mediates TGF-beta1-stimulated type IV collagen gene transcription and its reversal by estradiol[J].Kidney International,2001,60(6):2097-2108.
[35] Olivia N,Istvan B,Jun L,et al.Estradiol reverses TGF-β1-induced mesangial cell apoptosis by a casein kinase 2-dependent mechanism[J].Kidney International,2003,62(6):1989-1998.
[36] Dixon A,Maric C.17β-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-β protein expression and signaling[J].American Journal of Physiology Renal Physiology,2007,293(5):F1678-F1690.
[37] Guccione M,Silbiger S,Lei J,et al.Estradiol upregulates mesangial cell MMP-2 activity via the transcription factor AP-2[J].American Journal of Physiology Renal Physiology,2002,282(1):F164-F169.
[38] Silbiger S,Neugarten J.Gender and human chronic renal disease[J].Gender Medicine,2008,5(Suppl A):S3-S10.
[39] Bupp MRG.Sex,the aging immune system,and chronic disease[J].Cellular Immunology,2015,294(2):102-110.
[40] White RE,Gerrity R,Barman SA,et al.Estrogen and oxidative stress:A novel mechanism that may increase the risk for cardiovascular disease in women[J].Steroids,2010,75(11):788-793.
[41] Mankhey RW,Bhatti F,Maric C.17β-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy[J].American Journal of Physiology Renal Physiology,2005,288(2):F399-F405.
Advances in research on correlation between diabetic nephropathy and sex hormone
RUAN Shu-feng,DING Xuan-sheng
(SchoolofBasicMedicineandClinicalPharmacy,ChinaPharmaceuticalUniversity,Nanjing,Jiangsu210009,China)
Abstract:Diabetic nephropathy,kidney damage caused by diabetes,is the most common and serious complication of diabetes mellitus.Sex hormones play an important role in energy metabolisminvivo.This paper provides references for further study in hormone therapy in diabetic nephropathy.Here the trend of sex hormones changing in diabetes was reviewed,focusing on advances in sex hormones replacement therapy in the development of diabetic nephropathy.
Key words:Diabetic nephropathies;Testosterone;Estradiol
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(81274158)
作者簡介:阮曙峰,男,碩士研究生 通信作者:丁選勝,男,教授,博士生導(dǎo)師,研究方向:心血管藥理與臨床藥學(xué),E-mail:dxs0162@sina.com
doi:10.3969/j.issn.1009-6469.2016.06.001
(收稿日期:2016-03-07,修回日期:2016-03-25)