王迪, 吳新亮, 蔡崇法?, 楊偉
(1.農(nóng)業(yè)部長江中下游耕地保育重點(diǎn)實(shí)驗(yàn)室,430070,武漢;2.華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,430070,武漢;3.湖北省水利水電科學(xué)研究院,430070,武漢)
?
長期培肥下紅壤有機(jī)碳組成與團(tuán)聚體穩(wěn)定性的關(guān)系
王迪1,2, 吳新亮1,2, 蔡崇法1,2?, 楊偉3
(1.農(nóng)業(yè)部長江中下游耕地保育重點(diǎn)實(shí)驗(yàn)室,430070,武漢;2.華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,430070,武漢;3.湖北省水利水電科學(xué)研究院,430070,武漢)
摘要:為研究培肥措施對紅壤有機(jī)碳組成和團(tuán)聚體穩(wěn)定性的影響,以及有機(jī)碳與團(tuán)聚體穩(wěn)定性的關(guān)系,通過長期定位實(shí)驗(yàn),選取不同施肥措施(未培肥CK、化肥NPK、化肥+秸稈NPKS和糞肥AM)下的典型紅壤為研究對象,分析土壤有機(jī)碳組成和團(tuán)聚體穩(wěn)定性差異,揭示3種施肥措施下不同層次的有機(jī)碳組成和團(tuán)聚體穩(wěn)定性的變化規(guī)律。結(jié)果表明,3種施肥措施均可以提高土壤表層(0~25 cm)有機(jī)碳質(zhì)量分?jǐn)?shù)(尤其是顆粒有機(jī)碳),其中AM效果最顯著,NPKS次之。不同施肥措施下紅壤不同層次的團(tuán)聚體穩(wěn)定性順序?yàn)锳M>NPKS>NPK>CK。與CK相比,AM處理對表下層(5~15 cm)土壤的總有機(jī)碳和團(tuán)聚體穩(wěn)定性的提高效果最顯著。回歸分析表明,顆粒有機(jī)碳(POC)與濕篩法平均質(zhì)量直徑以及快速濕潤(FW)、慢速濕潤(SW)、預(yù)濕潤震蕩(WS)3種處理的平均質(zhì)量直徑的相關(guān)性最好(R2=0.79、0.80、0.66、0.81),說明相對于其他組分,顆粒有機(jī)碳更有利于降低消散作用以及抵抗機(jī)械破碎進(jìn)而增強(qiáng)團(tuán)聚體穩(wěn)定性,是間接評價(jià)土壤團(tuán)聚體穩(wěn)定性的良好指標(biāo)。
關(guān)鍵詞:培肥措施; 顆粒有機(jī)碳; 礦物結(jié)合態(tài)有機(jī)碳; 平均重量直徑; 團(tuán)聚體穩(wěn)定性; 總有機(jī)碳; 紅壤
團(tuán)聚體是土壤結(jié)構(gòu)的基本單元,作為土壤團(tuán)聚體的重要組成部分,有機(jī)碳不僅是土壤微生物和植物生命活動的重要能量養(yǎng)分來源,而且是影響土壤結(jié)構(gòu)的一個重要因素[1]。團(tuán)聚體的形成和穩(wěn)定與有機(jī)碳有著密切的關(guān)系[2-3]。施用有機(jī)肥以及化肥是提高土壤有機(jī)碳質(zhì)量分?jǐn)?shù)的有效手段。研究表明單施有機(jī)肥或有機(jī)無機(jī)肥料配施都可以增加土壤的有機(jī)碳質(zhì)量分?jǐn)?shù),尤其是耕層土壤[4];但是其他化肥配施或是單獨(dú)施用對有機(jī)碳的影響結(jié)論并不一致[5-8]。有研究[9]認(rèn)為施用氮磷鉀化肥,能夠顯著提高土壤有機(jī)碳質(zhì)量分?jǐn)?shù)。也有研究[10-11]認(rèn)為單施化肥引起土壤C/N降低,加速土壤有機(jī)碳的分解礦化,消耗原始有機(jī)碳,不利于其在土壤中的累積。有機(jī)肥與化肥配施能通過二者之間的交互作用促進(jìn)微團(tuán)聚體膠結(jié)形成較大粒徑的團(tuán)聚體[12-13],顯著提高土壤中大團(tuán)聚體的數(shù)量和穩(wěn)定性[14-15]。有機(jī)肥的施用顯著增加土壤的團(tuán)聚作用,可在一定程度上削減耕作對團(tuán)聚體的破壞作用,減緩團(tuán)聚體的周轉(zhuǎn)[16],是改善土壤團(tuán)粒結(jié)構(gòu),提高紅壤生產(chǎn)力的有效措施[17]。團(tuán)聚體和有機(jī)碳是不可分割的,前者是后者存在的場所,后者是前者存在的膠結(jié)物質(zhì)[18]。有機(jī)碳受到團(tuán)聚體數(shù)量和周轉(zhuǎn)的影響[19],在團(tuán)聚體保護(hù)下的土壤有機(jī)碳比未受保護(hù)的更不易分解,并且有機(jī)碳在微團(tuán)聚體中比在大團(tuán)聚體中周轉(zhuǎn)慢[20]。
紅壤主要分布在我國南方的14個省區(qū),總面積為218萬hm2,占我國耕地總面積的28%左右,為我國棉糧油的重要產(chǎn)區(qū)[21]。由于氣候、降水等自然因素以及人為因素的影響,導(dǎo)致該土壤極易受到侵蝕,作物產(chǎn)量較低[22],因此研究該區(qū)域在耕作施肥條件下對土壤結(jié)構(gòu)穩(wěn)定性的影響十分必要。土壤顆粒有機(jī)碳(particulate organic carbon, POC)是與土壤砂粒組分結(jié)合的那部分有機(jī)碳,通常由半分解或未分解的動植物以及根系殘?bào)w組成[23],穩(wěn)定性較低,比土壤總有機(jī)碳(total organic carbon, TOC)更易受到人為管理措施的影響,是土壤中比較容易受到調(diào)控的一類物質(zhì)[24];礦物結(jié)合態(tài)有機(jī)碳(mineral-associated organic carbon, MOC)指有機(jī)物的最終分解產(chǎn)物與土壤粉粒和粘粒結(jié)合的有機(jī)碳,周轉(zhuǎn)期較長,較穩(wěn)定,活性低。近些年來,關(guān)于不同培肥方式對POC和MOC的影響的研究增多。各種施肥措施均能在不同程度上增加POC和MOC質(zhì)量分?jǐn)?shù)[25],對其在不同粒級土壤中的分布也有影響[26],并且能夠增強(qiáng)土壤結(jié)構(gòu)穩(wěn)定性[27];但多數(shù)研究并沒有深入分析長期培肥下POC及MOC對土壤團(tuán)聚體穩(wěn)定性的影響。筆者基于長期定位實(shí)驗(yàn),研究培肥措施對紅壤POC和MOC的影響及其與團(tuán)聚體穩(wěn)定性的關(guān)系,這對于南方紅壤區(qū)的土壤改良、指導(dǎo)農(nóng)業(yè)生產(chǎn)活動具有一定的參考意義。
1研究區(qū)概況
研究區(qū)位于湖北省咸寧市賀勝橋鎮(zhèn)。賀勝橋鎮(zhèn)(E 114°16′~114°29′,N 29°57′~30°02′),東西長31.5 km,南北寬10.1 km,東部為丘陵崗地,西部為平原湖區(qū),地形東高西低,由東南向西北呈高丘、丘崗、平湖變勢。屬于亞熱帶大陸性季風(fēng)氣候。冬季盛行偏北風(fēng),偏冷干燥;夏季盛行偏南風(fēng),高溫多雨。年平均氣溫16.8 ℃,極端最高氣溫41.4 ℃,極端最低氣溫為-15.4 ℃。年均降水量為1 300 mm左右,降雨主要集中在3—6月之間。年平均日照時(shí)間為1 754.5 h,年無霜期為245~258 d。研究區(qū)土壤主要為紅壤和紅棕壤,水土流失現(xiàn)象明顯,空間分布廣泛。
2材料與方法
2.1培肥方法
供試土壤采集于華中農(nóng)業(yè)大學(xué)位于咸寧賀勝橋紅壤試驗(yàn)站的培肥管理小區(qū)。培肥小區(qū)始建于1998年,土壤為第四紀(jì)黏土發(fā)育的紅壤,質(zhì)地為黏土。本實(shí)驗(yàn)選取4種不同培肥措施:未培肥 (CK),化肥 (NPK),化肥+秸稈 (NPKS) 和糞肥 (AM)。肥料用量:N: 175 kg/hm2CO(NH2)2; P: 150 kg/hm2Ca(H2PO4)2·H2O;K: 115 kg/hm2K2O ;秸稈:1 666 kg/hm2;糞肥:10 000 kg/hm2豬糞,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)31%~35%。每種培肥措施設(shè)置4個重復(fù),隨機(jī)區(qū)組設(shè)計(jì),一共16個小區(qū),單個小區(qū)寬3 m長7 m,每年進(jìn)行玉米(6行)和小麥(4行)的輪作,在播種前人工翻耕15 cm,播種時(shí)的深度為5 cm,并且在播種的同時(shí)施用肥料。本實(shí)驗(yàn)分別在每種處理的4個小區(qū)中各選擇3個點(diǎn),在0~5,5~15,15~25和 25~40 cm分別采集。將同一培肥措施同一深度的12個土樣混合均勻,各措施每個層次采取約3kg土樣,存放于硬質(zhì)塑料盒中帶回實(shí)驗(yàn)室。土樣在室內(nèi)風(fēng)干后過篩,備用。
相關(guān)理化性質(zhì)分析:pH采用水土比為2.5∶1——電位法測定;土壤密度采用環(huán)刀法測定;土壤有機(jī)碳采用重鉻酸鉀容量法——外加熱法測定;機(jī)械組成采用吸管法測定。實(shí)驗(yàn)前土壤基本理化性質(zhì)見表1。
表1 供試紅壤(CK)基本理化性質(zhì)
注:砂粒:>0.05 mm;粉粒:0.002~0.05 mm;黏粒:<0.002 mm。Note: Sand: >0.05 mm; Silt: 0.002~0.05 mm; Clay: <0.002 mm.
2.2POC和MOC的測定
土壤顆粒有機(jī)物提取參考C.A.Cambardella et al.[23]提供的方法提取,具體過程為:取風(fēng)干過2 mm篩的土壤樣品10.00 g,然后在土樣中放入30 mL的5 g/L六偏磷酸鈉(NaPO3)6溶液,混合均勻后,用振蕩器90 r/min振蕩18 h后,把土壤懸液過0.05 mm篩,反復(fù)用蒸餾水沖洗直到?jīng)_洗液澄清,收集所有留在篩子上的物質(zhì)。篩上的物質(zhì)用于測定POC質(zhì)量分?jǐn)?shù)。過篩的物質(zhì)用于測定MOC質(zhì)量分?jǐn)?shù)。將篩上和過篩的物質(zhì)在60℃下過夜烘干稱量并計(jì)算其所占土壤的比例。
有機(jī)碳質(zhì)量分?jǐn)?shù)用重鉻酸鉀容量法—外加熱法測定。用下列公式[28]計(jì)算:
CP=SPWP,
(1)
CM=CT-CP,
(2)
RP=CP/CT×100,
(3)
RM=CM/CT×100。
(4)
式中:CP、CM、CT分別為POC、MOC和TOC的質(zhì)量分?jǐn)?shù),g/kg;SP為篩上物質(zhì)中SOC的質(zhì)量分?jǐn)?shù),g/kg;WP為篩上的物質(zhì)的質(zhì)量占土壤質(zhì)量的比例,%;RP、RM為POC和MOC的分配比例,%。
2.3團(tuán)聚體穩(wěn)定性測定
團(tuán)聚體穩(wěn)定性采用濕篩法和LB法測定,為與前人已有的研究[1]保持連貫性、系統(tǒng)性和可比性,筆者選取5~8 mm團(tuán)聚體進(jìn)行穩(wěn)定性分析。
1) 濕篩法:稱取50 g 5~8 mm團(tuán)聚體進(jìn)行濕篩。將土樣倒入套篩(5、2、1、0.5、0.25 mm)頂層,后以35次/min的頻率和4 cm的振幅上下震動套篩30 min。然后將套篩緩慢提出水面,將篩下的物質(zhì)再過0.1 mm的篩子。分別收集各篩網(wǎng)上的水穩(wěn)性團(tuán)聚體,烘干后稱量,獲得各粒級水穩(wěn)性團(tuán)聚體所占的比例,計(jì)算平均質(zhì)量直徑(mean weight diameter, MWD):
(5)
式中:dMWwet為濕篩法平均質(zhì)量直徑,mm;mi為第i粒級團(tuán)聚體的質(zhì)量占土樣質(zhì)量的比例,%;(ri-1+ri)/2為相鄰兩級團(tuán)聚體的平均粒徑,mm;n為篩子數(shù),個。
2) LB法3種處理分別為快速濕潤(fast wetting, FW),慢速濕潤(slow wetting, SW)和預(yù)濕潤震蕩(wet stirring, WS)。FW處理,先將10 g 5~8 mm團(tuán)聚體在蒸餾水中浸沒10 min;SW處理,先把10 g團(tuán)聚體在-0.3 kPa張力的濾紙上靜置,使其完全濕潤;而WS處理,首先將10 g團(tuán)聚體在酒精中浸泡10 min,然后將其轉(zhuǎn)移至250 mL錐形瓶中,加入200 mL蒸餾水,蓋上橡皮塞后上下震蕩20次。在3種處理之后,分別將團(tuán)聚體顆粒轉(zhuǎn)移至0.05 mm的篩網(wǎng)上,在酒精中上下震蕩20次。然后收集篩子上的團(tuán)聚體顆粒,40 ℃烘干后過篩稱量,分別計(jì)算MWD。為評價(jià)土壤團(tuán)聚體破壞機(jī)制,利用相對消散指數(shù)(relative slaking index,RSI)和相對機(jī)械破碎指數(shù)(relative mechanical crushing index,RMI)來分別評價(jià)紅壤團(tuán)聚體破壞中對消散作用和機(jī)械破碎作用的敏感程度[29]。
(6)
(7)
式中:dMWFW、dMWSW、dMWWS分別為FW、SW和WS 3種處理下的MWD,mm;IRS、IRM分別為相對消散指數(shù)(RSI)和相對機(jī)械破碎指數(shù)(RMI),%。
2.4數(shù)據(jù)處理
數(shù)據(jù)處理利用Excel 2010和SPSS 17.0進(jìn)行分析。方差分析運(yùn)用最小顯著差數(shù)法(LSD)進(jìn)行多重比較,顯著水平為P<0.05。
3結(jié)果與分析
3.1培肥措施對有機(jī)碳的影響
3.1.1總有機(jī)碳不同培肥措施下土壤的有機(jī)碳質(zhì)量分?jǐn)?shù)如表2所示:對于整個剖面,不同培肥措施的有機(jī)碳質(zhì)量分?jǐn)?shù)的大小順序?yàn)锳M>NPKS>NPK>CK。施肥可以顯著提高表層(0~25 cm)土壤TOC質(zhì)量分?jǐn)?shù)。施肥處理通過提高作物生物產(chǎn)量和歸還農(nóng)田土壤的根茬量增加土壤有機(jī)碳質(zhì)量分?jǐn)?shù),同時(shí)促進(jìn)根系和微生物的活動——向土壤分泌更多的有機(jī)代謝物。與CK相比,0~5、5~15和15~25 cm土層中AM措施下的TOC質(zhì)量分?jǐn)?shù)分別提高了120%、126%和78%。有機(jī)肥對提高土壤TOC的作用大于無機(jī)肥[30],有機(jī)肥本身為土壤提供直接的有機(jī)碳源,明顯增加土壤有機(jī)碳庫。本實(shí)驗(yàn)AM措施的提高效果尤為顯著。對于表下層(25~40 cm)土壤,施肥對土壤TOC的作用不大,說明施肥對土壤有機(jī)碳的影響主要表現(xiàn)在表層,這與其他學(xué)者的研究結(jié)果[31]一致。
表2 4種培肥措施不同土層深度的有機(jī)碳質(zhì)量分?jǐn)?shù)
注:表中的“字母/字母”表示在顯著水平P<0.05的情況下“同一土壤深度中不同培肥處理下的差異水平/同一肥料處理下不同土壤深度的差異水平”。相同字母表示二者之間沒有顯著差異,不同字母表示二者之間差異顯著。Note: The “l(fā)etter/letter” in the table indicates “differences in the level of different fertilizer treatments under the same soil depth/differences in the level of the different soil depths under same fertilizer treatment” in the significant level ofP< 0.05. Same letters indicate no significant difference between the two, and different letters indicate a significant difference. CK: no fertilization as a control; NPK: chemical fertilization; NPKS: chemical fertiliszation plus straw; AM: pig manure fertilization. The same as below.
3.1.2POC及MOC由表2可知,不同深度的土層的POC的大小順序都為AM>NPKS>NPK>CK。與CK相比,0~5 cm、5~15 cm和15~25 cm土層中AM措施下的POC質(zhì)量分?jǐn)?shù)分別提高了257%、134%和228%。AM措施下的土壤POC質(zhì)量分?jǐn)?shù)顯著高于其他措施。AM直接提供與顆粒有機(jī)碳組成相近的有機(jī)碳組分,因而增加POC的效果最好。長期配施化肥一方面不利于形成良好的土壤團(tuán)粒結(jié)構(gòu),使POC缺乏物理保護(hù), 容易被微生物利用而損失;另一方面為微生物提供直接的速效養(yǎng)分,使土壤生物活性增強(qiáng),加速POC向腐殖化物質(zhì)的轉(zhuǎn)化[25-26,32],使化肥配施對POC增加幅度小于糞肥;同時(shí),這也是有機(jī)肥配施化肥增加POC的作用小于有機(jī)肥的原因。NPKS與NPK措施比較,POC的差異不大,這與其他學(xué)者的研究結(jié)果[33]類似,因此可能還需要進(jìn)一步研究秸稈還田條件下的POC為何積累不高的原因。POC質(zhì)量分?jǐn)?shù)隨著土壤深度的增加而減少,其原因是表層的生物活動更活躍,有機(jī)碳?xì)w還量更高,而且由于實(shí)驗(yàn)中的施肥措施都屬于淺施,使得土壤表層(0~25 cm)的POC質(zhì)量分?jǐn)?shù)比表下層(25~40 cm)更大。
AM的長期施用顯著提高土壤不同層次,特別是土壤表層(0~25 cm)的MOC質(zhì)量分?jǐn)?shù)。與CK相比,0~5、5~15和15~25 cm土層中AM措施下的MOC質(zhì)量分?jǐn)?shù)分別提高了62%、79%和52%。NPK和NPKS措施也提高了土壤中MOC的質(zhì)量分?jǐn)?shù),但效果不顯著。施肥有利于MOC質(zhì)量分?jǐn)?shù)的增加,各施肥處理MOC的增加應(yīng)歸因于土壤總有機(jī)物質(zhì)輸入量的增加,增加土壤有機(jī)碳的存儲。
POC和MOC在土壤總有機(jī)碳中的所占比例差異較大。土壤有機(jī)碳主要以MOC的形式存在,MOC占TOC的51.5%~93.1%。樊廷錄等[34]發(fā)現(xiàn)長期增施有機(jī)肥、秸稈還田提高了POC與MOC的比例,POC增幅明顯高于TOC,對施肥響應(yīng)最敏感。本實(shí)驗(yàn)中,與CK相比,各種培肥措施都會在不同程度上增加POC所占的比例,其中以AM處理所提高的比例最多,說明長期施肥能提高POC在TOC中所占的比例,增加土壤中有機(jī)碳的活性。
3.2培肥措施對團(tuán)聚體穩(wěn)定性的影響
由表3可知,不同施肥措施下表層(0~15 cm)土壤團(tuán)聚體穩(wěn)定性的大小順序?yàn)椋篈M>NPKS>NPK>CK。與CK相比,0~5 cm和5~15 cm土層AM措施下的MWD分別提高了44%和138%。對于表下層(15~40 cm)土壤,施肥對團(tuán)聚體穩(wěn)定性的影響不明顯,不同處理之間的差距較小。
表3基于濕篩法的不同培肥措施下土壤團(tuán)聚體的平均質(zhì)量直徑
Tab.3MWD of soil aggregates under different fertilizertreatmentsbased on wet sieving treatment
土層Soillayer/cmdMWwet/mmCKNPKNPKSAM0~51.88d/a2.00c/a2.48b/a2.70a/a5~151.05d/b1.54c/b1.86b/b2.51a/b15~250.62b/c0.72a/c0.53c/c0.56bc/c25~400.52b/c0.73a/c0.45c/c0.51bc/d
Note: MWD: mean weight diameter.dMWet: MWD while in wet sieving. The same as below.
由表4可知,F(xiàn)W得到的MWD的平均值最小,SW得到的MWD的平均值最大,結(jié)合圖1可以發(fā)現(xiàn),RSI都大于同處理同層次下的RMI,說明消散作用是團(tuán)聚體主要破碎機(jī)制。3種處理所得的MWD并沒有完全相同的變化趨勢,在FW和SW的0~15 cm土層深度中,得到的MWD的順序大致上都表現(xiàn)為AM>NPKS>NPK>CK,與濕篩法得到的MWD的趨勢相似,而SW處理中不同層次之間的差異并不十分顯著。團(tuán)聚體的RSI和RMI的值越高,則表明團(tuán)聚體對消散作用和機(jī)械破碎作用越敏感。如圖1所示,在0~15 cm土層深度中,RSI和RMI的大小順序均為CK>NPK>NPKS>AM,說明AM措施下的團(tuán)聚體在消散和機(jī)械破碎作用下可以保持較高穩(wěn)定性。這表明培肥能夠促進(jìn)團(tuán)聚體穩(wěn)定性的提高,并且糞肥對土壤結(jié)構(gòu)的改善最明顯[1],長期施有機(jī)肥比施化肥更有利于土壤團(tuán)聚體穩(wěn)定。
回歸分析(圖2和表5)表明,TOC與不同處理下的團(tuán)聚體穩(wěn)定性都有著顯著的相關(guān)關(guān)系(圖2和表5)。其中,TOC與濕篩法和WS處理下的MWD之間的擬合線性趨勢線的效果最好,而與SW處理下的MWD的趨勢線擬合程度最低。章明奎等[35]發(fā)現(xiàn)紅壤水穩(wěn)性團(tuán)聚體的質(zhì)量分?jǐn)?shù)與穩(wěn)定性土壤的有機(jī)碳質(zhì)量分?jǐn)?shù)呈現(xiàn)正相關(guān)。TOC的變化趨勢與FW處理下的MWD總體上是一致的,說明有機(jī)碳的
表4 基于LB法的不同培肥條件下不同土壤深度的平均質(zhì)量直徑
Note:dMWFW,dMWSW,anddMWSWis MWD under the treatment of FW (fast wetting), SW (slow wetting) and WS (wet stirring) respectively. LB: Le Bissonnais. The samne as below.
圖1 供試紅壤團(tuán)聚體的相對消散指數(shù)和相對機(jī)械破碎指數(shù)Fig.1 Relative slaking index and relative mechanical crushing index of aggregates of the studied red soil
圖2 不同處理平均質(zhì)量直徑與土壤總有機(jī)碳的回歸分析Fig.2 Regression analysis of MWD with soil organic carbon content at different treatments
圖3 不同處理平均質(zhì)量直徑與土壤顆粒有機(jī)碳和礦物結(jié)合態(tài)有機(jī)碳的回歸分析Fig.3 Regression analysis of MWD with soil particulate and mineral-associated organic carbon content at different treatments
增加對降低團(tuán)聚體對消散作用的敏感程度有促進(jìn)作用。
3.3有機(jī)碳與團(tuán)聚體穩(wěn)定性的關(guān)系
POC和MOC與不同處理下的團(tuán)聚體穩(wěn)定性都有顯著的回歸關(guān)系(圖3和表5),但POC與MWD的相關(guān)性高于MOC。POC比TOC更加敏感,提高這部分有機(jī)碳在土壤中的比例,對提高團(tuán)聚體的穩(wěn)定性有著十分重要的作用。隨著土壤POC的增加,不同處理下的MWD增加,說明POC作為一類重要的有機(jī)碳可以提高團(tuán)聚體的穩(wěn)定性。POC和MOC與濕篩法、FW處理和WS處理得到的MWD之間趨勢線的擬合程度較高,而與SW處理的MWD的趨勢線的擬合程度最小。說明POC和MOC的提高可以很好地增強(qiáng)土壤團(tuán)聚體對機(jī)械作用的抵抗能力,降低其對消散作用的敏感程度。
由表5可知,TOC、POC和MOC與濕篩法、FW處理和WS處理得到的MWD之間的回歸關(guān)系都為極顯著的線性回歸關(guān)系(P<0.01),而與SW處理的MWD呈對數(shù)回歸關(guān)系,這說明隨著有機(jī)碳組分質(zhì)量分?jǐn)?shù)的不斷增加,SW的MWD逐漸趨于穩(wěn)定,而在有機(jī)碳質(zhì)量分?jǐn)?shù)較低的情況下,增加有機(jī)碳含量,可以明顯減少不均與膨脹對土壤團(tuán)聚體穩(wěn)定性的影響。POC與每一處理下的MWD的關(guān)系都極為密切,且方程系數(shù)a都相對較大,說明它對團(tuán)聚體的穩(wěn)定性影響程度相對較大。POC作為一類過渡的有機(jī)碳可以填補(bǔ)團(tuán)聚體的某些空隙,減小水分進(jìn)入團(tuán)聚體的速率,有助于增強(qiáng)團(tuán)聚體的斥水性,從而增加團(tuán)聚體的穩(wěn)定性。而其他二者雖可以提高團(tuán)聚體穩(wěn)定性,但是關(guān)系密切程度并不及POC。由上述結(jié)果可以看出,POC對團(tuán)聚體穩(wěn)定性的影響程度比較高,其質(zhì)量分?jǐn)?shù)能夠比較好的指示土壤中的團(tuán)聚體穩(wěn)定性,是間接評價(jià)土壤團(tuán)聚體穩(wěn)定性的良好指標(biāo)。
4結(jié)論
1) 3種施肥措施(AM、NPKS和NPK)可以不同程度地提高土壤表層(0~25 cm)的TOC(POC和MOC)的質(zhì)量分?jǐn)?shù),其中以AM措施最明顯。POC和MOC在土壤TOC中的分配在不同培肥措施下有較大的差異,AM對0~5 cm土層POC/TOC的提高作用最大。
表5 回歸方程系數(shù)值
注:a和b為方程系數(shù)。Note:aandbare the equation coefficient.
2) 不同培肥措施特別是糞肥的施用可以顯著提高表層(0~15 cm)土壤的團(tuán)聚體穩(wěn)定性,而對下層土壤(15~40 cm)團(tuán)聚體的作用不明顯。紅壤中團(tuán)聚體的破碎機(jī)制主要是消散作用。
3) 有機(jī)碳的增加對降低團(tuán)聚體對消散作用的敏感程度,增強(qiáng)對機(jī)械破壞的抵抗能力,對增強(qiáng)土壤團(tuán)聚體的穩(wěn)定性有很大的促進(jìn)作用。POC對團(tuán)聚體穩(wěn)定的影響程度相對較高,可作為間接評價(jià)團(tuán)聚體穩(wěn)定性的良好指標(biāo)。
5參考文獻(xiàn)
[1]Yang Wei, Li Zhaoxia, Cai Chongfa, et al. Mechanical properties and soil stability affected by fertilizer treatments for an Ultisol in subtropical China[J]. Plant and Soil, 2013, 363(1/2):157.
[2]Zhang Mingkui, He Zhenli, Chen Guochao, et al. Formation and water stability of aggregates in red soil as affected byorganic matter[J]. Pedosphere, 1996, 6(1): 39.
[3]劉恩科,趙秉強(qiáng),梅旭榮,等.不同施肥處理對土壤水穩(wěn)定性團(tuán)聚體及有機(jī)碳分布的影響[J].生態(tài)學(xué)報(bào),2010,30(4):1035.
Liu Enke, Zhao Bingqiang, Mei Xurong, et al. Distribution of water-stable aggregates and organic carbon ofarable soils affected by different fertilizer application [J]. Acta Ecologica Sinica, 2010, 30(4):1035. (in Chinese)
[4]Ayuke F O, Brussaard L, Vanaluwe B, et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation[J]. Applied Soil Ecology, 2011, 48(1): 53.
[5]張貴龍,趙建寧,宋曉龍,等.施肥對土壤有機(jī)碳含量及碳庫管理指數(shù)的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),2012,18(2):359.
Zhang Guilong, Zhao Jianning, Song Xiaolong, et al. Effects of fertilization on soil organic carbon and carbon pool management index [J]. Plant Nutrition and Fertilizer Science, 2012, 18(2):359. (in Chinese)
[6]Khan S A, Mulvaney R L, Ellsworth T R, et al. The myth of nitrogen fertilization for soil carbon sequestration[J]. Journal of Environmental Quality, 2007, 36(6): 1821.
[7]趙廣帥,李發(fā)東,李運(yùn)生,等.長期施肥對土壤有機(jī)質(zhì)積累的影響[J].生態(tài)環(huán)境學(xué)報(bào),2012,21(5):840.
Zhao Guangshuai, Li Fadong, Li Yunsheng, et al.Effects of long-term fertilization on soil organic matter accumulation [J]. Ecology and Environment Sciences, 2012, 21(5):840. (in Chinese)
[8]Schwab A P, Owensby C E, Kulyingyong S. Changes in soil chemical properties due to 40 years of fertilization[J].Soil Science, 1990, 149(1): 35.
[9]Mandal A, Patra A K, Singh D, et al. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages[J].Bioresource Technology, 2007, 98(18): 3585.
[10] 劉驊,佟小剛,馬興旺,等.長期施肥下灰漠土礦物顆粒結(jié)合有機(jī)碳的含量及其演變特征[J].應(yīng)用生態(tài)學(xué)報(bào),2010,21(1):84.
Liu Hua,Tong Xiaogang,Ma Xingwang, et al. Content and evolution characteristics of organic carbon associated with particle-size fractions of grey desert soil under long-term fertilization [J]. Chinese Journal of Applied Ecology, 2010, 21(1):84. (in Chinese)
[11] Powlson D S, Prookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology & Biochemistry, 1987, 19(2): 159.
[12] 周萍,宋國菡,潘根興,等.南方三種典型水稻土長期試驗(yàn)下有機(jī)碳積累機(jī)制研究:Ⅰ團(tuán)聚體物理保護(hù)作用[J].土壤學(xué)報(bào),2008,45(6):1063.
Zhou Ping, Song Guohan, Pan Genxing, et al. SOC accumulation in three major types of paddy soils underlong-term agro-ecosystem experiments from south China: I.physical protection in soil micro-aggregates [J]. Acta Pedologica Sinica, 2008, 45(6):1063. (in Chinese)
[13] Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Bioligical Biochemistry, 1996, 28(4/5): 665.
[14] Su Yongzhong, Wang Fang, Suo Dongrang et al.Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat-wheat-maize cropping system in northwest China[J]. Nutrient Cycling in Agroecosystems, 2006, 75(1): 285.
[15] Hati K M, Swarup A, Dwivedi A K, et al. Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring[J]. Agriculture, Ecosystems and Environment, 2007, 119(1/2): 127.
[16] 安婷婷,汪景寬,李雙異,等.施用有機(jī)肥對黑土團(tuán)聚體有機(jī)碳的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2008,19(2):369.
An Tingting, Wang Jingkuan, Li Shuangyi, et al. Effects of manure application on organic carbon in aggregates of black soil [J]. Chinese Journal of Applied Ecology, 2008, 19(2):369. (in Chinese)
[17] 陳曉芬,李忠佩,劉明,等.不同施肥處理對紅壤水稻土團(tuán)聚體有機(jī)碳、氮分布和微生物生物量的影響[J].中國農(nóng)業(yè)科學(xué),2013,46(5):950.
Chen Xiaofen, Li Zhongpei, Liu Ming, et al.Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China [J]. Scientia Agricultura Sinica, 2013, 46(5):950. (in Chinese)
[18] 竇森,李凱,關(guān)松.土壤團(tuán)聚體中有機(jī)質(zhì)研究進(jìn)展[J].土壤學(xué)報(bào),2011,48(2):412.
Dou Sen, Li Kai, Guan Song.A review on organic matter in soil aggregates [J]. Acta Pedologica Sinica, 2011, 48(2):412. (in Chinese)
[19] Six J, Elliott E T, Paustion K, et al. Aggregation and soil organic matter accumulationin cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367.
[20] Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between(micro) aggregates, soilbiota, and soil organic matter dynamics[J].Soil and Tillage Research, 2004, 79(1):7.
[21] 王翠玉,黃國勤.南方紅壤區(qū)農(nóng)田保護(hù)性耕作的進(jìn)展[J].中國人口·資源與環(huán)境,2008,18:485.
Wang Cuiyu, Huang Guoqin. Progress in farmland conservation tillage of southern red soil acre [J]. China Population, Resources and Environment, 2008, 18:485. (in Chinese)
[22] 王雪芬,胡鋒,彭新華,等.長期施肥對紅壤不同有機(jī)碳庫及其周轉(zhuǎn)速率的影響[J].土壤學(xué)報(bào),2012,49(5):954.
Wang Xuefen, Hu Feng, Peng Xinhua, et al. Effects of long-term fertilization on soil organic carbon pools and their turnovers in a red soil [J]. Acta Pedologica Sinica, 2012, 49(5): 954. (in Chinese)
[23] Cambardella C A, Elliott E T. Participate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777.
[24] Wander M M, Bidart M G. Tillage practice influences on the physical protection, bioavailability and composition of particulate organic matter[J]. Biology and Fertility of Soils, 2000, 32(5): 360.
[25] 龔偉,顏曉元,蔡祖聰,等.長期施肥對小麥-玉米作物系統(tǒng)土壤顆粒有機(jī)碳和氮的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2008,19(11):2375.
Gong Wei, Yan Xiaoyuan, Cai Zucong, et al. Effects of long-term fertilization on soil particulate organic carbon and nitrogen in a wheat-maize cropping system [J]. Chinese Journal of Applied Ecology, 2008, 19(11):2375. (in Chinese)
[26] 佟小剛,徐明崗,張文菊,等.長期施肥對紅壤和潮土顆粒有機(jī)碳含量與分布的影響[J].中國農(nóng)業(yè)科學(xué),2008,41(11):3664.
Tong Xiaogang, Xu Minggang, Zhang Wenju, et al. Influence of long-term fertilization on content and distribution of organic carbon in particle-size fractions of red soil and fluvo-aquic soil in China [J]. Scientia Agricultura Sinica, 2008, 41(11):3664. (in Chinese)
[27] 李海波,韓曉增,尤孟陽.不同土地利用與施肥管理下黑土團(tuán)聚體顆粒有機(jī)碳分配變化[J].水土保持學(xué)報(bào),2012,26(1):184.
Li Haibo, Han Xiaozeng, You Mengyang. Particulate organic carbon distribution in aggregates differing in land use and long term fertilization in black soil [J]. Journal of Soil and Water Conservation, 2012, 26(1):184. (in Chinese)
[28] 唐光木,徐萬里,周勃,等.耕作年限對棉田土壤顆粒及礦物結(jié)合態(tài)有機(jī)碳的影響[J].水土保持學(xué)報(bào),2013,27(3):237.
Tang Guangmu, Xu Wanli, Zhouubo, et al. Effects of cultivation years on particulate organic carbon and mineral-associated organic carbon in cotton soil [J]. Journal of soil and water conservation, 2013, 27(3):237. (in Chinese)
[29] 汪三樹,黃先智,史東梅.基于Le Bissonnais法的石漠化區(qū)桑樹地埂土壤團(tuán)聚體穩(wěn)定性研究[J].生態(tài)學(xué)報(bào),2013,33(18):5589.
Wang Sanshu, Huang Xianzhi, Shi Dongmei.Study on soil aggregates stability of mulberry ridge in Rocky Desertification based on Le Bissonnais method [J]. Acta Ecologica Sinica, 2013, 33(18): 5589. (in Chinese)
[30] 汪吉東,張永春,俞美香,等.不同有機(jī)無機(jī)肥配合施用對土壤活性有機(jī)質(zhì)含量及pH值的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),2007,23(6):573.
Wang Jidong, Zhang Yongchun, Yu Meixiang,et al.Effect of combined organic and in organic fertilizer on labile organic matter and acidity of soil [J]. Jiangsu Journal of agricultural sciences, 2007, 23(6): 573. (in Chinese)
[31] Puget P, Lal R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use[J]. Soil and Tillage Research, 2005, 80(1): 201.
[32] 韓曉日,王玲莉,楊勁峰,等.長期施肥對土壤顆粒有機(jī)碳和酶活性的影響[J].土壤通報(bào),2008,39(2):266.
Han Xiaori, Wang Lingli, Yang Jinfeng, et al. Effect of long-term fertilizations on particulate organic carbon and enzyme activities in a brown earth [J]. Chinese Journal of Soil Science, 2008, 39(2):266. (in Chinese)
[33] Leinweber P, Reuter G. The influence of different fertilization practices on concentrations of organic carbon and total nitrogen in particle-size fractions during 34 years of a soil formation experiment in loamy marl[J].Biology and Fertility of Soils, 1992, 13(2): 119.
[34] 樊廷錄,王淑英,周廣業(yè),等.長期施肥下黑壚土有機(jī)碳變化特征及碳庫組分差異[J].中國農(nóng)業(yè)科學(xué),2013,46(2):300.
Fan Tinglu, Wang Shuying, Zhou Guangye, et al. Effects of long-term fertilizer application on soil organic carbon change and fraction in cumulic haplustoll of loess plateau in China [J]. Scientia Agricultura Sinica, 2013, 46(2):300. (in Chinese)
[35] 章明奎,何振立,陳國潮,等.利用方式對紅壤水穩(wěn)定性團(tuán)聚體形成的影響[J].土壤學(xué)報(bào),1997,34(4):359.
Zhang Minghui, He Zhenli, Chen Guochao, et al. Formation of water-stable aggregates in red soils as affected by land use [J].Acta Pedologica Sinica, 1997, 34(4): 359. (in Chinese)
(責(zé)任編輯:程云郭雪芳)
Composition of organic carbon and their relationship with aggregate stability in red soil under different fertilizer application
Wang Di1,2, Wu Xinliang1,2, Cai Chongfa1,2, Yang Wei3
(1.Key Laboratory of Arable Land Conservation, Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, 430070, Wuhan, China;2.College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, China;3.Water Conservancy and Hydropower Research Institute, Hubei Provincial, 430070, Wuhan, China)
Abstract:[Background] The study was order to investigate the effects of fertilizer application on composition of organic carbon and their relationship with aggregate stability in red soil. [Methods] The composition of soil organic carbon and aggregate stability were determined and analyzed to explore their differences and changing pattern at different soil layers under different treatments (no fertilization as a control , CK; chemical fertilization, NPK; chemical fertilization plus straw, NPKS; pig manure fertilization, AM) in 16 years’ fertilizer experiment. [Results] Results showed thatorganic carbon (especially particulate organic carbon (POC)) in the topsoil (0-25 cm) increased under three treatments, as well as the rate of POC/TOC (total organic carbon); among these three treatments, the effect of AM was the most significant, followed by NPKS and NPK. Compared with CK, TOC, POC and MOC by AM increased respectively in 0-5 cm by 120%, 257% and 62%, in 5-15 cm by 126%, 134% and 79%, in 15-25 cm by 78%, 228% and 52%. Soil organic carbon was mainly present in the MOC (mineral-associated organic carbon). Different fertilizer application significantly improved the aggregate stability of surface soil (0-15 cm), but the effect of them for the underlying soil was not obvious. Aggregate stability of red soil under different fertilizer application ranked in the order of AM>NPKS>NPK>CK. Compared with CK, mean weight diameter obtained by wet sieving method of AM, NPKS and NPK increased respectively in 0-5 cm by 44%, 32% and 6%, in 5-15 cm by 138%, 76% and 46%. Mean weight diameter (MWD) obtained by LB (Le Bissonnais) method at different pre-treatment was generally in the sequence of fast wetting (FW) Keywords:fertilization measurement; particulate organic matter; mineral-associated organic matter; mean weight diameter; aggregate stability; total organic carbon; red soil 收稿日期:2015-04-30修回日期: 2015-11-20 第一作者簡介:王迪(1993—),女,碩士研究生。主要研究方向:土壤侵蝕機(jī)制與應(yīng)用。E-mail:wangwangdi123@126.com ?通信 蔡崇法(1961—),男,博士,教授,博士生導(dǎo)師。主要研究方向:土壤侵蝕與水土保持。E-mail:cfcai@mail.hzau.edu.cn 中圖分類號:S157.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1672-3007(2016)01-0061-10 DOI:10.16843/j.sswc.2016.01.008 項(xiàng)目名稱: 國家自然科學(xué)基金“典型地帶性土壤團(tuán)聚體抗侵蝕穩(wěn)定性及其與鐵鋁氧化物關(guān)系”(41471231)