劉劍剛, 張華?, 朱巖, 朱夏夏, 何紅, 劉玉國, 王穎, 馬明軍
(1.遼寧師范大學城市與環(huán)境學院, 116029, 遼寧大連; 2. 遼寧老禿頂子國家級自然保護區(qū)管理局, 117218,遼寧桓仁)
?
遼東山地冰緣地貌表層土壤粒度特征
劉劍剛1, 張華1?, 朱巖1, 朱夏夏1, 何紅1, 劉玉國1, 王穎2, 馬明軍2
(1.遼寧師范大學城市與環(huán)境學院, 116029, 遼寧大連; 2. 遼寧老禿頂子國家級自然保護區(qū)管理局, 117218,遼寧桓仁)
摘要:為探究遼東山區(qū)冰緣地貌表層土壤的質地特征及侵蝕強度,對48個典型冰緣地貌的土壤樣品進行粒度測試分析,結果表明:研究區(qū)土壤級配良好,且徑級跨度較大,質地以黏土質粉砂為主,粉砂其次,偶見砂質粉砂。土壤粒度整體較細(粒度參數(shù)平均粒徑Mz的φ值約6.45),分選差(標準偏差σI約1.89),以正偏居多(約占58%),峰態(tài)多為很窄峰(約占83%);粒度頻率分布包括單峰(25%)、雙峰(50%)和多峰(25%);結合薩胡判據(jù)和南北坡土壤粒度不對稱等特征,初步推測早期土壤沉積組分來自近源淺表風化和遠源風成沉降,其混合組分經冰緣流水搬運改造后形成土壤沉積。根據(jù)分維值(約2.28)、級配比例及敏感組分的提取可知,沉積水動力不強,地表植被覆蓋越優(yōu)良,對流水侵蝕能力的消耗和抑制則越顯著。供試樣品的粒度特征反映流水侵蝕強度不大,植被覆蓋發(fā)揮了重要的水土保持功能。
關鍵詞:冰緣地貌; 土壤; 粒度; 薩胡判別; 分維值; 環(huán)境敏感組分; 遼東山地
土壤粒度是土壤的重要屬性特征之一,其粒徑大小、級配組合、分布狀況與沉積介質動力強弱、土壤抗侵蝕能力關系密切。良好的土壤質地,不僅支撐植被的涵水保土作用,更是穩(wěn)固生態(tài)系統(tǒng)、降低山地災害的關鍵[1-4]。有關粒度的土壤侵蝕、水土流失、環(huán)境演變等研究已多有報道。例如:閆玉春等[5]對白音錫勒牧場土壤的粒度分析,探討了草原土壤的風蝕特征;J. Poesen等[6]對亞歐大范圍的坡面礫石堆積進行研究,認為礫石分布特征能夠反映坡面土壤的侵蝕狀況;李柏等[7]研究了溝壩地泥石流顆粒,得到上游侵蝕、下游堆積的水土流失模式;湯萃文等[8]根據(jù)土壤粒度特征,并應用水土流失方程USLE,估算了土壤侵蝕狀況;許炯心[9]對長江上游觀測站的懸移質泥沙粒度研究,得到水土保持措施能夠影響泥沙粒度;孔祥淮等[10]依據(jù)粒度特征提取環(huán)境敏感組分,對南黃海西部陸架第四紀沉積環(huán)境進行研究,反演了古環(huán)境的沉積過程;Song X.Y.等[11]、劉淼等[12]、Su Y.Z.等[13]等在不同的土壤過程研究中,應用分形理論,將復雜的土壤結構進行量化、簡化,實現(xiàn)了精準描述土壤的微特征。應用粒度分析已在許多土壤學問題的研究中,取得了豐碩成果,但大量的土壤粒度研究多是針對沙丘、湖泊、河流和溝谷等環(huán)境,對冰緣地貌的研究成果并不多見。遼東山區(qū)冰緣地貌具有特殊的土壤發(fā)育過程,同時,也面臨著水土流失問題;然而,目前有關本區(qū)的研究多涉及生態(tài)服務、生物多樣性和山地小氣候等方面[14-15],缺乏對土壤粒度、侵蝕動力等方面的研究。本文通過對典型冰緣地貌土壤的粒度分析,探究其分布特征及沉積環(huán)境變化規(guī)律,嘗試解釋粒度特征所反應的土壤過程及侵蝕強度,為本區(qū)相關研究提供基礎數(shù)據(jù)資料,也為水土保持及林業(yè)管護等工作提供有益參考。
1研究區(qū)概況
老禿頂子國家級自然保護區(qū)(E 124°41′13″~125°5′15″;N 41°11′11″~41°21′34″)位于遼寧省東部桓仁、新賓兩縣交界處,主峰海拔1 367.3 m,為遼寧最高峰,末次冰期形成了一定規(guī)模的冰緣地貌。區(qū)內基巖以花崗巖為主,變質巖和混合巖均有出露;土壤類型以棕壤、暗棕壤為典型代表,多由花崗巖殘積母質發(fā)育而成;境內氣候類型屬溫帶大陸性季風濕潤氣候,年平均氣溫6.0 ℃,年降雨量651~1 315 mm,平均相對濕度72%,無霜期139 d;地帶性植被為溫性落葉闊葉林,森林覆蓋率達97%,植物多樣性豐富,且垂直帶譜明顯,屬典型的北溫帶中山山地森林生態(tài)系統(tǒng)[16]。
2材料與方法
2.1樣品采集
于2013年6—7月,隨海拔梯度選取48處典型冰緣地貌樣地,囿于上覆土壤沉積厚度普通很薄,無法做剖面取樣,且顆粒無明顯粘連,故各取表層土壤0~20 cm不等,并記錄相應地形、地貌、植被和土壤等樣地特征參數(shù),海拔由1∶5萬DEM(2008)提取、經緯度由易測寶T2 GIS采集器測定,詳見表1。
表1 調查樣地基本情況
表1(續(xù))
2.2實驗方法
粒度測試使用美國貝克曼LS13 320激光衍射粒度分析儀(量程0.04~2 000 μm)。土樣經自然風干、碾碎和去渣,過2 mm篩,電子秤(精度0.1 mg)稱取樣品0.1~0.3 g,倒入燒杯,注入20 mL體積分數(shù)為30%的H2O2溶液,靜置48 h(若有氣泡,則繼續(xù)添加,確保充分去除有機質),注入10 mL體積分數(shù)為10%的HCl溶液,攪勻后在電熱板上逐漸加熱煮沸,使其充分反應、冷卻至常溫后,加入蒸餾水30 mL靜置72 h,除去懸浮液,加入5 mL濃度為0.05 mol/L的六偏磷酸鈉(NaPO3)6溶液以備測試之用。測試過程中,各樣品均采用超聲波震蕩30 s。使用日本Rigaku ZSX Primus Ⅱ型X射線熒光光譜儀獲取土樣化學元素體積分數(shù),并計算化學蝕變指數(shù)CIA。依據(jù)測試數(shù)據(jù),完成土樣的顆粒組成、級配比例、頻率分布類型、粒度參數(shù)特征、沉積動力環(huán)境特征、粒度分形維數(shù)、敏感組分提取等分析。
3結果與分析
3.1粒級級配與頻率分布
土壤顆粒組成包括粉砂級(69.64%)、黏土級(20.74%)和砂級(9.62%)。其中,黏土級顆粒體積分數(shù)介于10.52%~26.85%,粉砂和砂體積分數(shù)各介于56.32%~82.35%、1.40%~30.89%,變幅稍大。對不均勻系數(shù)(Cu)和曲率系數(shù)(Cs)(詳見文獻[18])的計算結果(表2)表明,供試土樣級配良好,粒徑分布范圍廣且分布不均。由三角圖解(圖1)可知,供試樣品以黏土質粉砂為主,其次為粉砂,偶見砂質粉砂。
粒度頻率分布存在3種類型(圖2):單峰(25%,φ值集中在4.98~6.73),均分布在北、東兩坡的石河、石流坡地貌;不對稱雙峰(50%,主峰φ值集中在4.85~6.74,次峰φ值為2~2.5),其中,粉砂級占主體,分布最為廣泛;多峰(25%,包括三峰、四峰,主峰不確定,多在粗粒端),形成于坡度稍緩的山頂附近,且南坡比例高于北坡。緣于向陽坡風化強度更大,植被覆蓋也相對稀疏[19],且坡度較緩(北坡22.4°、南坡11.3°、山頂7.2°),成壤顆粒在外營力搬運下,容易混合多種組分;而單峰(和部分雙峰)均在北坡和東坡,則暗示南北坡土壤沉積組分可能存在差異,或物源提供和沉積動力有所不同。
表2 樣品粒徑不均勻系數(shù)與曲率系數(shù)
圖1 粒度組成三角圖Fig.1 Ternary diagram of the grain composition
圖2 頻率分布曲線Fig.2 Frequency-distribution curves
3.2粒度參數(shù)與環(huán)境判別
應用矩值法計算粒度參數(shù)平均粒徑(Mz)、標準偏差(σI)、偏度(Sk)和峰態(tài)(Kg)[20]。本區(qū)土壤顆粒細致,平均粒徑φ值為6.45(5.41~6.95);標準偏差1.89,分選差;偏度多為正偏,細粒度端形成長尾,反映細顆粒過剩,且分布更分散;峰態(tài)值介于2.41~4.04,多為很窄峰(占83%),少數(shù)極窄峰,都不屬常態(tài)峰。由于偏度和峰態(tài)最能反映沉積動力的微弱變化,由樣本的偏度特征(58%正偏;6%負偏;36%趨于0且均屬混合組分)及頻率分布可知,土壤沉積以雙組分混合為顯著,異常峰態(tài)值則暗示沉積顆粒中,包含早期經歷過良好分選后,進入本區(qū)的沉積組分[20]。
薩胡環(huán)境判別是判斷沉積作用和沉積環(huán)境的有效方法[21-22]。基于粒度參數(shù)逐級判斷:
Y(風成<-2.741 1<海灘)=
Y=-0.831 1(海灘)→Y(海灘<65.365 0<淺海)=
Y=389.856 7(淺海)→Y(河流<-7.419 0<淺海)=
Y=-30.162 6(河流)→Y(濁流<9.843 3<沖積)=
Y=17.625 7(沖積)
結果表明,土壤沉積環(huán)境為河流沖積。粒度參數(shù)特征也恰好契合了沉積分選差、多為雙峰、多正偏、峰態(tài)不正常,且摻有黏土、粉砂等懸移質的河流沉積特征[20]。
3.3粒度分維與敏感組分
分維值可配合傳統(tǒng)粒度參數(shù),共同反映介質動力和土壤沉積特征[23-25]。本區(qū)土壤分維值約為2.28(2.11~2.39),且不同條件下分維值各異(表3)。對比可知,海拔較低、植被覆蓋較好,尤其擁有良好林冠遮蔽的條件,土壤分維值更低,對應水動力也較弱,指示良好植被條件對地表水動力具有抑制作用。
表3 不同地貌、坡向和植被類型下土壤的分維值
對不同顆粒與分維值的線性擬合結果(圖3)表明:黏土組分比例越大,分維值越大;粉砂比例越大分維值則越??;砂粒比例越大,分維值則隨之增大(含礫石)。此緣于粉砂顆粒易于搬運,黏土和細粉砂與更粗顆粒同步沉積時,會因粘連效應很難再呈懸移狀態(tài)進行搬運,即使能夠再次啟動,所需的勢能也更大,而砂粒或礫石因自身重力更大,對搬運介質動能要求也更高。結合級配比例,粉砂組分近于70%,指示地表水動力不強。
圖3 不同顆粒類型與分維值Fig.3 Relationship between different types of grain-size and fractal dimension values
圖4 粒級-標準偏差曲線Fig.4 Standard deviation curve of different particle size fraction
敏感組分的表達基于粒度參數(shù),能夠反映不同粒級所對應的介質動力或沉積環(huán)境變化大小[26]。根據(jù)不同地貌和植被覆蓋提取到3組環(huán)境敏感粒度組分(圖4):組分Ⅰ(4.66~27.39 μm)最為敏感;組分Ⅱ(30.07~57.77 μm)對應粉砂-細砂混合組分,敏感度較低;組分Ⅲ(110.98~176.93 μm)顆粒稍粗,對應細砂。粒度細(<100 μm)、分選差的組分Ⅰ,更傾向于懸浮搬運,指示水流速度慢、擾動?。涣6壬源蟮慕M分Ⅲ(>100 μm),則更傾向于躍移搬運,指示水動力稍強[22]。植被覆蓋更好的條件下,組分Ⅱ、Ⅲ也表現(xiàn)出較高的敏感度,表明此時該植被條件能夠影響水流動能,相反,植被覆蓋較差則對水動力敏感度低,對水流動能的消耗很小,暗示地表植被覆蓋越好,越能減緩水流速度,從而降低流水侵蝕能力。
4討論
末次冰期白頭山冰川發(fā)育(距今70 ka),東北大部分地區(qū)進入冰緣環(huán)境,遼東山地地處冰緣區(qū)邊緣,冰緣地貌廣泛發(fā)育[27]。隨著溫度的顯著降低,風蝕、流水、凍融和坍塌等冰緣作用加劇,淺表巖體崩解分離,風化碎屑遍布坡谷,森林面積顯著萎縮,大量風化物被強勁的外營力搬運至遠處低地,直至冰后期氣溫回升,植被覆蓋漸好,地貌活動趨于穩(wěn)定,土壤沉積才得以保存,此為本區(qū)土壤厚度很薄的原因所在。顆粒細致、多雙峰,且南、北坡存在差異的粒度分布,暗示早期土壤過程經歷過風成沉降。對比遼西地區(qū)自南向北,興城、朝陽和義縣一線,土壤顆粒由粗變細[28-30](φ值分別為2.5、3.56~5.70和4~6),遼東地區(qū)南部七頂山、大蓮泡至北部老禿頂子,也呈現(xiàn)顆粒逐漸變細的特征[31-32](φ值分別為4.55;5.89;6.45)。通過對比南、北兩坡土壤沉積特征參數(shù)(表4),可知南坡土壤顆粒稍粗,分選稍差,風化程度更高(CIA[33]=68.02),黏土質沉積物成熟度也稍高(Al2O3/Na2O=5.82)。指示在大尺度上,存在由西向東、由低緯向高緯的風力搬運。晚冰期極盛期(距今約18 ka),曾發(fā)生大范圍海退,海平面下降約140 m,古海岸線向外退出500~600 km[34],整個渤海出露成陸,海灘砂受蝕嚴重,砂粒在強勁的冰緣季風吹揚下輸入本區(qū),并沉降在各個山間谷地,后經流水改造搬運至他處。另外,供試樣品的CIA平均值為64.29(36.57~70.44),介于55~70的樣品占93.75%,對照前人成果,本區(qū)成土母質應屬于黃土和更新世冰川黏土[35],故推測早期土壤組分應包括遠源風成沉降(不排除夾雜有內陸黃土的可能)和近源淺表巖石的成熟風化物。
另一方面,粒度特征及分維值、敏感組分,都反映了弱水動力環(huán)境受地表植被覆蓋的影響。結合粒徑與地表狀況的相關分析可知(表5),粒徑大小與風化程度關系密切,說明沉積顆粒仍繼承物源的粒度特征,且受沉積后化學風化活動的影響;灌木密度雖未與其達到顯著相關,但仍保持了較高的負相關性,說明耐冷濕的低矮植被覆蓋良好,粒度趨于細致的可能性更大,對應水動力可能越弱。
表4 不同坡向土壤沉積的特征值
Note:Mz: mean grain size;σI: standard deviation;Sk: skewness;Kp: kurtosis; CIA: chemical index of alteration.
表5 粒徑與地表狀況的關系
注:*P= 0.05 時,顯著相關. Note: * indicates significantly correlated atP= 0.05.
遼東山區(qū)土溫穩(wěn)定、降水豐沛、森林結構比較完整[16,36],其構成的植物群落系統(tǒng)可通過根系改善土壤質地、創(chuàng)造抗沖型土壤結構,依靠木本植物垂直根系的錨固作用、水平根系的支撐作用和草本植物根系的加筋作用以穩(wěn)固土壤。而且,植物體還具備蒸騰排水特性,林冠也具有截流、減速效果,地被物也能夠調節(jié)濕度、削弱濺蝕和抑制徑流等,都極大的降低了流水侵蝕強度。本區(qū)土壤的粒度特征,反映流水侵蝕并不顯著,有利于土壤累積及植物群落的演替。
5結論
1)土壤顆粒組分包括粉砂(69.64%)、黏土(20.74%)和砂(9.62%)。不均勻系數(shù)和曲率系數(shù)表明,粒級級配良好且跨度大、分布不均。依據(jù)海洋地質調查規(guī)范中的分類命名原則,本區(qū)土壤以黏土質粉砂為主,粉砂其次,偶見砂質粉砂。粒度頻率分布表現(xiàn)為單峰、雙峰(居多)和多峰。
2)應用矩值法求得粒度參數(shù):平均粒徑φ值為6.45,標準偏差為1.89,偏度多為正偏,峰態(tài)以很窄峰為主,反映沉積顆粒整體細致、分選差、細粒過剩、沉積組分主要為雙組分混合?;谒昧6葏?shù)完成薩胡環(huán)境判別,并提取環(huán)境敏感組分,結果顯示沉積環(huán)境屬河流沖積,敏感粒度組分3類:4.66~27.39 μm(最敏感)、30.07~57.77 μm、110.98 ~176.93 μm。
3)供試樣品分維值介于2.11~2.39(平均值2.28),結合級配比例共同指示水動力不強。不同植被條件下,分維值與敏感粒度組分同樣反映了地表植被覆蓋狀況越好,對流水侵蝕能力的消耗和抑制越顯著。
6參考文獻
[1]董智, 王麗琴, 楊文斌, 等. 額濟納盆地戈壁沉積物粒度特征分析[J]. 中國水土保持科學, 2013, 11(1):32.
Dong Zhi, Wang Liqin, Yang Wenbin, et al. Grain size characteristics of gobi sediment in Ejina Basin [J]. Science of Soil and Water Conservation, 2013, 11(1):32. (in Chinese)
[2]吳煜禾, 張洪江, 程金花, 等. 重慶四面山不同林地土壤顆粒特征及其與土壤侵蝕的關系[J]. 水土保持學報, 2011, 25(5):219.
Wu Yuhe, Zhang Hongjiang, Cheng Jinhua, et al. Soil particles characteristics and the relationship between soil particles and soil erosion in different forestlands in Simian mountains, Chongqing [J]. Journal of soil and water conservation, 2011, 25(5):219. (in Chinese)
[3]莊家堯, 張金池, 林杰, 等. 安徽省大別山區(qū)上舍小流域植被根系與土壤抗沖性研究[J]. 中國水土保持科學, 2007, 5(6):15.
Zhuang Jiayao, Zhang Jinchi, Lin Jie, et al. Relationship between plant system root and soil anti-scourability in the Shangshe catchment, Dabie mountains of Anhui province [J]. Science of Soil and Water Conservation, 2007, 5(6):15. (in Chinese)
[4]魏翔, 李占斌. 土壤侵蝕對生態(tài)系統(tǒng)的影響[J]. 水土保持研究, 2006, 13(1):245.
Wei Xiang, Li Zhanbin. The effect of soil erosion on the ecosystem [J]. Research of Soil and Water Conservation, 2006, 13(1):245. (in Chinese)
[5]閆玉春, 唐海萍, 張新時, 等. 基于土壤粒度分析的草原風蝕特征探討[J]. 中國沙漠, 2010, 30(6):1263.
Yan Yuchun, Tang Haiping, Zhang Xinshi, et al. A probe into grassland wind erosion based on the analysis of soil particle size [J]. Journal of Desert Research, 30(6):1263. (in Chinese)
[6]Poesen J, Lavee H. Rock fragments in top soils: significance and processes. Catena, 1994, 23:1.
[7]李柏, 高甲榮, 胡封兵, 等. 北京王虎溝泥石流堆積物粒度參數(shù)分析[J]. 中國水土保持科學, 2011, 9(4):7.
Li Bai, Gao Jiarong, Hu Fengbin, et al. Granularity parameter of debris flow deposit in Wanghugou gully, Beijing city [J]. Science of Soil and Water Conservation, 2011, 9(4):7. (in Chinese)
[8]湯萃文, 張忠明, 肖篤寧, 等. 祁連山石羊河上游山區(qū)土壤侵蝕的環(huán)境因子特征分析[J]. 冰川凍土, 2012, 34(1):105.
Tang Cuiwen, Zhang Mingzhong, Xiao Duning, et al. Environmental factor characteristics of soil erosion in the upper reaches of Shiyang river in the Qilian Mountains [J]. Journal of Glaciology and Geocryology, 2012, 34(1):105. (in Chinese)
[9]許炯心. 近40年來長江上游干支流懸移質泥沙粒度的變化及其與人類活動的關系[J]. 泥沙研究, 2005(3):8.
Xu Jiongxin. Variation in grain size of suspended load in upper Changjiang river and its tributaries by human activities [J]. Journal of Sediment Research, 2005(3):8. (in Chinese)
[10]孔祥淮, 劉健, 徐剛, 等. 南黃海西部陸架區(qū)SYS-0803孔上部巖心的粒度特征及其環(huán)境意義[J]. 海洋地質與第四紀地質, 2014, 34(5):13.
Kong Xianghuai, Liu Jian, Xu Gang, et al. Grain-size distribution pattern of the sediments in the upper part of core SYS-0803, western south yellow sea and its environmental implications [J]. Marine Geology & Quaternary Geology, 2014, 34(5):13. (in Chinese)
[11]Song X Y, Li Y J, Li H Y, et al. Fractal characteristics of soil particle-size distributions under different landform and land-use types[J]. Journal of Northwest A&F University, 2009, 201/203:2679.
[12]劉淼, 吳媛媛, 楊明義, 等. 次降雨過程中侵蝕泥沙分形維數(shù)的變化特征[J]. 中國水土保持科學, 2015, 13(2):37.
Liu Miao, Wu Yuanyuan, Yang Mingyi, et al. Variation characteristics of fractal dimension of eroded sediment under different rainfall conditions [J]. Science of Soil and Water Conservation, 2015, 13(2):37. (in Chinese)
[13]Su Y Z, Zhao H L, Zhao W Z, et al. Fractal features of soil particle size distribution and the implication for indicating desertification [J]. Geoderma, 2004, 122(1):43.
[14]郭文體, 陳麗華, 周娟, 等. 老禿頂子保護區(qū)水源林主要喬木樹種種間關系[J]. 水土保持通報, 2014, 34(1):79.
Guo Wenti, Chen Lihua, Zhou Juan, et al. Interspecific relationships among main tree species of water conserving forest in Laotudingzi Natural Reserve [J]. Bulletin of Soil and Water Conservation, 2014, 34(1):79. (in Chinese)
[15]李樂, 劉鶴, 萬冬梅, 等. 遼寧老禿頂子保護區(qū)野豬冬季覓食地生境選擇[J]. 生態(tài)學雜志, 2010, 29(12):2408.
Li Le, Liu He, Wan Dongmei, et al. Foraging habitat selection of wild boar in Laotudingzi natural reserve of Liaoning province in winter [J]. Chinese Journal of Ecology, 2010, 29(12):2408. (in Chinese)
[16]張華, 劉劍剛, 伏捷, 等. 遼東山地老禿頂子冰緣地貌植物群落類型及基本特征[J]. 冰川凍土, 2015, 37(2):500.
Zhang Hua, Liu Jiangang, Fu Jie, et al. Plant community types and basic characteristics in the periglacial areas of the Mt. Laotudingzi, eastern Liaoning mountainous regions [J]. Journal of Glaciology and Geocryology, 2015, 37(2):500. (in Chinese)
[17]劉劍剛, 張華, 伏捷, 等. 遼東山地老禿頂子冰緣地貌特征及其環(huán)境意義[J]. 冰川凍土, 2014, 36(6):1420.
Liu Jiangang, Zhang Hua, Fu Jie, et al. Periglacial landforms in the Mt. Laotudingzi of eastern Liaoning province: characteristics and environmental significance [J]. Journal of Glaciology and Geocryology, 2014, 36(6):1420. (in Chinese)
[18]劉霞, 王麗, 張光燦, 等. 魯中石質山地不同林分類型土壤結構特征[J]. 水土保持學報, 2005, 19(6):49.
Liu Xia, Wang Li, Zhang Guangcan, et al. Structural property of Soil from different forest types on rocky mountainous area in middle of Shandong province [J]. Journal of soil and water conservation, 2005, 19(6):49. (in Chinese)
[19]莫彬彬, 連賓. 長石風化作用及影響因素分析[J]. 地學前緣, 2010, 17(3):281.
Mo Binbin, Lian Bin. Study on feldspar weathering and analysis of relevant impact factors [J]. Earth Science Frontiers (China University of Geosciences, Beijing), 2010, 17(3):281. (in Chinese)
[20]Friedman G M, Sanders J E. 沉積學原理[M]. 徐懷大, 陸偉文,譯. 北京: 科學出版社,1987:85-87.
Friedman G M, Sanders J E. Principle of Sedimentology [M]. Xu Huaida, Lu Weiwen, translated. Beijing: Science Press, 1987:85-87. (in Chinese)
[21]劉寶珺. 沉積巖石學[M]. 北京: 地質出版社, 1980:313-315.
Liu Baojun. Sedimentary Petrology [M]. Beijing: Geological Publishing House, 1980:313-315. (in Chinese)
[22]成都地質學院陜北隊. 沉積巖(物)粒度分析與應用[M]. 北京: 地質出版社, 1976:105-107.
Shaanxi north team, chendu geology institute. Grain-size analysis of sedimentary rock and its application [M]. Beijing: Geological Publishing House, 1976:105-107. (in Chinese)
[23]Rehman S, Siddiqi A H. Wavelet based hurst exponent and fractal dimensional analysis of Saudi climatic dynamics [J]. Chaos, Solitons & Fractals, 2009, 40(3):1081.
[24]Carpinteri A, Lacidogna G, Pugno N. Scaling of energy dissipation in crushing and fragmentation: a fractal and statistical analysis based on particle size distribution [J]. International Journal of Fracture, 2004, 129(2):131.
[25]柏春廣, 王建. 一種新的粒度指標:沉積物粒度分維值及其環(huán)境意義[J]. 沉積學報, 2003, 21(2): 234.
Bai Chunguang, Wang Jian. A new grain-size index: grain-size fractal dimension of sediment and its environmental significance [J]. Acta Sedimentologica Sinica, 2003, 21(2): 234. (in Chinese)
[26]Huang J, Li A C, Wang S M. Sensitive grain-size records of Holocene east Asian summer monsoon in sediments of northern South China Sea slope [J]. Quaternary Research, 2011, 75(3):734.
[27]裘善文. 長白山古冰川、冰緣地貌的研究[J]. 第四紀研究, 1990, 10(2): 137.
Qiu Shanwen. A study on the Plaeo-glacial and periglacial landforms in Changbai mountains [J]. Quaternary Science, 1990, 10(2): 137. (in Chinese)
[28]張棟. 遼寧興城龍回頭盆地海房溝組地層序列及沉積環(huán)境研究[J]. 地質與勘探, 2012, 48(2):227.
Zhang Dong. Stratigraphic sequence and sedimentary environment of the Haifanggou formation in the Longhuitou basin of Xingcheng, Liaoning province [J]. Geology and Exploration, 2012, 48(2):227. (in Chinese)
[29]陳輝, 王秋兵, 韓春蘭. 遼寧朝陽鳳凰山古土壤序列粒度特征與古氣候變化[J]. 高校地質學報, 2009, 15(4):563.
Chen Hui, Wang Qiubing, Han Chunlan. Grain-size characteristics and climatic changes of a Paleosol sequence at Fenghuang mountain in Chaoyang, Liaoning province [J]. Geological Journal of China Universities, 2009, 15(4):563. (in Chinese)
[30]張亞楠, 梁俊紅, 李小東, 等. 遼西義縣組尖山溝層沉積環(huán)境粒度分析[J]. 世界地質, 2006, 25(4):373.
Zhang Yanan, Liang Junhong, Li Xiaodong, et al. Grain size analysis of sedimentary environment from Jianshangou bed of Yixian formation in western Liaoning, China [J]. Global Geology, 2006, 25(4):373. (in Chinese)
[31]張威, 李云艷, 李麗. 大連市七頂山黃土粒度特征及其沉積環(huán)境[J]. 資源與產業(yè), 2008, 10(3): 75.
Zhang Wei, Li Yunyan, Li Li. Study on loess granularity and sedimentary environment at Qidingshan in Dalian [J]. Resources & Industries, 2008, 10(3): 75. (in Chinese)
[32]李雪銘. 遼南大蓮泡沉積物的沉積特征及古環(huán)境變化[J]. 沉積學報, 1997, 15(1): 80
Li Xueming. Sedimentary characteristics of the Dalianpao sediment in southern Liaoning and its paleoenvironment changes [J]. Acta Sedimentologica Sinica, 1997, 15(1): 80. (in Chinese)
[33]Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299:715.
[34]王倩, 劉劍剛. 遼南濱海地區(qū)黃土磁化率特征及其古氣候分析[J]. 沈陽師范大學學報(自然科學版),2012, 30(4):552.
Wang Qian, Liu Jiangang. Analysing in magnetic susceptibility features and the paleoenvironment of seashore loess in south Liaonan [J]. Journal of Shenyang University:Natural Science, 2012, 30(4):552. (in Chinese)
[35]馮連君, 儲雪蕾, 張啟銳, 等. 化學蝕變指數(shù)(CIA)及其在新元古代碎屑巖中的應用[J]. 地學前緣, 2003, 10(4):539.
Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (Chemical Index of Alteration) and its application in the neoproterozoic clastic rocks [J]. Earth Science Frontiers (China University of Geosciences, Beijing), 2003, 10(4):539. (in Chinese)
[36]劉劍剛, 李永化, 張威, 等. 遼寧省洪澇災害規(guī)律的初步研究[J]. 干旱區(qū)資源與環(huán)境, 2013, 27(5):114.
Liu Jiangang, Li Yonghua, Zhang Wei, et al. Preliminary research of flood disaster regular pattern in the Liaoning province [J]. Journal of Arid Land Resources and Environment, 2013, 27(5):114. (in Chinese)
(責任編輯:程云郭雪芳)
Grain size characteristics of overlying soil onperiglacial landforms in mountainous region of eastern Liaoning
Liu Jiangang1, Zhang Hua1, Zhu Yan1, Zhu Xiaxia1, He Hong1, Liu Yuguo1, Wang Ying2, Ma Mingjun2
(1.School of Urban and Environmental, Liaoning Normal University, 116029, Dalian, Liaoning, China 2. Administration of Laotudingzi National Nature Reserve, 117218, Huanren, Liaoning, China)
Abstract:[Background] As typical and representative periglacial landforms in the Mt. Laotudingzi in the center of Nature Reserve in eastern Liaoning, the characteristics of the surface ground and the changes in the natural environment are concerned by the geographers. More researches associated with it were done. However, the specific research on the mechanical analysis of soil here has been rarely published. [Methods] In order to fill the blank of the research on this area and provide the reference data for the soil and water conservation specialist or forestry specialist, based on the investigation and fieldwork, the undisturbed soil samples were returned and pretreated, the grain size characteristics of the overlying soil in 48 sample plots were analyzed. [Results] The most of the soil particles were fine (average on about φ value is 6.45), and the soil texture was mainly dominated by clayey silt. Additionally, the soil texture also had other presentation by consisting of silt or sandy silt that was rarely discovered. The soil of the study area was mainly positive skew distribution (about 58%), and the sorting feature of grain size was “Not good” (σI about 1.89), as for leptokurtosis, most of the soil samples were showed by “Very narrow” (83%). The frequency curves of sediment-size distribution of 48 samples presented in 3 forms by test data showing: unimodal (25%), bimodal (50%) and multimodal (25%). The sedimentary environment was categorized as fluvial according to the calculation by Sahu discriminant. Considering the grain-size characteristic parameter, sediment-size frequency distribution and the asymmetrical sedimentary features in southern and northern slope, it was preliminarily inferred that the incipient sediment source should be including the weathered material of local rock fragments formed by frost weathering and the sand long-distance deposit by wind from the area of Yellow Sea and Bohai Sea in late glacial; and the multi-component removed and deposited by periglacial stream during a long process, and settled on the surface ground. The fractal dimension of grain size was between 2.11 to 2.39 and average on about 2.28, taking the ratio of clay and fine silt into consideration, it could be deduced that the water dynamics here was not strong. [Conclusions] And the fractal dimension, together with the environmentally sensitive grain size component, reflected that the better the land surface vegetation covered, the more significant the depletion and suppression of water erosion were. The characteristic of grain size here indicated that the intensity of water erosion was low and vegetation coverage played the vital role in the the water and soil conversation.
Keywords:periglacial landform; soil; grain size; Sahu discriminant; fractal dimension; environmentally sensitive grain size component; Mt. Laotudingzi
收稿日期:2015-05-21修回日期: 2016-01-12
第一作者簡介:劉劍剛(1986—),男,博士研究生。主要研究方向:區(qū)域生態(tài)與環(huán)境。E-mail:ljgemail@126.com ?通信 張華(1965—),女,教授,博士生導師。主要研究方向:植物地理和生態(tài)恢復. E-mail:zhanghua0323@sina.com
中圖分類號:P931.4
文獻標志碼:A
文章編號:1672-3007(2016)01-0036-10
DOI:10.16843/j.sswc.2016.01.005
項目名稱: 國家自然科學基金“遼東山地老禿頂子冰緣地貌植物群落穩(wěn)定性研究”(41271064)