陳 明
(遵義師范學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,貴州 遵義 563002)
?
一個(gè)有限漸近擬非擴(kuò)張映射族的收斂定理*
陳明
(遵義師范學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,貴州 遵義 563002)
摘要:在一致凸的Banach空間中, 研究有限漸近擬非擴(kuò)張映射族的Mann迭代和多步Ishikawa型迭代序列的收斂性, 并對(duì)一些已有的Mann迭代和多步Ishikawa型迭代序列進(jìn)行進(jìn)一步地推廣和統(tǒng)一. 在實(shí)數(shù)空間中, 構(gòu)造一個(gè)非負(fù)實(shí)序列,使得這個(gè)非負(fù)實(shí)序列是收斂的, 從而利用這個(gè)非負(fù)實(shí)序列的收斂性證明該迭代序列在一定條件下強(qiáng)收斂到有限漸近擬非擴(kuò)張映射族的公共不動(dòng)點(diǎn).
關(guān)鍵詞:Banach空間; 漸近非擴(kuò)張映射; 漸近擬非擴(kuò)張映射; Ishikawa型迭代序列
1引言
設(shè)K為Banach空間E的非空閉凸子集, T是 K上的一個(gè)自映射, F(T)為T的不動(dòng)點(diǎn)集, 且F(T)≠?.
定義 1[1]映射T被稱為
在文獻(xiàn)[1-8]中,都在研究眾所周知的Mann迭代[3]xn+1=(1-αn)xn+αnTxn和修改后的Mann迭代[3]xn+1=(1-αn)xn+αnTnxn, n≥1.
文獻(xiàn)[14]研究了多步Ishikawa型迭代序列的收斂性,如式(1)
(1)
(2)
顯然, 當(dāng)式(2)中 qi≡0和 Ti≡ T時(shí), 即可以得到(1). 因此, 由(2)定義的序列 {xn}是文獻(xiàn)[14]中由式(1)定義的序列 {xn}的推廣.
在適當(dāng)?shù)募僭O(shè)下, 本文證明了由(2)定義的序列{xn}強(qiáng)收斂到有限漸近擬非擴(kuò)張映射族的公共不動(dòng)點(diǎn), 其結(jié)果對(duì)一些學(xué)者所研究的Mann迭代和多步 Ishikawa型迭代序列進(jìn)行了統(tǒng)一和推廣[2,9-10,14].
2主要結(jié)果
引理 2[9]設(shè)p>1,r>0是兩個(gè)固定常數(shù),E是Banach空間,則E是一致凸的當(dāng)且僅當(dāng)存在一個(gè)連續(xù)的強(qiáng)增的凸函數(shù)g∶[0, ∞)→ [0, ∞),g(0)=0,使得對(duì)任意的x,y∈Br(0)={x∈E:‖x‖≤r}, 且λ∈[0,1], 有 ‖λx+(1-λ)y‖p≤λ‖x‖p+(1-λ)‖y‖p-ωp(λ)g(‖x-y‖) 成立, 其中ωp(λ)=λ(1-λ)p+(1-λ)λp.
引理 3設(shè) {an}, {tn}和{ln} 3個(gè)非負(fù)實(shí)序列滿足條件
(3)
由式(3)有an+1≤tnan+lnan-q≤tnbn+lnbn≤(tn+ln) bn≤(1+cn)bn, n=q+1, q+2, …, 因此
現(xiàn)設(shè) a>0, 如果序列{an}不收斂于a.由{bn} 的定義知, 對(duì)任意的n∈ N,有an
(4)
(5)
由式(4)可知, 存在n0≥ Nε+2q+1(n0-q>Nε+q+1 ), 使得
(6)
由式(3), 式(5)和式(6)可知
(7)
進(jìn)一步, 由式(7)推出
因此,可以證明
(8)
對(duì)任意的i=1,2,…,m-2, 由式(2)知
(9)
對(duì) i=m-1, 有
(10)
由式(2),式(9)和式(10)可得
(11)
由式(9)和式(10)知, 對(duì)任意的i=1,2,…,m-1, 有
另一方面, 由式(11)知
(12)
當(dāng)i= 1,2, …, m-2時(shí), 有
(13)
當(dāng)i= m-1時(shí), 有
(14)
由式(12)可得
(15)
(16)
當(dāng)i= 1, 2,…, m-2時(shí), 可推出
綜上所述, 當(dāng) i= 1,2,…, m-1, 推出
故
當(dāng) i=1, 2, …, m, 有
(17)
故當(dāng) i= 1,2,…,m時(shí), 有
這表明
因此, {xn}是Cauchy序列. 又因?yàn)镋是完備的, 從而{xn}在E中是收斂的.
若在定理1中取m=1, qi≡0和Tin≡ T, 將得到迭代序列(1)在漸近擬非擴(kuò)張映射下的收斂定理.
參考文獻(xiàn):
[1] Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mappings[J]. Proc. Amer. Math. Soc., 1972, 35: 171-174.
[2] Chidume C E, Shahzad N. Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings[J]. Nonlinear Anal. 2005, 62: 1149-1156.
[3] Chidume C E, Ali B. Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces[J]. J. Math. Anal. Appl., 2007, 330: 377-387.
[4] Sun Z H. Strong convergence of an implicit iteration process for afinite family of asymptotically quasi-nonexpansive mappings[J]. J. Math. Anal. Appl., 2003,286: 351-358.
[5] Schu J. Weak and strong convergence to fixed points of asymptoticallynonexpansive mappings[J]. Bull. Austral. Math. Soc., 1991, 43: 153-159.
[6] Khan A R, Domlo A A. H. Fukhar-ud-din, Commom fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces[J]. J. Math. Anal. Appl., 2008, 341: 1-11.
[7] Hao Y, Wang X, Tong A. Weak and strong convergence theorems for two finite families of asymptotically nonexpansive mappings in Banch spaces[J]. Adv. Fixed Point Theory, 2012, 2(4): 417-432.
[8] Tian Y X. Convergence of ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings[J]. Comput. Math. Appl., 2005, 49: 1905-1912.
[9] Chidume C E, Li J L, Udomene A. Convergence of paths and approximation of fixed points ofasymptotically nonexpansive mappings[J]. Proc. Amer. Math. Soc., 2005, 133: 473-480.
[10]SuantaiS.WeakandstrongconvergencecriteriaofNooriterationsforasymptoticallynonexpansivemappings[J].J.Math.Anal.Appl., 2005, 311: 506-517.
[11]RashwanRA,AlbaqeriDM.Approximatingcommonrandomfixedpointfortwofinitefamiliesofasymptoticallynonexpansiverandommappings[J].J.oftheEgyptianMathematicalSociety, 2014, 22(2): 182-189.
[12]LiuQH.Iterativesequenceforasymptoticallyquasi-nonexpansivemappings[J].J.Math.Anal.Appl., 2001, 259: 1-7.
[13]KirkWA.Krasnoselsklii’siterationprocessinhyperbolicspace[J].Numer.Funct.Anal.Optim., 1982, 4: 371-381.
[14]RhoadesBE,SoltuzSM.TheequivalencebetweenMann-Ishikawaiterationsandmulti-stepiteration[J].NonlinearAnal, 2004, 58: 219-228.
Convergence Theorem for a Finite Family of Asymptotically Nonexpansive Mappings
CHEN Ming
(School of Mathematics and Computational Science, Zunyi Normal College, Zunyi 563002, China)
Abstract:Finite asymptotically nonexpansive Mann iterative and multi-step Ishikawa type iterative sequence of convergentare are investigated in the uniformly convex Banach space, and some Mann iterations and multi-step Ishikawa type iterative sequences are popularized. In the real space, a convergent non-negative real sequence is constructed, and it’s convergent. Under certain conditions, the iterative sequence is proved that it converges strongly to the common fixed point of a finite family of asymptotically nonexpansive mappings.
Key words:Banach space; asymptotically nonexpansive mapping; asymptotically quasi-nonexpansive mapping; Ishikawa type iterative
文章編號(hào):1673-3193(2016)02-0104-05
*收稿日期:2015-08-02
基金項(xiàng)目:貴州省科技廳自然科學(xué)基金(No.LKZS[2011]2117, No.LKZS[2012]11, No.LKZS[2012]12)
作者簡(jiǎn)介:陳明(1961-),男,副教授,主要從事函數(shù)論及概率論方面的研究.
中圖分類號(hào):O173
文獻(xiàn)標(biāo)識(shí)碼:A
doi:10.3969/j.issn.1673-3193.2016.02.002