王超霞 張雅麗 盧江
摘要:【目的】通過預(yù)測(cè)葡萄芪合酶(Stilbene synthase,STS)基因上游調(diào)控序列的順式作用元件及分析不同STS基因上游調(diào)控序列,為進(jìn)一步揭示STS基因在葡萄生長發(fā)育及脅迫應(yīng)答過程中的作用提供理論依據(jù)?!痉椒ā客ㄟ^PlantCARE數(shù)據(jù)庫,在線對(duì)歐洲種葡萄PN40024全基因組里的48條STS基因上游調(diào)控序列及目前已報(bào)道來自其他葡萄品種(圓葉葡萄Noble、華東葡萄白河35-1和歐亞種葡萄無核白、紅地球、赤霞珠等)的8條STS基因啟動(dòng)子序列進(jìn)行順式作用元件分析?!窘Y(jié)果】STS基因上游調(diào)控區(qū)域含有多種順式作用元件,可以分為過程特異元件、誘導(dǎo)子特異元件、結(jié)合位點(diǎn)特異元件、環(huán)境特異元件、植物組織特異元件、調(diào)控特異元件、光響應(yīng)元件及轉(zhuǎn)錄相關(guān)元件八大類,其中與抗病相關(guān)且出現(xiàn)次數(shù)較多的元件有TCA-element、ABRE、ERF、P-box、Box-W1、TC-rich repeats等。STS基因上游調(diào)控序列中含有數(shù)量不同的作用元件,其中歐亞種佳麗釀VvPinSTS26上游調(diào)控序列含有的順式作用元件數(shù)量最多(49個(gè)),而VvPinSTS24上游調(diào)控序列含有的順式作用元件數(shù)量最少(2個(gè))?!窘Y(jié)論】葡萄STS基因家族大部分成員的表達(dá)受水楊酸、脫落酸、赤霉素、乙烯、真菌誘導(dǎo)子等因素影響,從而調(diào)節(jié)白藜蘆醇參與葡萄生物脅迫或非生物脅迫的防御過程。
關(guān)鍵詞: 葡萄;芪合酶;基因;順式作用元件;上游調(diào)控序列
中圖分類號(hào): S663.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-1191(2016)01-0001-06
Analysis on upstream regulatory sequence of grape stilbene synthase gene family
WANG Chao-xia, ZHANG Ya-li, LU Jiang *
(College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China)
Abstract:【Objective】In order to provide theoretical basis for studying effect of stilbene synthase(STS) gene on grape growth and stress-response mechanisms, the present experiment aimed to investigate the cis-acting regulation elements in promoter region of STS genes and upstream regulatory sequences of STS genes from different organisms. 【Method】Based on genome sequence of Vitis vinifera‘PN40024, 48 STS family genes was predicted. In addition, the reported STS genes from 8 grape cultivars viz., Muscadine rotundifolia ‘Noble, Vitis pseudoreticulata ‘Baihe 35-1 and V. vinifera ‘Thompson Seedless, ‘Red Globe and ‘Cabernet Sauvignon were also selected. Then, the cis-acting elements in upstream regulatory sequences of those STS genes were analyzed using PlantCARE database. 【Result】The result showed that, there existed many cis-acting elements in upstream regulatory sequences of STS genes, which could be classified into 8 categories viz., component specific, elicitor specific, binding site specific, condition specific, plant tissues specific, regulation specific, light responsiveness and transcription elements. Of which, some elements such as TCA-element, ABRE, ERF, P-box, Box-W1 and TC-rich repeats were related to grape resistance. Furthermore, there were differences in the number of cis-acting elements in upstream regulatory sequences between these STS genes, as follows: the upstream regulatory sequence of V. vinifera ‘Carinena VvPinSTS26 gene had the most number of cis-acting elements(49), while VvPinSTS24 gene had the fewest number of cis-acting elements(only 2 ones). 【Conclusion】Based on above-mentioned results, it can be inferred that the STS gene expression is affected by ABA, SA, GA, ethylene and fungal elicitor, so that these elicitors play a role in regulating resveratrol synthesis in the grape defense process.
Key words: grape(V. vinifera); tilbene synthase(STS); gene; cis-acting element; upstream regulatory sequence
0 引言
【研究意義】白藜蘆醇化學(xué)名為3,4',5-三羥基-1,2-二苯乙烯(3,4',5-trihydroxystilbene),是含有芪類結(jié)構(gòu)的非黃酮類多酚化合物,也是芪類物質(zhì)單體中最重要的植物抗毒素,廣泛存在于葡萄、虎杖及花生等天然植物中。當(dāng)植物受到生物或非生物脅迫時(shí),白藜蘆醇作為一種植物抗毒素被合成,進(jìn)而增強(qiáng)植物抗性(Tassoni et al.,2005)。芪合酶(Stilbene synthase,STS)是白藜蘆醇合成的關(guān)鍵酶,以丙二酰輔酶A和4-香豆酰輔酶A為底物合成白藜蘆醇的分子骨架,受病原菌和非生物脅迫的誘導(dǎo)表達(dá)(González-Barrio et al.,2006;Chong et al.,2009)。在逆境脅迫應(yīng)答過程中,植物會(huì)將通過多種途徑獲得的感應(yīng)信號(hào)傳送至細(xì)胞核,細(xì)胞核中的轉(zhuǎn)錄因子與抗性相關(guān)基因上游調(diào)控區(qū)域中的順式作用元件發(fā)生相互作用,促使抗性基因得到表達(dá)而實(shí)現(xiàn)自我防御目的。因此,分析STS基因啟動(dòng)子的順式作用元件及其調(diào)控表達(dá),對(duì)揭示白藜蘆醇在葡萄抗逆機(jī)理中的功能作用具有重要意義?!厩叭搜芯窟M(jìn)展】自歐洲葡萄PN40024全基因組完成測(cè)序,預(yù)測(cè)葡萄中STS基因家族有48個(gè)成員,為研究STS基因上游表達(dá)調(diào)控區(qū)域提供了重要的生物信息(Jaillon et al.,2007)。此外,我國野生種華東葡萄(Vitis pseudoreticulata)白河35-1、歐亞種湯姆森無核(Thompson Seedless)與佳麗釀(Vitis vinifera Carignane)的STS基因啟動(dòng)子序列也成功克隆獲得,并進(jìn)行相關(guān)功能研究(Xu et al.,2010a,2010b),發(fā)現(xiàn)我國野生種華東葡萄白河35-1的VpSTS啟動(dòng)子結(jié)構(gòu)明顯不同于歐亞種佳麗釀VvcSTS和湯姆斯無核VvtSTS啟動(dòng)子,序列的同源性僅為53.0%和51.7%,受到病原菌和激素的調(diào)控表達(dá)模式也各不相同。H■ll等(2013)研究發(fā)現(xiàn),R2R3- MYB轉(zhuǎn)錄因子MYB14和MYB15能夠調(diào)節(jié)葡萄STS基因表達(dá),是對(duì)葡萄STS基因上游調(diào)控區(qū)域相關(guān)轉(zhuǎn)錄因子的首次研究。Vannozzi等(2013)研究了歐洲葡萄PN40024在遭受機(jī)械損傷、紫外照射、霜霉菌侵染等脅迫后STS基因家族的表達(dá)情況,發(fā)現(xiàn)紫外照射引起STS基因表達(dá)上調(diào)的數(shù)量最多,其次是霜霉菌侵染,最后是機(jī)械損傷,但這些因素在植物調(diào)節(jié)過程中相互影響。【本研究切入點(diǎn)】目前,有關(guān)STS基因家族的功能研究僅限于某一STS基因的上游調(diào)控序列(啟動(dòng)子)及其功能分析,針對(duì)STS基因家族每個(gè)成員的研究較少。【擬解決的關(guān)鍵問題】從NCBI搜索歐洲葡萄PN40024基因組中預(yù)測(cè)48條STS基因的上游調(diào)控區(qū)域及目前已報(bào)道來自其他葡萄品種的8條STS基因啟動(dòng)子,通過PlantCARE在線預(yù)測(cè)其順式作用元件及分析不同STS基因上游調(diào)控序列,為進(jìn)一步揭示STS基因在葡萄生長發(fā)育及脅迫應(yīng)答過程中的作用提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
歐洲葡萄PN40024的48條STS基因上游調(diào)控序列及目前已報(bào)道來自其他葡萄品種(圓葉葡萄Noble、華東葡萄白河35-1和歐亞種葡萄無核白、紅地球、赤霞珠等)的8條STS基因啟動(dòng)子序列在Grape Genome Browser(http://www.genoscope.cns.fr/externe/Genome Browser/Vitis/)和NCBI數(shù)據(jù)庫(http://www.ncbi.nlm. nih.gov/)中進(jìn)行搜索,其中圓葉葡萄Noble的STS基因啟動(dòng)子序列KP849809和無核白的STS基因啟動(dòng)子序列KP849812由中國農(nóng)業(yè)大學(xué)食品科學(xué)與營養(yǎng)工程學(xué)院盧江教授科研團(tuán)隊(duì)擴(kuò)增獲得。
1. 2 試驗(yàn)方法
將搜索得到的所有STS基因上游調(diào)控序列通過PlantCARE數(shù)據(jù)庫(http://bioinformatics.psb.ugent.be/ webtools/plantcare/html/)進(jìn)行在線預(yù)測(cè)分析。STS基因上游調(diào)控序列信息詳見表1。
2 結(jié)果與分析
2. 1 搜索得到的所有STS基因上游調(diào)控序列信息
由表1可知,從Grape Genome Browser能搜索到PN40024的38條STS基因上游調(diào)控序列長達(dá)1500 bp,而VvSTS2和VvSTS44基因上游調(diào)控序列分別為1233和969 bp,還有5條基因(VvSTS11、VvSTS12、VvSTS13、VvSTS25、VvSTS34)預(yù)測(cè)為不完整基因或假基因,其上游未發(fā)現(xiàn)調(diào)控序列(表1)。此外,還獲得在NCBI數(shù)據(jù)庫已報(bào)道來自其他葡萄品種的8條STS基因啟動(dòng)子序列,其中1條來自圓葉葡萄Noble,1條來自華東葡萄白河35-1,其余6條均來自歐亞種。將獲得的51條STS基因的上游調(diào)控序列提交到PlantCARE數(shù)據(jù)庫,分析發(fā)現(xiàn)其含有大量的順式作用元件,且不同STS基因受各種外界環(huán)境影響而參與了不同的信號(hào)調(diào)控途徑。
2. 2 所有STS基因上游調(diào)控序列中的順式作用元件
在這51條STS基因上游調(diào)控序列中,順式作用元件出現(xiàn)的次數(shù)如圖1所示。出現(xiàn)次數(shù)在100次以上的是胚乳發(fā)育過程中所需要的順式調(diào)控元件Skn-1_motif和光響應(yīng)元件G-box;出現(xiàn)次數(shù)在40~70次的依次是ABA響應(yīng)元件ABRE、生理節(jié)奏調(diào)控元件circadian、真菌誘導(dǎo)子響應(yīng)元件Box-W1、防御和脅迫響應(yīng)元件TC-rich repeats、干旱誘導(dǎo)相關(guān)的MYB結(jié)合位點(diǎn)MBS、光響應(yīng)元件ACE及熱脅迫響應(yīng)元件HSE;出現(xiàn)次數(shù)在20~40次的依次是胚乳表達(dá)相關(guān)的調(diào)控元件GCN4_motif、乙烯響應(yīng)元件ERE、厭氧誘導(dǎo)調(diào)控元件ARE、MeJA響應(yīng)元件CGTCA-motif及高轉(zhuǎn)錄水平相關(guān)的順式元件5'-UTR Py-rich stretch;其他順式作用元件的出現(xiàn)次數(shù)均低于20次,其中3個(gè)赤霉素響應(yīng)元件GARE-motif、P-box和TATC-box分別出現(xiàn)14、15和3次,合計(jì)32次。
2. 3 所有STS基因上游調(diào)控序列順式作用元件的分類
根據(jù)調(diào)控元件功能,可將51條STS基因上游調(diào)控序列中出現(xiàn)的順式作用元件分為八大類(圖2),分別為:過程特異元件(Component specific)、誘導(dǎo)子特異元件(Elicitor specific)、結(jié)合位點(diǎn)特異元件(Binding site specific)、環(huán)境特異元件(Condition specific)、植物組織特異元件(Plant tissues specific)、調(diào)控特異元件(Regulation specific)、光響應(yīng)元件(Light responsiveness)及轉(zhuǎn)錄相關(guān)元件(Transcription)。
過程特異元件(Component specific)主要是參與植物激素信號(hào)調(diào)節(jié)途徑,包括脫落酸、乙烯、茉莉酸甲酯、赤霉素、水楊酸等及機(jī)械損傷的信號(hào)響應(yīng)。從圖2可以看出,除VvPinSTS2、VvPinSTS17、VvPinSTS23和VvPinSTS24上游調(diào)控序列不含過程特異元件外,其余序列中均含有數(shù)量不等的過程特異元件。其中,VvPinSTS1上游調(diào)控序列中過程特異元件數(shù)量最多,包括4個(gè)ABRE(Kim et al.,2004)、4個(gè)TCA、1個(gè)ERE、1個(gè)GARE-motif和1個(gè)WUN-motif等,但不含MeJA和auxin響應(yīng)元件。已報(bào)道的8條STS基因啟動(dòng)子序列含有多個(gè)過程特異元件,如ABRE和CGTCA-motif。VvPinSTS14和VvPinSTS19上游調(diào)控序列僅含有2個(gè)ABRE,且不含其他過程特異元件。
誘導(dǎo)子特異元件(Elicitor specific)主要是對(duì)真菌誘導(dǎo)子響應(yīng)元件Box-W1。針對(duì)PN40024預(yù)測(cè)的43條STS基因上游調(diào)控序列中有16條不含誘導(dǎo)子特異元件(表1)。在VvPinSTS26、VvPinSTS28、VvPinSTS30、VvPinSTS31、VvPinSTS32、VvPinSTS38和目前已報(bào)道的STS基因上游調(diào)控序列中至少含有2個(gè)誘導(dǎo)子特異元件。
結(jié)合位點(diǎn)特異元件(Binding site specific)主要是MYB相關(guān)的結(jié)合位點(diǎn)MBSII和MRE,分別為參與葡萄黃酮類合成基因的調(diào)節(jié)和光照應(yīng)答的MYB結(jié)合位點(diǎn)。VvPinSTS19、VvPinSTS26、VvPinSTS28和VvPinSTS30上游調(diào)控序列中含有MBSII。
環(huán)境特異元件(Condition specific)包含了厭氧、熱激、低溫、干旱、防御和脅迫應(yīng)答相關(guān)的順式作用元件,且數(shù)量較多,表明STS基因參與了各種生物和非生物脅迫過程。VvPinSTS26上游調(diào)控序列中環(huán)境特異元件多達(dá)22個(gè),其中含有17個(gè)TC-rich repeats。其次是VvPinSTS38上游調(diào)控序列含有12個(gè),主要參與了厭氧、熱脅迫、干旱等脅迫響應(yīng)過程。
植物組織特異元件(Plant tissues specific)主要是在胚乳、分生組織和葉片形態(tài)發(fā)育過程中控制基因表達(dá)。除VvPinSTS20和VvPinST37外,其他STS基因上游調(diào)控序列均含有與胚乳發(fā)育相關(guān)的skn-1_motif(Washida et al.,1999),而且已報(bào)道的VvCabSTS、VvCarSTS、VvRedSTS和VvThomSTS(GU269273)上游調(diào)控序列中含有的skn-1_motif多達(dá)8個(gè)以上。但目前關(guān)于STS基因在胚乳發(fā)育過程中的作用尚未明確。
調(diào)控特異元件(Regulation specific)主要是對(duì)玉米蛋白代謝調(diào)控的順式作用元件O2-site,僅在VvPinSTS4、VvPinSTS5、VvPinSTS6、VvPinSTS17、VvPinSTS23、VvPinSTS26、VvPinSTS28、VvPinSTS30、VvPinSTS42和VvPinSTS46上游調(diào)控序列中發(fā)現(xiàn),其中VvPinSTS4上游調(diào)控序列含有4個(gè)。
光響應(yīng)元件(Light responsiveness)主要包括ACE、GT1-motif和G-box,其中G-box總數(shù)量高達(dá)189個(gè)。轉(zhuǎn)錄相關(guān)元件(Transcription)僅有5'-UTR Py-rich stretch(Daraselia et al.,1996),是一個(gè)高轉(zhuǎn)錄水平相關(guān)的順式作用元件。
3 討論
白藜蘆醇能夠受各種因素的誘導(dǎo)合成,如激素、病原菌侵染和紫外光照(Dixon and Paiva,1995;Belhadj et al.,2006,2008;Xu et al.,2010a,2010b;H■ll et al.,2013;Vannozzi et al.,2013),但參與的信號(hào)途徑尚未完全清楚。順式作用元件作為分子轉(zhuǎn)換器,主要應(yīng)對(duì)生物和非生物脅迫引起的應(yīng)答信號(hào),因此分析STS基因上游調(diào)控序列中的順式作用元件對(duì)揭示白藜蘆醇的合成機(jī)理至關(guān)重要。
W-box和TC-rich repeats是與病原菌侵染相關(guān)的應(yīng)答元件。其中,Box-W1是一個(gè)WRKY家族轉(zhuǎn)錄因子重要的結(jié)合位點(diǎn),在植物激素和光照激發(fā)的轉(zhuǎn)錄過程中發(fā)揮重要作用(Rushton et al.,2002;Sawant et al.,2005)。本研究的STS基因上游調(diào)控序列中,超過70%的STS基因上游調(diào)控序列中含有Box-W1,50%的STS基因上游調(diào)控序列中含有TC-rich repeats元件,說明大部分的STS成員在防御病原菌侵染和脅迫過程時(shí)啟動(dòng)表達(dá),促進(jìn)白藜蘆醇合成。
當(dāng)植物處于病原菌侵染時(shí),從對(duì)病原菌識(shí)別到對(duì)病原菌限制,許多防御相關(guān)基因能夠通過脫落酸、水楊酸、乙烯等途徑誘導(dǎo)表達(dá)(Durrant and Dong,2004;Lorenzo and Solano,2005;van Loon et al.,2006)。ABRE/CE1是脫落酸相關(guān)的重要順式作用元件,在營養(yǎng)組織適應(yīng)非生物脅迫(如干旱、高鹽)、種子成熟和休眠過程中發(fā)揮重要作用(Shinozaki et al.,2003)。水楊酸是介導(dǎo)病原菌相關(guān)蛋白轉(zhuǎn)錄激活的最重要信號(hào)分子(Dong,1998),通過TCA-element作用元件調(diào)節(jié)相關(guān)抗性基因表達(dá)而提高植物對(duì)病原菌的抗性。AP2/ERF是一個(gè)乙烯響應(yīng)順式作用元件,而乙烯是一個(gè)從種子萌發(fā)到植株衰老過程的內(nèi)源調(diào)節(jié)激素,在不利的非生物和生物脅迫條件下扮演應(yīng)激激素的作用(Bleecker and Kende,2000),能促使啟動(dòng)子具有完全的病原菌誘導(dǎo)性(Riechmann and Ratcliffe,2000)。本研究結(jié)果表明,ABRE/CE1、TCA-element和AP2/ERF等作用元件出現(xiàn)在50%的STS基因上游調(diào)控序列中,說明許多STS基因通過脫落酸、水楊酸、乙烯的調(diào)控,參與植物對(duì)外源病原菌的防御抵抗過程。
光是控制植物各種生命過程的主導(dǎo)因素,如植物的生長發(fā)育及對(duì)外界的生物和非生物脅迫響應(yīng)。光感應(yīng)網(wǎng)絡(luò)與光合系統(tǒng)中氧氣進(jìn)化復(fù)合體對(duì)植物的防御過程有關(guān),但其分子機(jī)制研究剛起步(Mullineaux et al.,2000;Abbink et al.,2002;Genoud et al.,2002)。ACE與MRE組成一個(gè)光調(diào)節(jié)單元,是紫外激活A(yù)tCHS啟動(dòng)子活性的基礎(chǔ)(Hartmann et al.,1998,2005)。植物所吸收的光能量主要用于光合作用代謝及激發(fā)能量,Parage等(2012)研究了歐洲葡萄PN40024預(yù)測(cè)具有完整表達(dá)閱讀框的33個(gè)STS基因,經(jīng)過紫外誘導(dǎo),發(fā)現(xiàn)除了未能檢測(cè)到VvPinSTS37外,其余STS基因均受紫外誘導(dǎo)表達(dá)。本研究中,除VvPinSTS2、VvPinSTS17、VvPinSTS23和VvPinSTS24上游調(diào)控序列外,其余STS基因上游調(diào)控序列中均含有1~12個(gè)不等的光響應(yīng)元件ACE和G-box,說明STS基因通過植物光調(diào)節(jié)系統(tǒng),參與了植物的生長發(fā)育和抗性脅迫。但這些作用元件與復(fù)雜的調(diào)控如何相互影響,其分子機(jī)制尚不清楚,須進(jìn)一步通過體外表達(dá)研究STS基因上游調(diào)控序列的調(diào)控機(jī)制,以揭示作用元件在STS基因表達(dá)調(diào)控過程中的作用。
4 結(jié)論
葡萄STS基因家族大部分成員的表達(dá)受水楊酸、脫落酸、赤霉素、乙烯、真菌誘導(dǎo)子等因素影響,從而調(diào)節(jié)白藜蘆醇參與葡萄生物脅迫或非生物脅迫的防御過程,該結(jié)論為進(jìn)一步闡明STS基因在葡萄抗性機(jī)制研究奠定了基礎(chǔ)。
參考文獻(xiàn):
Abbink T E,Peart J R,Mos T N,Baulcombe D C,Bol J F,Linthorst H J. 2002. Silencing of a gene encoding a protein component of the oxygen evolving complex of photo-system II enhances virus replication in plants[J]. Virology,295(2):307-319.
Belhadj A,Saigne C,Telef N,Cluzet S,Bouscaut J,Corio-Costet M F,Merillon J M. 2006. Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator[J]. Journal of Agricultural and Food Che-
mistry,54(24):9119-9125.
Belhadj A,Telef N,Cluzet S,Bouscaut J,Corio-costet M F,Mérillon J M. 2008. Ethephon elicits protection against Erysiphe necator in grapevine[J]. Journal of Agricultural and Food Chemistry,56(14):5781-5787.
Bleecker A B,Kende H. 2000. Ethylene:a gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology,16:1-18.
Chong J,Poutaraud A,Hugueney P. 2009. Metabolism and roles of stilbenes in plants[J]. Plant Science,177(3):143-155.
Daraselia N D,Tarchevskaya S,Narita J O. 1996. The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements thatdirect high-level expression[J]. Plant Physiology,112(2):727-733.
Dixon R A,Paiva N L. 1995. Stress-induced phenylpropanoidmetabolism[J]. Plant Cell,7(7):1085-1097.
Dong X. 1998. SA,JA,ethylene, and disease resistance in plants[J]. Current Opinion in Plant Biology,1(4):316-323.
Durrant W E,Dong X. 2004. Systemic acquired resistance[J]. Annual Review of Phytopathology,42(4): 185-209.
Genoud T,Buchala A J,Chua N H,Métraux J P. 2002. Phytochrome signaling modulates the SA-perceptive pathway in Arabidopsis[J]. Plant Journal,31(1):87-95.
González-Barrio R,Beltrán D,Cantos E,Gil M I,Espín J C,Tomás-Barberán F A. 2006. Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer,dimer,and trimer induction in var.‘Superior white table grapes[J]. Journal of Agricultural and Food Chemistry,54(12):4222-4228.
Hartmann U,Sagasser M,Mehrtens F,Stracke R,Weisshaar B. 2005. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB,BZIP,and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes[J]. Plant Molecular Biology,57(2):155-171.
Hartmann U,Valentine W J,Christie J M,Hays J,Jenkins G I,Weisshaar B. 1998. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system[J]. Plant Molecular Biology,36(5):741-754.
H■ll J,Vannozzi A,Czemmel S,DOnofrio C,Walker A R,Rausch T,Lucchin M,Boss P K,Dry I B,Bogsa J. 2013. The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera[J]. Plant Cell,25(10):4135-4149.
Jaillon O,Aury J M,Noel B,Jaillon O,Aury J M,Noel B,Policriti A,Clepet C,Casagrande A,Choisne N,Aubourg S,Vitulo N,Jubin C,Vezzi A,Legeai F,Hugueney P,Dasilva C,Horner D,Mica E,Jublot D,Poulain J,Bruyère C,Billault A,Segurens B,Gouyvenoux M,Ugarte E,Cattonaro F,Anthouard V,Vico V,F(xiàn)abbro C D,Alaux M,Gaspero G D,Dumas V,F(xiàn)elice N,Paillard S,Juman I,Moroldo M,Scalabrin S,Canaguier A,Clainche A L,Malacrida G,Durand E,Pesole G,Laucou V,Chatelet P,Merdinoglu D,Delledonne M,Pezzotti M,Lecharny A,Scarpelli C,Artiguenave F,Pè Me,Valle G,Morgante M,Caboche M,Adam-Blondon A F,Weissenbach J,Quétier F,Wincker P. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature,449:463-467.
Kim S,Kang J Y,Cho D I,Park J H,Kim S Y. 2004. ABF2,an ABRE-binding bZIP factor,is an essential component of glucose signaling and its over-expression affects multiple stress tolerance[J]. The Plant Journal,40(1):75-87.
Lorenzo O,Solano R. 2005. Molecular players regulating the jasmonate signaling network[J]. Current Opinion in Plant Biology,8(5):532-540.
Mullineaux P,Ball L,Eacobar C,Karpinska B,Creissen G,Karpinski S. 2000. Are diverse signaling pathways integra-
ted in the regulation of Arabidopsis antioxidant defence gene expression in response to excess excitation energy?[J]. Philosophical Transactions of the Royal Society of London,355:1531-1540.
Parage C,Tavares R,Réty S,Baltenweck-Guyot R,Poutaraud A,Renault L,Heintz D,Lugan R,Marais G A,Aubourg S,Hugueney P. 2012. Structural,functional,and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine[J]. Plant Physiology,160(3):1407-1419.
Riechmann J L,Ratcliffe O J. 2000. A genomic perspective on plant transcription factors[J]. Current Opinion in Plant Biology,3(5):423-434.
Rushton P J,Reinst■dler A,Lipka V,Lippok B,Somssich I E. 2002. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling[J]. The Plant Cell,14(4):749-762.
Sawant S V,Kiran K,Mehrotra R,Chaturvedi C P,Ansari S A,Singh P,Lodhi N,Tuli R. 2005. Avariety of synergistic and antagonistic interactions mediated by cis-acting DNA motifs regulate gene expression in plant cells and modulate stabi-
lity of the transcription complex formed on a basal promoter[J]. Journal of Experimental Botany,56(419):2345-2353.
Shinozaki K,Yamaquchi-Shinozaki Y,Seki M. 2003. Regulatory network of gene expression in the drought and cold stress responses[J]. Current Opinion in Plant Biology,6(5):410-417.
Tassoni A,F(xiàn)ornale S,F(xiàn)ranceschetti M,Musiani F,Micheal AJ,Perry B,Baqni N. 2005. Jasmonates and Na-orthovanadate promote resveratrol production in Vitisvinifera L. cv. Barbera cell cultures[J]. The New Phytologist,166(3):895-905.
van Loon L C,Geraats B P,Linthorst H J. 2006. Ethylene as a modulator of disease resistance inplants[J]. Trends in Plant Science,11(4):184-191.
Vannozzi A, Dry I B, Fasoli M,Zenoni S, Lucchin M. 2012. Genome-wide analysis of the grapevine stilbene synthase multigenic family:genomic organization and expression profiles upon biotic and abiotic stresses[J]. BMC Plant Biology,12:130.
Washida H,Wu C Y,Suzuki A,Yamanouchi U,Akihama T,Harada K,Takaiwa F. 1999. Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1[J]. Plant Molecular Biology,40(1):1-12.
Xu W,Yu Y,Ding J,Hua Z,Wang Y. 2010a. Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata[J]. Planta,231(2):475-487.
Xu W,Yu Y,Zhou Q,Ding J,Dai L,Xie X,Xu Y,Zhang C,Wang Y. 2010b. Expression pattern,genomic structure,and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata[J]. Journal of Experimental Botany,62(8):2745-2761.
(責(zé)任編輯 蘭宗寶)