趙穎 許盛之 張曉丹 劉伯飛 王利
摘 要:介紹高絨度 MOCVD-ZnO:B 透明導(dǎo)電薄膜用作非晶硅太陽電池前電極、非晶硅太陽電池BZO/p-a-SiC:H接觸特性改善、非晶硅界面緩沖層對非晶硅鍺電池性能的影響以及非晶硅鍺電池性能的調(diào)控等方面的研究內(nèi)容及結(jié)果。 首先我們將自行研制的具有優(yōu)異陷光效果的摻硼氧化鋅 BZO 用作 p-i-n 型非 晶硅太陽電池的前電極,并且將傳統(tǒng)商業(yè)用 U 型摻氟二氧化錫 FTO 作為對 比電極。結(jié)果表明相對 FTO 電池,盡管 BZO 電池的電流優(yōu)勢明顯,但當(dāng)本征 層厚度較薄時其 Voc 和 FF 卻較差。原因是相對于表面較為平滑的 FTO,BZO 表面呈大類金字塔的絨面結(jié)構(gòu)會在本征層生長過程中觸發(fā)陰影效應(yīng),形成大量的高缺陷材料區(qū)和漏電溝道,進(jìn)而惡化電池的Voc和FF。在不修飾 BZO 表面形貌的情況下,通過調(diào)節(jié)非晶硅本征層的沉積溫度來消弱 BZO 高 絨度表面引起的這種不利影響,改善后的電池 Voc 和 FF均有提升。在僅有 Al背電極的情況下,當(dāng)本征層厚度為 200nm 時,BZO 前電極非晶硅太陽電池效率達(dá) 7.34%。 其次,我們采用重?fù)诫s的p型微晶硅來改善前電極摻硼氧化鋅(ZnO:B)和窗口層p型非晶硅碳(p-a-SiC)之間的非歐姆接觸特性。通過優(yōu)化插入層p型微晶硅的沉積參數(shù)(氫稀釋比H2/SiH4、硼摻雜比B2H6/SiH4)獲得了較薄厚度下(20nm)暗電導(dǎo)率高達(dá)4.2S/cm的p型微晶硅材料。在本征層厚度約為150nm,僅采用Al背反射電極的情況下,獲得了效率6.37%的非晶硅頂電池,開路電壓Voc和填充因子FF均較無插入層的電池有大幅提升。 第三,采用射頻等離子體增強(qiáng)化學(xué)氣相沉積(RF-PECVD)技術(shù),進(jìn)行了非晶硅鍺薄膜太陽電池的研究。針對非晶硅鍺薄膜材料的本身特性,通過調(diào)控硅鍺合金中硅鍺的比例,實現(xiàn)了對硅鍺薄膜太陽電池中開路電壓和短路電流密度的分別控制。借助于本征層硅鍺材料帯隙梯度的設(shè)計,獲得了可有效用于多結(jié)疊層電池中的非晶硅鍺電池。 最后,介紹了針對非晶硅鍺電池本征層高鍺含量時界面帶隙失配以及高界面缺陷密度造成電池開路電壓和填充因子下降的問題,通過在P/I界面插入具有合適帶隙的非晶硅緩沖層,不僅有效緩和了帶隙失配,降低界面復(fù)合,同時也通過降低界面缺陷密度,改善內(nèi)建電場分布從而提高了電池的收集效率。進(jìn)一步引入I/N界面緩沖層以及對非晶硅鍺本征層進(jìn)行能帶梯度設(shè)計,在僅采用Al背電極時,單結(jié)非晶硅鍺電池轉(zhuǎn)換效率達(dá)8.72%。 總之,通過以上優(yōu)化措施,最后獲得了效率為14.06%的非晶硅/非晶硅鍺/微晶硅三結(jié)疊層太陽電池。
關(guān)鍵詞:三結(jié)疊層 薄膜 太陽電池 非晶硅 非晶硅鍺 界面緩沖層
Abstract:We report our work and result on (1) MOCVD-ZnO:B front contact with high haze in amorphous silicon thin film solar cells , (2) the contact property between BZO and p-a-SiC in amorphous silicon solar cells , (3) Effect of a-Si:H Interface Buffer Layer on the Performance of Hydrogenated Amorphous Silicon Germanium Thin Film Solar Cell and (4) Modify the Performance of Hydrogenated Amorphous Silicon Germanium Thin Film Solar Cell First, Boron doped zinc oxide (BZO) deposited by metal organic chemical vapor deposition(MOCVD) is used as front contact in amorphous silicon thin film solar cells. When the intrinsic a-Si:H layer thickness is changing, the performance of the solar cells show different evolution trend. In order to eliminate this negative effect, we increase the deposition temperature of intrinsic a-Si:H layer to optimize the open circuit voltage and fill factor. Second, High conductivity p-type microcrystalline silicon film was inserted between front contact (ZnO:B) and windows layer(p-a-SiC) in order to overcome the non-ohmic contact. Without ZnO back reflection, the conversion efficiency of p-i-n type amorphous silicon solar cells is 6.37% and the thickness of intrinsic layer used in this amorphous silicon is only 150nm. Compared with the solar cells without p-type microcrystalline silicon interlayer, the open circuit voltage(Voc) and fill factor(FF) were largely improved. Third, the insertion of a-Si:H buffer layer with proper band gap into P/I interface not only mitigates band gap discontinuities and interface recombination, but also improves the electric field distribution by decreasing the defect densities at P/I interface, thus the collection efficiency of a-SiGe:H solar cell is elevated. By inserting a-Si:H buffer layer into I/N interface and designing band gap profiling along the a-SiGe:H intrinsic layer further, the 8.72% conversion efficiency of single junction a-SiGe:H solar cell is achieved when only Al back reflector is added as back contact. Forth, we studies hydrogenated amorphous silicon germanium thin film solar cells. By means of the structural design of band gap profiling in the amorphous silicon germanium intrinsic layer, hydrogenated amorphous silicon germanium thin film solar cells. As far as the best cell prepared in out lab, the a-Si:H / a-SiGe:H /μc-Si:H was used, and efficiency of 14.06% was got by matching the currents of three cells.
Key word:Three juction;Thin film;solar cell;amorphous silicon;Amorphous Silicon Germanium;interface buffer lyaer
閱讀全文鏈接(需實名注冊):http://www.nstrs.cn/xiangxiBG.aspx?id=50376&flag=1