陳虹宇 李永忠 梁彪
[摘要] 肌松藥在臨床麻醉中應(yīng)用已久,隨之而來的術(shù)后殘余神經(jīng)肌肉阻滯效應(yīng)時(shí)有發(fā)生,嚴(yán)重者危及手術(shù)患者生命,已日益受到麻醉醫(yī)師和學(xué)者重視。本文查閱近年來術(shù)后殘余神經(jīng)肌肉阻滯的相關(guān)著述總結(jié)了殘余肌松的診斷標(biāo)準(zhǔn)、發(fā)生率及相關(guān)影響因素、危害及后果、預(yù)防和處理的研究現(xiàn)狀,為臨床殘余神經(jīng)肌肉阻滯的認(rèn)識(shí)和應(yīng)對(duì)提供一些指導(dǎo)。
[關(guān)鍵詞] 術(shù)后殘余神經(jīng)肌肉阻滯;肌松監(jiān)測(cè);肌松拮抗;Sugammadex
[中圖分類號(hào)] R614 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-9701(2016)06-0160-05
Advances in the postoperative residual neuromuscular blockade
CHEN Hongyu1 LI Yongzhong2 LIANG Biao1
1.Department of Anesthesiology,the Second People's Hospital of Yichang City in Hubei Province,Yichang 443000, China;2.Department of Orthopedics,the Second People's Hospital of Yichang in Hubei Province,Yichang 443000,China
[Abstract] Neuromuscular blocking drugs have been used in clinical anesthesia for a long time, there are some postoperative residual neuromuscular blockade(RNMB) will be followed. The severe RNMB will endanger surgical patient life, on which more emphases have been laid gradually by anesthesiologists and scholars. This article is aimed to provide some guidelines for recognizing and dealing of RNMB, which summarized the advance of the diagnostic critena of RNMB, the incidence arid factors of RNMB, the harm, the consequence, preventing and treating by looking into references in recent years.
[Key words] Postoperative residual neuromuscular blockade; Neuromuscular function monitoring; The antagonism of the neuromuscular blockade; Sugammadex
肌松藥在臨床麻醉中不可或缺,從最初運(yùn)用兼具麻醉和肌松作用的乙醚到去極化肌松藥箭毒和琥珀膽堿用于臨床,非去極化肌松劑的兩大類芐異喹啉類和甾類極大發(fā)展,肌松劑作為麻醉的輔助用藥已走過80余年。滿足麻醉誘導(dǎo)和肌松維持的同時(shí)也帶來了諸多問題,上世紀(jì)中葉就發(fā)現(xiàn)使用肌松藥后圍手術(shù)期死亡率風(fēng)險(xiǎn)增加6倍。作為麻醉不良事件的肌松藥術(shù)后殘余神經(jīng)肌肉阻滯作用(residual neuromuscular block, RNMB,亦稱為殘余肌松作用)逐漸被發(fā)現(xiàn)和受到重視,研究發(fā)現(xiàn)術(shù)后早期死亡率與殘余神經(jīng)肌肉阻滯關(guān)系密切[1]。本文總結(jié)殘余神經(jīng)肌肉阻滯的診斷標(biāo)準(zhǔn)、發(fā)生率、監(jiān)測(cè)、拮抗劑應(yīng)用等方面的研究現(xiàn)狀予以闡述。
1 殘余肌松診斷標(biāo)準(zhǔn)演變
肌松監(jiān)測(cè)技術(shù)的發(fā)展為殘余肌松作用提供了量化指標(biāo),早在1970年尺神經(jīng)四個(gè)成串刺激比值(train of four stimulation ratio,TOFr,T4/T1)就被引入臨床來監(jiān)測(cè)神經(jīng)肌肉功能。當(dāng)TOFr≥0.70時(shí),受試者的肺活量、最大吸氣量和呼氣量均接近正常,此指標(biāo)作為神經(jīng)肌肉恢復(fù)的金標(biāo)準(zhǔn)沿用20余年。TOFr<0.70被認(rèn)為是術(shù)后肺部并發(fā)癥的危險(xiǎn)因素之一,1997年Kopman等[2]推薦將TOFr<0.9作為殘余神經(jīng)肌肉阻滯的判斷標(biāo)準(zhǔn)。TOFr≥0.9是肌松恢復(fù)的標(biāo)準(zhǔn),現(xiàn)已被普遍接受。Suzuki等[3]的研究發(fā)現(xiàn),進(jìn)行肌松監(jiān)測(cè)時(shí),四次成串刺激(train-of-four stimulation,TOF)基線值通常>1.0,通過對(duì)TOF值進(jìn)行基線修正可以更加準(zhǔn)確地評(píng)估術(shù)后肌松殘余。用加速度儀進(jìn)行肌松監(jiān)測(cè)TOFr需要≥1.0才能確保殘余神經(jīng)肌肉阻滯恢復(fù)[4]。最近來自Heier等[5]的對(duì)20例患者的臨床試驗(yàn)發(fā)現(xiàn)只有當(dāng)校正后的TOFr至少達(dá)到0.9才能保證所有肌肉功能全部恢復(fù)。
2 殘余肌松作用的發(fā)生率
報(bào)道的肌松藥的殘余神經(jīng)肌肉阻滯的發(fā)生率差異很大,受肌松藥的種類、研究方法、儀器設(shè)備、評(píng)估標(biāo)準(zhǔn)、受試人群、年齡等多種因素影響。Naguib等[6]總結(jié)了1979~2005年的24項(xiàng)臨床研究發(fā)現(xiàn)使用中時(shí)效非去極化肌松藥病例TOFr<0.7的發(fā)生率為12%,TOFr<0.9的發(fā)生率達(dá)到41%。使用中時(shí)效肌松劑術(shù)后TOFr <0.7的發(fā)生率為11%,而用長(zhǎng)效肌松劑發(fā)生率則為35%。Murphy等[7]總結(jié)2000~2008年15項(xiàng)臨床研究,其中2003年以后的9項(xiàng)以TOFr<0.9為殘余神經(jīng)肌肉阻滯的診斷標(biāo)準(zhǔn),發(fā)現(xiàn)殘余肌松發(fā)生率在3.5%~88%。最近該團(tuán)隊(duì)調(diào)查老年和青年全麻手術(shù)患者各150例發(fā)現(xiàn)術(shù)后殘余神經(jīng)肌肉阻滯發(fā)生率差異顯著,分別達(dá)到57.7%和30.0%[8]。Yu等[9]牽頭開展的一項(xiàng)來自對(duì)國內(nèi)1571名經(jīng)歷腹部手術(shù)患者(67%為腹腔鏡手術(shù))的前瞻多中心臨床調(diào)查研究顯示術(shù)后殘余神經(jīng)肌肉阻滯總的發(fā)生率達(dá)到57.8%。Batistaki等[10]調(diào)查520例麻醉后恢復(fù)室(postanesthesia care unit,PACU)中的手術(shù)患者(>18歲)RNMB發(fā)生率為10.8%。Fortier[11]研究了經(jīng)歷<4 h的開放或腹腔鏡手術(shù)患者的殘余神經(jīng)肌肉阻滯作用,241例拔管后監(jiān)測(cè)發(fā)現(xiàn)RNMB發(fā)生率為63.5%,207例返回PACU后監(jiān)測(cè)發(fā)現(xiàn)RNMB發(fā)生率為56.5%??梢奟NMB發(fā)生率還受監(jiān)測(cè)時(shí)間的影響。中時(shí)效非去極化肌松藥中的芐異喹啉類和甾類均有報(bào)道殘余神經(jīng)肌肉阻滯高于另一類,可見殘余肌松作用發(fā)生率影響因素廣泛,各學(xué)者觀點(diǎn)不一。
3 術(shù)后殘余肌松的危害及后果
殘余肌松可以引起一系列的生理功能紊亂和術(shù)后并發(fā)癥??赡軐?dǎo)致患者在麻醉恢復(fù)期損害咽喉肌的收縮力引起咽反射減弱[12]、吞咽功能障礙[13]、呼吸道梗阻[14,15]、增加反流誤吸風(fēng)險(xiǎn)[16]、低氧血癥[17]和高碳酸血癥、乏力、復(fù)視[18]、甚至死亡[19]。尤其是呼吸相關(guān)肌群的殘余阻滯是引起術(shù)后呼吸功能損害和增加術(shù)后并發(fā)癥的高危因素[20],對(duì)術(shù)后患者的預(yù)后及恢復(fù)時(shí)間影響較大[17]。
殘余神經(jīng)肌肉阻滯導(dǎo)致的肺部并發(fā)癥包括低氧血癥、呼吸音異常、肺炎、呼吸衰竭、支氣管痙攣、肺不張等。Murphy等[17]發(fā)現(xiàn)殘余肌松作用會(huì)引起嚴(yán)重呼吸不良事件發(fā)生,發(fā)生率為0.82%,發(fā)生的病例中TOFr為(0.62±0.2)。有報(bào)道顯示術(shù)畢拔管后發(fā)生殘余神經(jīng)肌肉阻滯的患者在PACU停留時(shí)間明顯長(zhǎng)于未發(fā)生殘余神經(jīng)肌肉阻滯者,恢復(fù)時(shí)間延遲[21]。
4 術(shù)后殘余肌松的預(yù)防和處理
4.1 規(guī)范合理使用肌松藥物
避免使用長(zhǎng)效非去極化肌松藥,其產(chǎn)生殘余神經(jīng)肌肉阻滯的風(fēng)險(xiǎn)是中效肌松藥的3~4倍。盡量不在術(shù)中追加中長(zhǎng)效非去極化肌松藥,還要注意根據(jù)患者的基本情況、藥物代謝動(dòng)力學(xué)特點(diǎn)和藥物相互作用個(gè)體化用藥,選擇合適劑量、給藥方式。選用起效迅速和對(duì)心血管系統(tǒng)影響小的肌松藥,縮短置入喉罩或氣管插管時(shí)間,維護(hù)氣道通暢。用非去極化肌松藥置入喉罩,其劑量為1~2倍95%有效藥物劑量(95% effective dose,ED95)氣管插管劑量為2~3倍ED95。全麻維持期通常間隔30 min追加初量1/5~1/3的中時(shí)效非去極化肌松藥。盡量不聯(lián)合使用肌松藥,根據(jù)手術(shù)要求選擇不同劑量。特殊患者如剖宮產(chǎn)孕婦、危重癥患者、肝腎功能不全患者、新生兒和嬰幼兒應(yīng)調(diào)整肌松藥的選擇和劑量[18]。
4.2 肌松評(píng)估和監(jiān)測(cè)
預(yù)防術(shù)后殘余肌松的發(fā)生除了合理規(guī)范使用肌松藥外還需做好臨床評(píng)估,全麻恢復(fù)期,取得患者配合后通過5 s內(nèi)抬頭、抬腿、握拳、伸舌、搭肩等試驗(yàn)初步評(píng)估。由于此方法主觀性強(qiáng)、可靠性差、不能量化,目前臨床常用肌松監(jiān)測(cè)設(shè)備來客觀準(zhǔn)確地評(píng)估肌松情況,方法主要有肌機(jī)械描記法(mechanomyograph, MMG)、肌電描記法(electromyography,EMG)、壓電神經(jīng)肌肉描記法(piezoelectric EMG,PzEMG)、肌音描記法(phonomyograph,PMG)、肌肉加速度描記法(accelero-myograph,AMG)。肌肉加速度測(cè)量?jī)x是目前臨床最常用的肌松監(jiān)測(cè)儀。常用的刺激模式有單次顫搐刺激(single-twitch stimulation,SS)、強(qiáng)直刺激(tetanic stimulation,TS)、雙短強(qiáng)直刺激(double-burst stimulation,DBS)、強(qiáng)直刺激后記數(shù)(post-titanic count stimulatiom,PTC)及TOF。TOF和DBS主要監(jiān)測(cè)是否存在RNMB[18],目前最常用的是TOF。術(shù)中可靠地監(jiān)測(cè)肌松可以指導(dǎo)單次追加藥物的時(shí)間,提示持續(xù)輸注藥物的劑量調(diào)整,結(jié)合手術(shù)進(jìn)展選擇合適的停藥時(shí)機(jī),減少術(shù)畢肌松殘余。Bailard等[22]回顧性研究發(fā)現(xiàn)術(shù)中定量監(jiān)測(cè)肌松的開展率從1995年的2%逐年提高,到2004年升高至60%,術(shù)后殘余神經(jīng)肌肉阻滯發(fā)生率從62%降至3%。一項(xiàng)155例的臨床研究報(bào)道顯示術(shù)中用AMG進(jìn)行監(jiān)測(cè)肌松組術(shù)后早期肌無力發(fā)生率更低,有更高的恢復(fù)質(zhì)量[15]。Fuchs-Buder等[23]發(fā)現(xiàn)未行TOF監(jiān)測(cè)肌松組術(shù)后肺活量降低、低血氧、呼吸道梗阻的發(fā)生率大大提高。Claudius等[24]在研究使用單個(gè)插管劑量的羅庫溴銨的殘余肌松現(xiàn)象時(shí)發(fā)現(xiàn),拮抗常規(guī)劑量羅庫溴銨的阻滯作用,需要花3.5 h,肌松藥的注射率的顯著的個(gè)體差異使肌松監(jiān)測(cè)成為必要。Locks Gde[19]對(duì)2012年巴西麻醉師肌松藥使用情況的1296份問卷的調(diào)查報(bào)告顯示不到15%的麻醉師常規(guī)使用肌松監(jiān)測(cè)設(shè)備,可見肌松監(jiān)測(cè)在臨床實(shí)踐中普及率還不是很高。另一方面,近年來也有報(bào)道顯示即使使用校準(zhǔn)加速度描記法也不能保證最大可靠度,恢復(fù)估高率達(dá)到15%[25]。因此使用適當(dāng)肌松監(jiān)測(cè)并不意味著仔細(xì)觀測(cè)和術(shù)后促神經(jīng)肌肉功能恢復(fù)的治療是多余的。
4.3 合理使用膽堿酯酶抑制藥新斯的明預(yù)防和治療殘余肌松
當(dāng)神經(jīng)肌接頭的膽堿能受體75%以上被阻滯時(shí)才出現(xiàn)較明顯的肌松作用,TOFr恢復(fù)接近1時(shí)仍有肌松劑結(jié)合著大部分受體,因此臨床肌松拮抗劑的應(yīng)用顯得甚為必要。近幾十年來膽堿酯酶抑制劑被認(rèn)為是唯一藥理學(xué)上能逆轉(zhuǎn)非去極化阻滯的肌松拮抗劑,臨床常用的膽堿酯酶抑制劑是新斯的明。術(shù)中維持深度肌松的患者要更加注意在麻醉恢復(fù)期合理使用肌松拮抗劑。Kopman等[26]研究認(rèn)為拮抗劑應(yīng)在TOF出現(xiàn)2~3次反應(yīng)后使用較為安全有效。Plaud等[27]推薦只有當(dāng)TOF出現(xiàn)4次反應(yīng)新斯的明才應(yīng)該用于逆轉(zhuǎn)殘余肌松阻滯。甾類非去極化肌松藥瑞庫溴銨深度阻滯時(shí),早期使用新斯的明可以加速肌松恢復(fù)過程。雖然有研究指出使用肌松拮抗劑并不減少術(shù)后呼吸系統(tǒng)并發(fā)癥,但Srivastava等[28]綜合了多項(xiàng)研究得出以下結(jié)論:不拮抗比拮抗肌松殘余發(fā)生率更高,不拮抗的自然恢復(fù)并不可靠。但掌握拮抗的時(shí)機(jī)與劑量也非常關(guān)鍵,F(xiàn)uchs-Boder等[29,30]指出在氣體麻醉或靜脈麻醉維持淺神經(jīng)肌肉阻滯水平(TOFr>0.4)時(shí)小劑量新斯的明能快速達(dá)到有效拮抗,20 μg/kg新斯的明10 min恢復(fù),30 μg/kg新斯的明5 min恢復(fù)。而對(duì)于超重和肥胖手術(shù)患者,Joshi等[31]研究發(fā)現(xiàn)按體重給予新斯的明,RNMB的恢復(fù)較正常體重者在TOF 0.7~0.9時(shí)相明顯延遲。新斯的明使用后拔管前應(yīng)仔細(xì)評(píng)估患者的肌松恢復(fù)情況,盡量保持機(jī)械通氣直到肌松藥作用完全消退。
新斯的明通過抑制膽堿酯酶來提高局部乙酰膽堿的濃度,其肌松拮抗作用有封頂效應(yīng),封頂效應(yīng)劑量為70 μg/kg。新斯的明對(duì)于深度的神經(jīng)肌肉阻滯無效,有報(bào)道顯示深度殘余肌松(TOF出現(xiàn)1~3次反應(yīng))時(shí)即使給予70 μg/kg的劑量10 min后75%~100%的受試者仍未達(dá)到有效的逆轉(zhuǎn)[32]。膽堿酯酶抑制藥有毒覃堿樣副作用,用藥中要加強(qiáng)肌松監(jiān)測(cè)。有報(bào)道顯示新斯的明逆轉(zhuǎn)殘余肌松恢復(fù)后可能影響呼吸道完整性和膈肌功能[33]。
4.4 新型肌松拮抗劑Sugammadex的應(yīng)用前景
Sugammadex是一種經(jīng)過修飾的γ-環(huán)糊精,它只能與甾類肌松藥化學(xué)螯合,加速羅庫溴銨、泮庫溴銨、維庫溴銨等甾類肌松藥與N型膽堿受體分離,從而逆轉(zhuǎn)肌松,具有用藥個(gè)體差異小、明顯的劑量依賴性、能夠逆轉(zhuǎn)深度肌松的優(yōu)點(diǎn)。2008 年歐洲麻醉協(xié)會(huì)批準(zhǔn)Sugammadex作為常規(guī)逆轉(zhuǎn)羅庫溴銨或維庫溴銨神經(jīng)肌肉阻滯的藥物,其已在逾 75 個(gè)國家獲得批準(zhǔn)。其推薦用藥劑量是2 mg/kg來治療TOF反應(yīng)至少2次的殘余神經(jīng)肌肉阻滯,對(duì)于強(qiáng)直刺激后記數(shù)達(dá)1~2的深肌松治療劑量應(yīng)達(dá)到4 mg/kg[34]。Blobner 等[35]在98例手術(shù)患者靜脈丙泊酚誘導(dǎo)七氟烷維持麻醉期間給予羅庫溴銨,當(dāng)T2(the second twitch response of the TOF)出現(xiàn)時(shí)分別給予Sugammadex 2 mg/kg 或新斯的明 50 mg/kg。兩組 TOFr 恢復(fù)到 0.9 平均時(shí)間Sugammadex組(1.5 min)顯著短于或新斯的明組(18.6 min),Sugammadex組98%的患者5 min內(nèi)TOFr 恢復(fù)到 0.9顯著高于新斯的明組的11%。Schaller 等[36]發(fā)現(xiàn)羅庫溴銨肌松作用消除到 TOFr=0.5 時(shí),靜脈注射Sugammadex 0.22 mg/kg,僅 2 min TOFr 就恢復(fù)到0.9。而TOFr=0.5 時(shí)靜脈注射新斯的明34 μg/kg,殘余神經(jīng)肌肉阻滯恢復(fù)時(shí)間需要5 min,提示Sugammadex消除羅庫溴銨肌松作用的速度明顯比新斯的明快。Cheong SH等[37]研究發(fā)現(xiàn)聯(lián)合應(yīng)用Sugammadex和新斯的明可以減少RNMB的恢復(fù)時(shí)間并減少Sugammadex的需要量。Badaoui等[38]研究腹腔鏡下縮胃手術(shù)治療肥胖癥用Sugammadex逆轉(zhuǎn)術(shù)后深度RNMB,分別按實(shí)際體重和理想體重計(jì)算的Sugammadex的劑量應(yīng)用,兩組逆轉(zhuǎn)時(shí)間無明顯差異,而按理想體重可以明顯減少Sugammadex的用量,在理想體重劑量上加量35%~50%也不會(huì)增加不良反應(yīng)的發(fā)生率。
Sugammadex快速性、安全性和有效性已被眾多臨床應(yīng)用證實(shí)。然而應(yīng)用32 mg/kg劑量的Sugammadex常會(huì)出現(xiàn)味覺障礙的不良反應(yīng),其他不良反應(yīng)包括惡心、嘔吐、腹瀉、頭痛、咳嗽、口干、感覺異常和失眠等[39]。其引起的過敏反應(yīng)也日漸受到重視。Sugammadex在高劑量[(16~96)mg/kg]應(yīng)用被證實(shí)較常規(guī)劑量出現(xiàn)更多的過敏反應(yīng)[40]。Sugammadex也因過敏反應(yīng)問題及心臟風(fēng)險(xiǎn)三度被FDA否決。其潛在的不良反應(yīng)和對(duì)各器官功能可能的不良影響則需要更多研究證實(shí)。
5 問題及展望
隨著對(duì)麻醉質(zhì)量的要求及控制標(biāo)準(zhǔn)不斷提高,麻醉醫(yī)師對(duì)術(shù)后殘余神經(jīng)肌肉阻滯的認(rèn)識(shí)及重視較十年前有了很大提高,肌松監(jiān)測(cè)技術(shù)在臨床麻醉中應(yīng)用已經(jīng)逐漸增多,其中仍然存在不少問題,比如大多數(shù)麻醉醫(yī)師還是主要靠臨床觀察評(píng)估判斷術(shù)后患者的肌松恢復(fù)情況,肌松監(jiān)測(cè)設(shè)備利用率較低,各種肌松劑的使用、維持及追加還不夠規(guī)范,臨床可用的拮抗劑的種類也比較有限,新型拮抗劑Sugammadex的安全性有待進(jìn)一步驗(yàn)證。殘余神經(jīng)肌肉阻滯是目前臨床麻醉中常見的并發(fā)癥??赡軒韲?yán)重后果,應(yīng)當(dāng)引起所有麻醉醫(yī)師的重視,不斷探索術(shù)后早期消除殘余神經(jīng)肌肉阻滯的方法。合理應(yīng)用肌松劑、定量肌松監(jiān)測(cè)、使用肌松拮抗劑,培養(yǎng)處理殘余神經(jīng)肌肉阻滯的臨床思維可以明顯提高麻醉質(zhì)量,保障手術(shù)患者的安全性。
[參考文獻(xiàn)]
[1] Murphy GS. Residual neuromuscular blockade:Incidence, assessment,and relevance in the postoperative period[J]. Minerva Anestesiol,2006,72(3):97-109.
[2] Kopman AF,Yee PS,Neuman GG. Relationship of the train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers[J]. Anesthesiology,1997,86(4):765.
[3] Suzuki T,F(xiàn)ukano N,Kitajima O,et al. Normalization of acceleromyographic train-of-four ratio by baseline value for detecting residual neuromuscular block[J]. Br J Anaesth,2006,96(1):44-47.
[4] Capron F,Alla F,et al. Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9[J]. Anesthesiology,2004,100(5):1119-1124.
[5] Heier T,F(xiàn)einer JR,Wright PM,et al. Sex-related differences in the relationship between acceleromyographic adductor pollicis train-of-four ratio and clinical manifestations of residual neuromuscular block:A study in healthy volunteers during near steady-state infusion of mivacurium[J]. Br J Anaesth,2012,108(3):444-451.
[6] Naguib M,Kopman AF,Ensor JE. Neuromuscular monitoring and postoperative residual curarisation:A meta-analysis[J]. Br J Anaesth,2007,98(3):302-316.
[7] Murphy GS,Brull SJ. Residual neuromuscular block: Lessons unlearned. Part I:Definitions,incidence,and adverse physiologic effects of residual neuromuscular block[J].Anesth Analg,2010,111(1):120-128.
[8] Murphy GS,Szokol JW,Avram MJ,et al. Residual neuromuscular block in the elderly:Incidence and clinical implications[J]. Anesthesiology,2015,123(6):1322-1336.
[9] Yu B,Luo Y,Ouyang B,et al. Incidence of postoperative residual neuromuscular blockade after general anesthesia:A prospective,multicenter,anesthetist-blind,observational study[J]. Curr Med Res Opin,2016,32(1):1-9.
[10] Batistaki C,Tentes P,Deligiannidi P,et al. Residual neuromuscular blockade in a real life clinical setting. Correlation with sugammadex or neostigmine administration[J].Minerva Anestesiol,2015,22: Epub ahead of print.
[11] Fortier LP,McKeen D,The RECITE Study:A canadian prospective,multicenter study of the incidence and severity of residual neuromuscular blockade[J]. Anesth Analg,2015,121(2):366-372.
[12] Sundman E,Witt H,Olsson R,et al. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans. Pharyngeal videoradiography and simultaneous manometry after atracurium[J]. Anesthesiology,2000,92(4):977-984.
[13] Eikermann M,Groeben H,Hüsing J,et al. Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade[J]. Anesthesiology,2003,98(6):1333-1337.
[14] Eikermann M,Blobner M,Groeben H,et al. Postoperative upper airway obstruction after recovery of the train of four ratio of the adductor pollicis muscle from neuromuscular blockade[J]. Anesth Analg,2006,102(3):937-942.
[15] Murphy GS,Szokol JW,Marymont JH,et al. Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the postanesthesia care unit[J]. Anesthesiology,2008,109(3):389-398.
[16] Eriksson LI,Sundman E,Olsson R,et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans:Simultaneous videomanometry and mechanomyography of awake human volunteers[J].Anesthesiology,1997,87(5):1035-1043.
[17] Murphy GS,Szokol JW,F(xiàn)ranklin M,et al. Postanesthesia care unit recovery times and neuromuscular blocking drugs:A prospective study of orthopedic surgical patients randomized to receive pancuronium or rocuronium[J]. Anesth Analg,2004,98(1):193-200.
[18] 歐陽葆怡,吳新民,莊心良,等. 肌肉松弛藥合理應(yīng)用的專家共識(shí)(2013)[J]. 臨床麻醉學(xué)雜志,2013,29(7):712-715.
[19] Locks Gde F,Cavalcanti IL,Duarte NM,et al. Use of neuromuscular blockers in Brazil[J]. Rev Bras Anestesiol,2015,65(5):319-325.
[20] Grosse-Sundrup M,Henneman JP,Sandberg WS,et al. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications:Prospective propensity score matched cohort study[J]. BMJ,2012,345:e6329.
[21] Butterly A,Bittner EA,George E,et al. Postoperative residual curarization from intermediate-acting neuromuscular blocking agents delays recovery room discharge[J]. Br J Anaesth,2010,105(3):304-309.
[22] Baillard C,Clech C,Catineau J,et al. Postoperative residual neuromuscular block:A survey of management[J].Br J Anaesth,2005,95(5):622-626.
[23] Fuchs-Buder T,Eikermann M. Residual neuromuscular blockades. Clinical consequences, frequency and avoidance strategies[J]. Anaesthesist,2006,55(1):7-16.
[24] Claudius C,Karacan H,Viby-Mogensen J. Prolonged residual paralysis after a single intubating dose of rocuronium[J]. Br J Anaesth,2007,99(4):514-517.
[25] Liang SS,Stewart PA,Phillips S. An ipsilateral comparison of acceleromyography and electromyography during recovery from nondepolarizing neuromuscular block under general anesthesia in humans[J]. Anesth Analg,2013,117(2):373-379.
[26] Kopman AF,Zank LM,Ng J,et al. Antagonism of cisatracurium and rocuronium block at a tactile train-of-four count of 2:Should quantitative assessment of neuromuscular function be mandatory?[J]. Anesth Analg,2004, 98(1):102.
[27] Plaud B,Debaene B,Donati F,et al. Residual paralysis after emergence from anesthesia[J]. Anesthesiology,2010, 112(4):1013-1022.
[28] Srivastava A,Hunter JM. Reversal of neuromuscular block[J]. Br J Anaesth,2009,103(1):115-129.
[29] Fuchs-Buder T,Meistelman C,Alla F,et al. Antagonism of low degrees of atracurium-induced neuromuscular blockade:Dose-effect relationship for neostigmine[J]. Anesthesiology,2010,112(1):34-40.
[30] Fuchs-Buder T,Baumann C,De Guis J,et al. Low-dose neostigmine to antagonise shallow atracurium neuromuscular block during inhalational anaesthesia:A randomised controlled trial[J]. Eur J Anaesthesiol,2013,30(10):594-598.
[31] Joshi SB,Upadhyaya KV,Manjuladevi M. Comparison of neostigmine induced reversal of vecuronium in normal weight,overweight and obese female patients[J]. Indian J Anaesth,2015,59(3):165-170.
[32] Kirkegaard H,Heier T,Caldwell JE. Efficacy of tactile-guided reversal from cisatracurium-induced neuromuscular block[J]. Anesthesiology,2002,96(1):45-50.
[33] Herbstreit F,Zigrahn D,Ochterbeck C,et al. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure[J]. Anesthesiology,2010,113(6):1280-1288.
[34] Rex C,Bergner UA,Puhringer FK. Sugammadex:A selective relaxant-binding agent providing rapid reversal[J]. Curr Opin Anaesthesiol,2010,23(4):461-465.
[35] Blobner M,Eriksson LI,Scholz J,et al. Reversal of rocuronium-induced neuromuscular blockade with sugammadex compared with neostigmine during sevoflurane anaesthesia:Results of a randomised, controlled trial[J]. Eur J Anaesthesiol,2010,27(10):874-881.
[36] Schaller SJ,F(xiàn)ink H,Ulm K,et al. Sugammadex and neostigmine dose-finding study for reversal of shallow residual neuromuscular block[J]. Anesthesiology,2010, 113(5):1054-1060.
[37] Cheong SH,Ki S,Lee J,et al. The combination of sugammadex and neostigmine can reduce the dosage of sugammadex during recovery from the moderate neuromuscular blockade[J]. Korean J Anesthesiol,2015,68(6):547-555.
[38] Badaoui R,Cabaret A,Alami Y,et al. Reversal of neuromuscular blockade by sugammadex in laparoscopic bariatric surgery:In support of dose reduction[J]. Anaesth Crit Care Pain Med,2016,35(1):25-29.
[39] Sorgenfrei IF,Norrild K,Larsen PB,et al. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex:A dose-finding and safety study[J]. Anesthesiology,2006,104(4):667-674.
[40] Yang LP,Keam SJ. Sugammadex:A review of its use in anaesthetic practice[J]. Drugs,2009,69(7):919-942.
(收稿日期:2015-12-24)