国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

導(dǎo)管槳周圍流場(chǎng)的數(shù)值模擬

2016-04-25 06:19時(shí)立攀熊鷹楊勇王波

時(shí)立攀, 熊鷹, 楊勇, 王波

(1. 海軍工程大學(xué) 艦船工程系,湖北 武漢 430033; 2. 海軍駐上海江南造船(集團(tuán))有限公司軍事代表室,上海 201913)

?

導(dǎo)管槳周圍流場(chǎng)的數(shù)值模擬

時(shí)立攀1, 熊鷹1, 楊勇2, 王波1

(1. 海軍工程大學(xué) 艦船工程系,湖北 武漢 430033; 2. 海軍駐上海江南造船(集團(tuán))有限公司軍事代表室,上海 201913)

摘要:采用基于RANS方程的雷諾應(yīng)力模型(EARSM)對(duì)導(dǎo)管槳的敞水性能及周圍流場(chǎng)進(jìn)行了數(shù)值計(jì)算,計(jì)算網(wǎng)格采用全結(jié)構(gòu)化網(wǎng)格,網(wǎng)格的劃分考慮了導(dǎo)管與槳葉間隙的邊界層的影響。在設(shè)計(jì)進(jìn)速下,槳葉敞水性能的誤差小于2%。對(duì)導(dǎo)管槳的周圍流場(chǎng)進(jìn)行了模擬,尤其對(duì)導(dǎo)管槳尾部渦系進(jìn)行了系統(tǒng)研究,計(jì)算結(jié)果與試驗(yàn)結(jié)果吻合較好,說(shuō)明本文提出的方法可以準(zhǔn)確計(jì)算導(dǎo)管槳的螺距角,為導(dǎo)管槳的設(shè)計(jì)及水動(dòng)力性能預(yù)報(bào)提供參考。

關(guān)鍵詞:導(dǎo)管槳;雷諾應(yīng)力模型;敞水性能;湍流模型;水動(dòng)力螺距

導(dǎo)管螺旋槳由外圍環(huán)形導(dǎo)管和螺旋槳組成,導(dǎo)管的存在不僅能夠保護(hù)螺旋槳,而且可以改善螺旋槳進(jìn)流,使得導(dǎo)管槳能在不同的工況下充分的吸收主機(jī)功率,并且在重載條件下?lián)碛休^高的效率[1]。由于導(dǎo)管的存在,導(dǎo)管槳周圍的流場(chǎng)與敞水螺旋槳有很大不同,因此能夠準(zhǔn)確模擬導(dǎo)管槳流場(chǎng)區(qū)域的速度場(chǎng)和壓力場(chǎng)對(duì)導(dǎo)管槳設(shè)計(jì)具有重要意義。

在導(dǎo)管槳水動(dòng)力性能計(jì)算中,勢(shì)流方法應(yīng)用最為廣泛。國(guó)外Kerwin等[2]率先采用了迭代求解法對(duì)導(dǎo)管槳的定常性能進(jìn)行計(jì)算。Kawakita等[3-5]對(duì)計(jì)算方法做了更深入的研究,并通過(guò)試驗(yàn)驗(yàn)證了新計(jì)算模型的可靠性。國(guó)內(nèi)對(duì)導(dǎo)管槳的研究起步較早,王國(guó)強(qiáng)等[6-10]對(duì)導(dǎo)管槳的性能進(jìn)行了系統(tǒng)的研究,不僅建立了導(dǎo)管槳非定常性能計(jì)算的面元法模型,還發(fā)展了導(dǎo)管槳的升力面/面元法耦合設(shè)計(jì)方法。韓寶玉等[11]將導(dǎo)管和螺旋槳耦合在一起求解影響系數(shù),避免了迭代過(guò)程,縮短了計(jì)算時(shí)間。近年來(lái),黃勝等[12-13]對(duì)導(dǎo)管槳的內(nèi)部流場(chǎng)進(jìn)行了數(shù)值模擬研究。蘇玉民[14]通過(guò)不同計(jì)算方法之間的對(duì)比計(jì)算認(rèn)為:直接求解方法的可靠性和計(jì)算效率均較為優(yōu)越。

雖然勢(shì)流的方法在計(jì)算導(dǎo)管槳敞水性能方面取得了較大進(jìn)步,但是由于勢(shì)流理論在流體粘性方面的缺陷,使得上述方法不能對(duì)葉梢與導(dǎo)管之間的復(fù)雜流動(dòng)進(jìn)行模擬。設(shè)計(jì)者[15]為解決上述問(wèn)題提出了粘性與勢(shì)流的混合模型解決上述問(wèn)題。隨著計(jì)算機(jī)的發(fā)展,基于RANS方程的粘性流方法逐漸被應(yīng)用到導(dǎo)管槳水動(dòng)力性能計(jì)算上,Sánchez等[16]采用k-ε湍流模型對(duì)導(dǎo)管槳敞水性能以及速度場(chǎng)進(jìn)行了計(jì)算,結(jié)果表明此計(jì)算方法能較為準(zhǔn)確地計(jì)算導(dǎo)管槳的流場(chǎng)。呂曉軍等[17]采用四種湍流模型對(duì)簡(jiǎn)易導(dǎo)管槳進(jìn)行了計(jì)算,結(jié)果表明k-ω湍流模型的計(jì)算精度及數(shù)值穩(wěn)定性高于k-ε湍流模型,合理的控制網(wǎng)格的細(xì)密度可以獲得滿足工程要求的計(jì)算結(jié)果。

本文擬采用經(jīng)過(guò)修正的雷諾應(yīng)力模型對(duì)導(dǎo)管槳的敞水性能以及槳周圍的速度場(chǎng)進(jìn)行數(shù)值計(jì)算,計(jì)算網(wǎng)格的劃分采用全結(jié)構(gòu)網(wǎng)格以便對(duì)壁面處及導(dǎo)管槳梢部間隙處的網(wǎng)格進(jìn)行控制。

1數(shù)值方法

控制方程為雷諾平均N-S方程,計(jì)算中認(rèn)為流體不可壓縮。對(duì)方程的離散采用有限體積法,離散精度為二階,采取的算法為全隱式多網(wǎng)格耦合算法,湍流模型為經(jīng)過(guò)旋轉(zhuǎn)和曲率修正的顯式代數(shù)雷諾應(yīng)力模型(explicit algebraic Reynolds stress model rotation curvature correction,EARSM-CC)。應(yīng)用旋轉(zhuǎn)坐標(biāo)系(multiple rotating fram,MRF)方法處理計(jì)算域內(nèi)的旋轉(zhuǎn)流體。

1.1湍流模型

實(shí)驗(yàn)表明梢渦系統(tǒng)的高旋度及流線的高曲率造成的近似剛體旋轉(zhuǎn)運(yùn)動(dòng)穩(wěn)定了梢渦內(nèi)流場(chǎng)分布,使梢渦尾流中的湍動(dòng)能迅速衰減。為了捕捉渦的這種穩(wěn)定效應(yīng),湍流模型采用代數(shù)雷諾應(yīng)力模型[18],計(jì)算中考慮了Wallin等提出的旋轉(zhuǎn)和曲率修正方法[19]。

修正方法是在渦張量方程右端添加修正項(xiàng),表達(dá)式如下

(1)

1.2計(jì)算模型及網(wǎng)格劃分

計(jì)算對(duì)象為均勻流中的導(dǎo)管槳模型,模型為Ka系列槳配No.19A導(dǎo)管。為與實(shí)驗(yàn)一致,導(dǎo)管槳模型直徑D=221.35 mm。其螺距比為0.974 1,盤面比為0.626 8,轂徑比為0.188 2,葉梢間隙與導(dǎo)管槳直徑比為0.072。

設(shè)定進(jìn)口與槳盤面距離為4D,出口與槳盤面距離為6D,外圓柱面直徑為8D。采用全六面體網(wǎng)格形式對(duì)螺旋槳計(jì)算域進(jìn)行網(wǎng)格劃分,為準(zhǔn)確模擬螺旋槳葉片邊界層及其附近流場(chǎng)內(nèi)流動(dòng)情況,對(duì)槳葉用O型網(wǎng)格進(jìn)行處理,網(wǎng)格總數(shù)為1 750 000。由于梢渦渦核內(nèi)徑向速度梯度較大,網(wǎng)格生成時(shí)特意對(duì)梢渦渦核區(qū)域的網(wǎng)格進(jìn)行加密,導(dǎo)管槳網(wǎng)格見(jiàn)圖1。

圖1 導(dǎo)管槳網(wǎng)格劃分Fig. 1 The mesh of ducted propeller

1.3邊界條件

在邊界條件設(shè)置上,由于計(jì)算涉及多個(gè)不同的進(jìn)速系數(shù)J=U0/nD(U0為軸向來(lái)流速度),對(duì)應(yīng)的雷諾數(shù):

(2)

式中:C0.7r為0.7半徑處弦長(zhǎng)。設(shè)定進(jìn)口和外圓柱面為速度進(jìn)口,方向?yàn)檠豿軸方向,其大小根據(jù)進(jìn)速系數(shù)進(jìn)行相應(yīng)的調(diào)整。

計(jì)算中入口處的湍流強(qiáng)度為5%,渦粘比為10;出口設(shè)為壓力邊界條件。螺旋槳葉表面為旋轉(zhuǎn)、不可滑移物面邊界條件,旋轉(zhuǎn)速度與試驗(yàn)值相同。

2計(jì)算結(jié)果及分析

2.1導(dǎo)管槳敞水性能計(jì)算及分析

導(dǎo)管槳CFD計(jì)算中,敞水性能的計(jì)算精度是衡量數(shù)值計(jì)算方法精度的第一要素。本文將槳葉推力系數(shù)Ktp、導(dǎo)管推力系數(shù)Ktd、扭矩系數(shù)Kq與試驗(yàn)結(jié)果進(jìn)行了對(duì)比驗(yàn)證:

式中:TP和TD分別為槳葉的推力和導(dǎo)管產(chǎn)生的推力。分別取進(jìn)速系數(shù)0.3、0.4、0.5、0.6和0.7五種工況進(jìn)行計(jì)算。計(jì)算結(jié)果如圖2所示。

圖2 導(dǎo)管槳敞水性能曲線Fig. 2 The open water performance of ducted propeller

從圖2中可以看出在設(shè)計(jì)進(jìn)速J=0.5時(shí),槳葉的推力系數(shù)和扭矩系數(shù)與試驗(yàn)的誤差值均小于2%。在5種計(jì)算工況下,推力系數(shù)與扭矩系數(shù)的計(jì)算值與試驗(yàn)值均吻合的較好,因此此數(shù)值方法可以準(zhǔn)確地預(yù)測(cè)導(dǎo)管槳的敞水性能。

2.2導(dǎo)管槳周圍流場(chǎng)分析

圖3為導(dǎo)管槳壓力分布的計(jì)算值,由來(lái)流方向進(jìn)行觀察,可以看到在槳葉的吸力面上存在著大范圍的低壓區(qū),并且此低壓區(qū)并未像常規(guī)螺旋槳一樣在葉梢處減弱而是擴(kuò)展到導(dǎo)管槳的表面。從導(dǎo)管槳下游方向觀察,槳葉壓力面有大面積的負(fù)壓區(qū),這種現(xiàn)象是由導(dǎo)管槳對(duì)來(lái)流的加速作用所導(dǎo)致的。圖4中的矢量圖分別為導(dǎo)管槳盤面下游x/R=0.65處,進(jìn)速系數(shù)J=0.5時(shí)切向速度與徑向速度的合矢量圖,由圖像分析可知,兩者的形狀吻合較好,尤其是尾渦形狀基本相同。不同點(diǎn)在于數(shù)值計(jì)算圖像中梢渦的強(qiáng)度低于試驗(yàn)值。

為了對(duì)圖4中的結(jié)果進(jìn)行定量分析,在上述的盤面處取不同半徑的軸向與切向速度做平均,計(jì)算不同半徑處的水動(dòng)力螺距與水動(dòng)力螺距角,并與試驗(yàn)值進(jìn)行比較。水動(dòng)力螺距角按下式定義:

圖3 導(dǎo)管槳表面壓力分布Fig. 3 Distribution of pressure difference on the surface of ducted propeller

圖4 導(dǎo)管槳下游切向速度與徑向速度的速度場(chǎng)(J=0.5,x/R=0.65)Fig. 4 Tangential and radial velocity field downstream of the ducted propeller(J=0.5,x/R=0.65)

為了對(duì)導(dǎo)管槳的轂渦進(jìn)行研究,本文計(jì)算了導(dǎo)管槳下游轂渦附近的流場(chǎng)。圖6中所示的剖面為導(dǎo)管槳下游x/R=0.4,1.35,2.26,3.16四個(gè)剖面的切向速度(VA)云圖。從圖中可以看出在徑向上,導(dǎo)管槳的切向速度先變大后變小,渦核中心處的切向速度恒定為零。為了定量研究導(dǎo)管槳的轂渦半徑,本文采用蘭金渦中的方法來(lái)定義渦核半徑。以xy平面與圖6中四個(gè)截面的交線為研究對(duì)象,對(duì)轂渦進(jìn)行研究。如圖7所示。從圖中可以看出隨著轂渦向下游傳播,渦核的切向速度峰值逐漸減小,且峰值逐漸向r/R較大的方向移動(dòng),意味著轂渦半徑在逐漸增大。在x/R=0.4截面處轂渦半徑與槳轂半徑的比值為rhv/rh=0.38,由于缺少試驗(yàn)數(shù)據(jù),轂渦半徑的計(jì)算精度還有待進(jìn)一步研究,但數(shù)值計(jì)算結(jié)果與Kerwin[1]在升力面模型中所提出螺旋槳的轂渦半徑與槳轂半徑比值0.25較為接近。

圖6 J=0.5時(shí),導(dǎo)管槳下游不同截面處切向速度云圖Fig. 6 The velocity field counter downstream of the ducted propeller (J=0.5)

圖7 J=0.5時(shí),導(dǎo)管槳下游不同截面處切向速度徑向分布Fig. 7 Tangential velocity in radial distribution downstream of the ducted propeller(J=0.5)

3結(jié)論

本文應(yīng)用RANS方法計(jì)算了Ka5-6268導(dǎo)管槳的敞水性能,并結(jié)合經(jīng)過(guò)修正的雷諾應(yīng)力模型對(duì)導(dǎo)管槳的尾流場(chǎng)進(jìn)行了研究,得到如下結(jié)論:

1) 本文網(wǎng)格的劃分減少了劃分區(qū)域,將計(jì)算域分為旋轉(zhuǎn)域和靜止域兩部分。敞水性能的計(jì)算表明,在設(shè)計(jì)進(jìn)速下導(dǎo)管槳槳葉的扭矩系數(shù)誤差小于2%。

2) 本文所采用方法可以模擬導(dǎo)管槳的尾渦面,并準(zhǔn)確計(jì)算導(dǎo)管槳的水動(dòng)力螺距角。

3) 對(duì)計(jì)算結(jié)果進(jìn)行分析可知:導(dǎo)管槳轂渦在向下游傳播的過(guò)程中轂渦的半徑逐漸增加,渦核半徑處的切向速度逐漸減小。在x/R=0.4截面渦核半徑與槳轂半徑的比值為0.38。為導(dǎo)管槳的設(shè)計(jì)奠定了基礎(chǔ)。

參考文獻(xiàn):

[1]王國(guó)強(qiáng), 董世湯. 船舶螺旋槳理論與應(yīng)用[M]. 哈爾濱: 哈爾濱工程大學(xué)出版社, 2005.

[2]KERWIN J E, KINNAS S A, LEE J J, et al. A surface panel method for the hydrodynamic analysis of ducted propellers[J]. SNAME transactions, 1987, 95: 93-122.

[3]KAWAKITA C. Hydrodynamic analysis of a ducted propeller in steady flow using a surface panel method[J]. The west-Japan society of naval architects, 1992(84): 11-22.

[4]KAWAKITA C. A surface panel method for ducted propellers with new wake model based on velocity measurements[J]. Journal of the society of naval architects of Japan, 1992, 172: 187-202.

[5]KINNAS S, HSIN C Y, KEENAN D. A potential based panel method for the unsteady flow around open and ducted propellers[C]//Proceedings of the 18th Symposium on Naval Hydrodynamics. Washington, DC: National Academy Press, 1991: 667-685.

[6]楊晨俊, 王國(guó)強(qiáng), 楊建民. 導(dǎo)管螺旋槳定常性能理論計(jì)算[J]. 上海交通大學(xué)學(xué)報(bào), 1997, 31(11): 36-39.

YANG Chenjun, WANG Guoqiang, YANG Jianmin. Theoretical prediction of the steady performance of ducted propellers[J]. Journal of Shanghai jiaotong university, 1997, 31(11): 36-39.

[7]王國(guó)強(qiáng), 張建華. 導(dǎo)管螺旋槳的非定常性能預(yù)估[J]. 船舶力學(xué), 2002, 6(5): 1-8.

WANG Guoqiang, ZHANG Jianhua. Prediction of unsteady performance of ducted propellers[J]. Journal of ship mechanics, 2002, 6(5): 1-8.

[8]王國(guó)強(qiáng), 張建華. 導(dǎo)管螺旋槳的升力面/面元偶合設(shè)計(jì)方法[J]. 船舶力學(xué), 2003, 7(4): 21-27.

WANG Guoqiang, ZHANG Jianhua. A design method of ducted propeller by coupled lifting surface theory/panel method[J]. Journal of ship mechanics, 2003, 7(4): 21-27.

[9]LIU Xiaolong, WANG Guoqiang. A potential based panel method for prediction of steady performance of ducted propeller[J]. Journal of ship mechanics, 2006, 10(3): 26-35.

[10]王國(guó)強(qiáng), 劉小龍. 用基于速度勢(shì)的面元法預(yù)估導(dǎo)管槳的非定常性能[J]. 船舶力學(xué), 2006, 10(1): 36-42.

WANG Guoqiang, LIU Xiaolong. Prediction of unsteady performance of ducted propellers by potential based panel method[J]. Journal of ship mechanics, 2006, 10(1): 36-42.

[11]韓寶玉, 熊鷹, 葉金銘. 面元法預(yù)估導(dǎo)管螺旋槳定常性能的一種簡(jiǎn)便方法[J]. 船海工程, 2007, 36(3): 42-45.

HAN Baoyu, XIONG Ying, YE Jinming. A simple method to predict the steady performance of ducted propeller with surface panel method[J]. Ship & ocean engineering, 2007, 36(3): 42-45.

[12]胡健, 黃勝, 馬騁, 等. 影響導(dǎo)管槳內(nèi)部流場(chǎng)的幾個(gè)因素[J]. 天津大學(xué)學(xué)報(bào), 2009, 42(4): 340-344.

HU Jian, HUANG Sheng, MA Cheng, et al. Several influence factors for the inner flow field of ducted propeller[J]. Journal of Tianjin university, 2009, 42(4): 340-344.

[13]謝學(xué)參, 黃勝, 胡健, 等. 導(dǎo)管槳內(nèi)部流場(chǎng)的數(shù)值計(jì)算[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2009, 30(1): 7-12, 45.

XIE Xueshen, HUANG Sheng, HU Jian, et al. Inner flow field calculations for ducted propellers[J]. Journal of Harbin engineering university, 2009, 30(1): 7-12, 45.

[14]蘇玉民, 劉業(yè)寶, 沈海龍, 等. 基于面元法預(yù)報(bào)導(dǎo)管槳性能的數(shù)值計(jì)算方法[J]. 華中科技大學(xué)學(xué)報(bào):自然科學(xué)版, 2012, 40(8): 57-61.

SU Yumin, LIU Yebao, SHEN Hailong, et al. Surface panel method-based numerical calculation for predicting ducted propeller performances[J]. Journal of huazhong university of science & technology: natural science edition, 2012, 40(8): 57-61.

[15]KERWIN J E, KEENAN D P, BLACK S D, et al. A coupled viscous/potential flow design method for wake-adapted, multi-stage, ducted propulsors using generalized geometry[J]. SNAME transactions, 1994, 102: 23-56: 93-122.

[17]呂曉軍, 周其斗, 紀(jì)剛, 等. 導(dǎo)管螺旋槳敞水性能的預(yù)報(bào)和比較[J]. 海軍工程大學(xué)學(xué)報(bào), 2010, 22(1): 24-30.

LYU Xiaojun, ZHOU Qidou, JI Gang, et al. Prediction and comparison of open water performance of ducted propeller[J]. Journal of naval university of engineering, 2010, 22(1): 24-30.

[18]HELLSTEN A. New advancedk-ωturbulence model for high-lift aerodynamics[J]. AIAA journal, 2005, 43(9):1857-1869.

[19]WALLIN S, IOHANSSON A. A complste explicit algebraic Reynolds stress model for incompressible and compressible flows[J]. Journal of fluid mechanics, 2000,403:89-132.

[20]ZHANG S. CHOUDHURY D. Eigen helicity density: a new vortex identification scheme and its application in accelerated inhomogeneous flows[J]. Physics of fluids, 2006, 18(5):058104(1-4).

[21]熊鷹,韓寶玉,劉志華. 考慮旋轉(zhuǎn)和曲率修正的螺旋槳梢渦流場(chǎng)模擬[J]. 華中科技大學(xué)學(xué)報(bào):自然科學(xué)版,2012,40(2):27-30.

XIONG Ying, HAN Baoyu, LIU Zhihua. Numerical simulation of propeller tip vortex flow with rotation-curvature correction[J]. Journal of Huazhong university of science and technology:natural science edition,2012,40(2):27-30.

Numerical simulation of the flow around a ducted propeller using Reynolds-averaged Navier-Stokes equations

SHI Lipan1, XIONG Ying1, YANG Yong2, WANG Bo1

(1. Dept. of Naval Architecture & Ocean Engineering, Naval University of Engineering, Wuhan 430033, China; 2. Navy in Shanghai Jiangnan Shipyard (Group) Co., Ltd., Shanghai 201913, China)

Abstract:The open water performance and the viscous flow around a marine ducted propeller were simulated by solving the RANS equations with the explicit algebraic Reynolds stress turbulence model(EARSM). In order to solve the problem of the tip clearance of the ducted propeller, a structured grid was generated for the current computational domain. Under the condition of the design advance ratio, the error of the open water performance of the duct was less than 2%. We simulated the viscous flow field around the ducted propeller. In particular, we systematically studied the trailing vortex of the propeller. Computational and experimental results were in good agreement, indicating that this method can be used to accurately compute the pitch of the ducted propeller and provide a reference for the design of such a propeller and for the prediction of the hydrodynamic performance.

Keywords:ducted propeller; explicit algebraic Reynolds stress turbulence model; open-water performance; turbulence model; hydrodynamic pitch

中圖分類號(hào):U661.31

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1006-7043(2016)03-344-05

doi:10.11990/jheu.201411010

作者簡(jiǎn)介:時(shí)立攀(1986-),男,講師,博士;熊鷹(1958-),男,教授,博士生導(dǎo)師.通信作者:熊鷹,E-mail:ying_xiong28@126.com.

基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51179198).

收稿日期:2014-11-03.

網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/23.1390.u.20160111.1456.004.html

網(wǎng)絡(luò)出版日期:2016-01-11.

安泽县| 定远县| 贵州省| 阿尔山市| 颍上县| 福海县| 门源| 德阳市| 襄汾县| 东宁县| 巨野县| 平定县| 鄱阳县| 梅州市| 保靖县| 赤水市| 从江县| 马关县| 罗平县| 阳信县| 建湖县| 达拉特旗| 马边| 郧西县| 嘉荫县| 牟定县| 容城县| 咸丰县| 武功县| 泰和县| 黔江区| 治多县| 富裕县| 开平市| 威宁| 三门峡市| 三原县| 岫岩| 鹤庆县| 海口市| 襄城县|