都俊杰 秦川 鄒發(fā)偉等
摘 要 本文由微分從屬和卷積定義了在單位圓盤U={z∈C:|z|<1}內的三類單葉解析函數(shù)類Pa1,…,aq;b1,…,bs(μ,h,λ),Ta1,…,aq;b1,…,bs(μ,h,α),Ra1,…,aq;b1,…,bs(μ,h,α),并利用從屬性質和凸函數(shù)的理論,研究得到了它們的包含關系.
關鍵詞 從屬;卷積;包含性質;星象函數(shù);凸函數(shù)
中圖分類號 O17451文獻標識碼 A文章編號 10002537(2016)02007705
Inclusion Properties for Subclasses of Analytic Functions
Defined by Differential Subordination and Convolution
DU Junjie1*, QIN Chuan1, ZOU Fawei1, LI Xiaofei2,3
(1.College of Engineering and Technology, Yangtze University, Jingzhou 434020, China;
2.School of Information and Mathematics, Yangtze University, Jingzhou 434020, China;
3.College of Science and Technology, University of Macau, Macau, 519040, China)
Abstract In this article, we define three subclasses of analytic functions Pa1,…,aq;b1,…,bs(μ,h,λ),Ta1,…,aq;b1,…,bs(μ,h,α),Ra1,…,aq;b1,…,bs(μ,h,α) by using of differential subordination and convolution in the open disc U={z∈C:|z|<1}. Inclusion properties of these subclasses are obtained by employing properties of subordination and theories of convex functions.
Key words subordination; convolution; inclusion properties; starlike function; convex function
設A表示單位圓盤U={z∈C:|z|<1}內具有泰勒展開式f(z)=z+∑∞n=2anzn的單葉解析函數(shù)族. f(z),g(z)在U內解析,稱f從屬于g,記作f (x)n=Γ(x+n)Γ(x)=1, (n=0,x∈C\{0}), x(x+1)…(x+n-1),(n∈N,x∈C). 記N表示由單位圓盤U內的單葉解析凸的函數(shù)h(z)組成的正實部函數(shù)類,即滿足Re{h(z)}>0.Ozkan和Altintas[1]定義了下面的函數(shù)類: 參考文獻: [1] OZKAN O, ALTNTAS O. Applications of differential subordination [J]. Appl Math Lett, 2006,19(3):728734. [2] TROJNARSPELINA L. On certain applications of the Hadamard product [J]. Appl Math Comput, 2008, 199(4):653662. [3] ELASHWAH R M, AOUF M K, ABDELTWAB A M. On certain classes of pvalent functions invoving DziokSrivastava operator [J]. Acta Univ Apulensis, 2013,35(2):203210. [4] XU Q H, XIAO H G, SRIVASTAVA H M. Some applications of differential subordination and the DziokSrivastava convolution operator [J]. Appl Math Comput, 2014, 230(3):496508. [5] SEOUDY T M, AOUF M K. Inclusion properties for some subclasses of analytic functions associated with generalized integral operator [J]. J Egypt Math Soc, 2013,21(3):1115. [6] KWON O S, CHO N E. Inclusion properties for certain subclasses of analytic functions associated with the DziokSrivastava operator [J]. J Inequal Appl, 2007,35(4):110. [7] 劉竟成,張學軍. Cn中單位球上Bergman型空間的一種積分算子[J].數(shù)學年刊A輯, 2013,34(3):257268. [8] 李小飛,嚴 證.某類積分算子解析函數(shù)的性質[J].湖南師范大學自然科學學報, 2013,36(4):1115. [9] 田 琳,韓紅偉.算子解析函數(shù)的系數(shù)不等式[J].數(shù)學的實踐與認識, 2014,44(18):239245. [10] 高松云,劉名生.用算子Iδ,λ,lp,α,β定義的多葉解析函數(shù)子類的性質[J].華南師范大學學報:自然科學版, 2013,45(5):1922. [11] MILLER S S, MOCANU P T. Differential subordinations: theory and applications, series on monographs and textbooks in pure and applied mathematics [M]. New York: Marcel Dekker Incorporation, 2000. [12] RUSCHEWEYH S. Convolutions in geometric function theory [M]. Montreal: Les Presses de lUniversite de Montreal, 1982. [13] RUSCHEWEYH S, SHEILSMALL T. Hadamard product of schlicht functions and the polyaschoenberg conjecture [J].Comment Math Helv, 1973,48(4):119135. (編輯 HWJ)