李偉康
(蕪湖市第一中學(xué) 安徽 蕪湖 241000)
?
從“兩個(gè)半徑的大小關(guān)系”入手分析帶電粒子在圓形磁場(chǎng)中的運(yùn)動(dòng)
李偉康
(蕪湖市第一中學(xué)安徽 蕪湖241000)
摘 要:帶電粒子在磁場(chǎng)中的運(yùn)動(dòng)涉及到的物理知識(shí)和方法較多,學(xué)生在運(yùn)動(dòng)情境的再現(xiàn)和幾何關(guān)系的尋找上更是感到非常困難.這其中尤其以圓形磁場(chǎng)中的運(yùn)動(dòng)問題較難,涉及到兩個(gè)圓及圓與邊的復(fù)雜的關(guān)系,對(duì)粒子運(yùn)動(dòng)的約束條件較為隱蔽,此類問題學(xué)生感到無從下手.本文從圓形磁場(chǎng)區(qū)域半徑R和帶電粒子軌跡半徑r的大小關(guān)系入手,詳細(xì)梳理了粒子在圓形磁場(chǎng)區(qū)域中運(yùn)動(dòng)的特點(diǎn),并在解決兩個(gè)難解例題中加以了應(yīng)用.
關(guān)鍵詞:圓形磁場(chǎng)平行匯聚原理射出區(qū)域范圍運(yùn)動(dòng)最長(zhǎng)時(shí)間
1當(dāng)r=R時(shí)
本文中r為帶電粒子軌跡的半徑,R為圓形勻強(qiáng)磁場(chǎng)區(qū)域的半徑.
此種情況,帶電粒子在勻強(qiáng)磁場(chǎng)中的運(yùn)動(dòng)有兩個(gè)互逆的特殊結(jié)論,我們形象地稱之為“發(fā)散平行原理”和“平行匯聚原理”(不計(jì)重力等其他非磁場(chǎng)力作用).
發(fā)散平行原理:當(dāng)一束相同的帶電粒子從磁場(chǎng)邊界上同一點(diǎn)沿不同方向射入磁場(chǎng)區(qū)域,且軌跡半徑等于圓形磁場(chǎng)區(qū)域半徑時(shí),這束粒子將沿同一方向平行射出磁場(chǎng)區(qū)域(如圖1左圖所示).
平行匯聚原理:當(dāng)一束相同的帶電粒子沿同一方向平行射入磁場(chǎng)區(qū)域,且軌跡半徑等于圓形磁場(chǎng)區(qū)域半徑時(shí),這束粒子將從磁場(chǎng)邊界上同一點(diǎn)射出磁場(chǎng)區(qū)域(如圖1右圖所示).
圖1
此處不再證明.
(1)出射點(diǎn)分布范圍
如圖1左圖所示,臨界狀態(tài)為粒子剛好沿磁場(chǎng)邊界做勻速圓周運(yùn)動(dòng),粒子無法射出磁場(chǎng).粒子射出磁場(chǎng)的位置(出射點(diǎn))分布在磁場(chǎng)區(qū)域右邊半個(gè)邊界上,即射出區(qū)域范圍長(zhǎng)度剛好為磁場(chǎng)區(qū)域周長(zhǎng)的一半.
(2)運(yùn)動(dòng)最長(zhǎng)時(shí)間
管理會(huì)計(jì)的工作較為靈活,工作中沒有固定的規(guī)范準(zhǔn)則,為了將管理會(huì)計(jì)所具有的的優(yōu)勢(shì)充分發(fā)揮,就應(yīng)當(dāng)重視審計(jì)監(jiān)督。合同管理是企業(yè)中財(cái)務(wù)管理部分的重中之重,企業(yè)應(yīng)當(dāng)從管理會(huì)計(jì)的角度出發(fā),分析歷史合同中,執(zhí)行環(huán)節(jié)存在的問題和相應(yīng)的責(zé)任主體。并且以過去的財(cái)務(wù)管理體系為基礎(chǔ),對(duì)合同管理模式進(jìn)行調(diào)整。最終構(gòu)建起一套新的財(cái)務(wù)管理體系。
(3)同一出射點(diǎn)對(duì)應(yīng)時(shí)間的唯一性
2當(dāng)r (1)出射點(diǎn)分布范圍 當(dāng)出射點(diǎn)離入射點(diǎn)最遠(yuǎn)時(shí),該兩點(diǎn)的連線(為軌跡圓的弦)最長(zhǎng),最長(zhǎng)只能等于軌跡圓的直徑,如圖2(a)所示.采用“旋轉(zhuǎn)法”分析易知,出射點(diǎn)最近可接近入射點(diǎn),所以粒子出射點(diǎn)的位置分布在磁場(chǎng)邊界PS這段劣弧上. (2)運(yùn)動(dòng)最長(zhǎng)時(shí)間 顯然由于r (3)同一出射點(diǎn)對(duì)應(yīng)時(shí)間的唯一性 由于r 圖2 3當(dāng)r>R時(shí) 采用“旋轉(zhuǎn)法”分析易知,出射點(diǎn)可在磁場(chǎng)邊界上任意位置. (2)運(yùn)動(dòng)最長(zhǎng)時(shí)間 對(duì)軌跡半徑大小確定的粒子,圓心角越大,運(yùn)動(dòng)時(shí)間越長(zhǎng),此時(shí)其軌跡對(duì)應(yīng)的弧長(zhǎng)也越長(zhǎng).由于r>R,所以粒子在磁場(chǎng)區(qū)域中的軌跡一定為一條劣弧,而對(duì)劣弧而言,軌跡弧長(zhǎng)越長(zhǎng),其對(duì)應(yīng)的弦長(zhǎng)也越長(zhǎng),顯然此時(shí)最長(zhǎng)弦長(zhǎng)為磁場(chǎng)區(qū)域的直徑,如圖3所示. 圖3 (3)同一出射點(diǎn)對(duì)應(yīng)時(shí)間的唯一性 由于r>R,所以在磁場(chǎng)區(qū)域中粒子運(yùn)動(dòng)軌跡只能為劣弧.磁場(chǎng)邊界上同一出射點(diǎn)對(duì)應(yīng)唯一的運(yùn)動(dòng)時(shí)間. 圖4 圖5 點(diǎn)評(píng):本題中兩種情況涉及到的粒子初速度方向和軌跡半徑均不具有直觀可比性,學(xué)生甚至畫不出粒子對(duì)應(yīng)的運(yùn)動(dòng)軌跡,感到無從下手.若有本文中前述規(guī)律為基礎(chǔ),本題的分析則顯得較為順利,從而可輕松求解. 【例2】如圖6(a)所示,半徑為R的半圓形區(qū)域內(nèi)分布著垂直紙面向里的勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度為B,半圓的左邊垂直x軸放置一粒子發(fā)射裝置,在-R≤y≤R的區(qū)間內(nèi)各處均沿A軸正方向同時(shí)發(fā)射出一個(gè)帶正電粒子,粒子質(zhì)量均為m,電荷量均為q,初速度均為v,重力及粒子間的相互作用均忽略不計(jì),所有粒子都能到達(dá)y軸,其中最后到達(dá)y軸的粒子比最先到達(dá)y軸的粒子晚Δt時(shí)間,則 圖6 A.粒子到達(dá)y軸的位置一定各不相同 點(diǎn)評(píng):若不知道“在圓形勻強(qiáng)磁場(chǎng)區(qū)域中,當(dāng)粒子軌跡半徑等于磁場(chǎng)區(qū)域半徑時(shí),平行射入的粒子會(huì)匯聚于磁場(chǎng)邊緣一點(diǎn)”,本題的分析是很難展開的. Analysis on the Charged Particles Motion in A Circular Magnetic Field based on The Size of Relationship between The Two Radii Li Weikang (Wuhu No.1 Senior School,Wuhu,Anhui241000) Abstract:Many physical knowledge and methods are covered in the movement of charged particles in a magnetic field. Students may find difficulty handling problems of reproduction and geometric relation of the moving cases above. Especially, the problems related to the moving case of circular magnetic field which cover the complex relationship between two circles and between the circle and side are very difficult. Besides, the constraint conditions on the particle motion are more obscure. In this article, starting from the relationship between the magnitude of circular magnetic field with radius "R" and the trajectory of a charged particle radius "r", the characteristics of the moving particle in a circular magnetic field are analyzed and two difficult examples are solved to further illustrate the application. Key words:circular magnetic field; the principle of parallel convergence; the range of the injection region; the longest time of motion. (收稿日期:2015-07-15)