牛君仿 馮俊霞 路楊,3 陳素英 張喜英**
(1.中國科學(xué)院遺傳與發(fā)育生物學(xué)研究所農(nóng)業(yè)資源研究中心/中國科學(xué)院農(nóng)業(yè)水資源重點實驗室/河北省節(jié)水農(nóng)業(yè)重點實驗室 石家莊 050022;2.石家莊學(xué)院化工學(xué)院 石家莊 050035;3.中國科學(xué)院大學(xué) 北京 100049)
?
咸水安全利用農(nóng)田調(diào)控技術(shù)措施研究進展*
牛君仿1馮俊霞2路楊1,3陳素英1張喜英1**
(1.中國科學(xué)院遺傳與發(fā)育生物學(xué)研究所農(nóng)業(yè)資源研究中心/中國科學(xué)院農(nóng)業(yè)水資源重點實驗室/河北省節(jié)水農(nóng)業(yè)重點實驗室石家莊050022;2.石家莊學(xué)院化工學(xué)院石家莊050035;3.中國科學(xué)院大學(xué)北京100049)
淡水資源短缺已經(jīng)成為全球性的問題,開發(fā)利用地下咸水資源,發(fā)展農(nóng)業(yè)灌溉已成為各國關(guān)注的焦點問題。微咸水或咸水代替部分淡水進行農(nóng)業(yè)灌溉,在一定程度上可緩解淡水資源的不足,但咸水和微咸水灌溉帶來的土壤積鹽和作物減產(chǎn)等問題始終是研究的重點和難點。本文從咸水或微咸水灌溉帶來的潛在土壤鹽漬化危害入手,就如何應(yīng)對咸水和微咸水灌溉帶來的次生鹽漬化問題,通過總結(jié)前人大量的研究成果,分析了減輕土壤鹽漬化對作物危害的各種途徑,從微咸水灌溉和咸水灌溉兩個層面就優(yōu)化農(nóng)田管理農(nóng)藝措施、生物措施、水利工程措施等方面進行概述。重點介紹了咸水或微咸水灌溉對土壤微環(huán)境的影響,優(yōu)化田間管理農(nóng)業(yè)措施(如合理的灌溉制度和灌溉方式、覆蓋、深耕等),土壤中施入有機物質(zhì)(如植物秸稈、有機肥、綠肥、生物質(zhì)炭等)和無機土壤改良劑(如石膏、沸石等)、施用根際促生菌肥、種植鹽土植物和耐鹽作物品種等,以及咸水結(jié)冰灌溉、暗管排鹽等水利工程措施,這些都是降低咸水灌溉帶來的土壤鹽害行之有效的方法。以微咸水或咸水補灌為核心,結(jié)合雨水資源利用,通過種植耐鹽植物品種、增施土壤微生物肥、土壤調(diào)理劑等措施提高土壤緩沖能力,配套壟作和地膜覆蓋等降低土壤蒸發(fā)措施,抑制土壤鹽分表層積聚,配套秸稈還田和土壤耕作技術(shù),提高土壤蓄雨淋鹽和養(yǎng)分快速提升,集成微咸水安全高效灌溉技術(shù)模式,制定規(guī)范化的技術(shù)應(yīng)用規(guī)程,有機地結(jié)合各種改良措施,可有效控制咸水和微咸水灌區(qū)土壤次生鹽漬化,達到咸水資源的高效安全可持續(xù)利用,提升水資源保障能力。
微咸水灌溉咸水灌溉農(nóng)田調(diào)控措施 生物措施 土壤環(huán)境 土壤次生鹽漬化
淡水資源短缺已經(jīng)成為全球性的問題,特別是在干旱和半干旱地區(qū)。合理地開發(fā)利用地下咸水資源發(fā)展農(nóng)業(yè)灌溉已成為各國關(guān)注的焦點問題。很多農(nóng)業(yè)咸水灌溉研究結(jié)果表明,合理利用微咸水不會造成作物減產(chǎn)[1-5]。咸水灌溉是解決淡水資源嚴重缺乏的有效途徑[6]。國內(nèi)外利用咸水與微咸水進行農(nóng)田灌溉已有近百年歷史。我國從20世紀60、70年代就開始進行微咸水利用研究,在寧夏、甘肅、內(nèi)蒙古、山西、河南、河北、山東等省區(qū)不同程度利用微咸水灌溉并獲得高產(chǎn)。
淺層微咸水代替部分淡水進行農(nóng)業(yè)灌溉,在一定程度上可緩解淡水資源的不足,但咸水灌溉帶來的土壤積鹽和作物減產(chǎn)等問題始終是研究的重點和難點。咸水灌溉會增加土壤的次生鹽漬化風(fēng)險[7]。土壤溶液中過量的鹽,主要是鈉鹽,造成多種負面效應(yīng):主要有土壤結(jié)構(gòu)穩(wěn)定性的破壞,土壤水力學(xué)性質(zhì)的惡化,作物產(chǎn)量的下降,微生物生物量和土壤酶活性的降低等[8-10]。不適宜的長期咸水灌溉導(dǎo)致土壤永久退化,破壞土壤生產(chǎn)力,造成嚴重的環(huán)境問題[11-12]。而土壤健康對于農(nóng)業(yè)和環(huán)境的可持續(xù)發(fā)展至關(guān)重要,是作物生產(chǎn)的前提條件[13]。如果不采取任何改良措施,長期咸水灌溉將會導(dǎo)致作物產(chǎn)量顯著下降[11]。因此,當務(wù)之急是研究出行之有效的管理措施以實現(xiàn)咸水灌溉條件下作物的高產(chǎn)和咸水的高效利用,最終達到資源和環(huán)境的協(xié)調(diào)可持續(xù)發(fā)展。關(guān)于如何消減咸水灌溉下土壤鹽害問題,專家們已經(jīng)嘗試了很多方法,并取得了很多成功經(jīng)驗[14]。本文從咸水灌溉帶來的潛在危害入手,就如何應(yīng)對咸水灌溉帶來的次生鹽漬化問題,對咸水灌溉下農(nóng)田調(diào)控技術(shù)措施進行了分析和總結(jié),分別從微咸水灌溉(1~5g·L-1)和咸水灌溉(>5g·L-1)進行分析,希望對未來咸水或微咸水灌溉農(nóng)業(yè)有一些指導(dǎo)意義。
咸水灌溉快速改變了土壤溶液中的 Na+、Ca2+和Cl-的濃度,土壤溶液中鹽濃度取決于灌溉水含鹽量和灌溉循環(huán)中所利用咸水的次數(shù)[11]。長期利用微咸水灌溉提高了土壤 pH和交換性鈉百分率(ESP),破壞了土壤物理結(jié)構(gòu),導(dǎo)致作物產(chǎn)量下降[15-16]。在干旱半干旱地區(qū),土壤蒸發(fā)大大超過了降水,地下水中鹽分通過毛細管運動到土壤表層聚積。Na+可以替代黏土礦物顆粒中的 Ca2+和其他吸附在土壤表面或者在土壤團聚體間層中的 Mg2+等土壤黏合劑,破壞土壤次生黏土礦物。隨著灌溉水鹽分含量的增加,土壤總孔隙度和土壤團聚體穩(wěn)定性系數(shù)降低,土壤結(jié)構(gòu)被破壞,土壤孔隙度下降,表層土壤容重和土壤飽和電導(dǎo)率增加,土壤水的滲透性降低,土壤的持水量增加[17],導(dǎo)致土壤板結(jié)[18]。
咸水灌溉引起的土壤鹽堿化問題不僅對土壤物理化學(xué)性質(zhì)和作物生長造成很大負面影響,而且對土壤微生物的數(shù)量和活性以及維持土壤質(zhì)量的生化過程都有很大影響[10]。土壤微生物是土壤團聚體形成和穩(wěn)定的關(guān)鍵因素,土壤鹽分的增加引起土壤微生物的呼吸作用和數(shù)量降低[19],進而導(dǎo)致土壤團聚體分解,破壞土壤結(jié)構(gòu)[10]。土壤中的Na+主要是間接通過根系分泌物的數(shù)量或/和質(zhì)量來影響根際土壤微生物結(jié)構(gòu),而不是對微生物產(chǎn)生直接的毒性[20]。
土壤養(yǎng)分有效性的降低也是鹽堿土對作物產(chǎn)量的限制因素之一。微咸水灌溉明顯抑制了土壤酶活性,造成了土壤微生物量和CO2通量下降,土壤有機物降解率降低,使農(nóng)田土壤生物性狀變差[21]。高鹽度咸水灌溉將會導(dǎo)致土壤有機質(zhì)分解速度和土壤碳氮磷的礦化速度變緩,從而降低土壤養(yǎng)分的有效性,導(dǎo)致作物產(chǎn)量下降[22]。長期的微咸水灌溉降低了土壤有機碳和總氮含量[23]。灌溉電導(dǎo)率小于4.61dS·m-1的微咸水對棉花生長和水氮利用效率沒有影響,而利用電導(dǎo)率大于8dS·m-1的咸水滴灌時則抑制棉花生長,降低水氮利用效率[24]。劣質(zhì)灌溉水中的 Na+、Ca2+和Mg2+參與了土壤離子交換過程,導(dǎo)致土壤云母礦物中 K+被置換出來,并被淋洗到溶液中,從而提高地下水的 K+濃度。咸水灌溉條件下,特別是Mg2+含量較高的水灌溉時,會增加土壤中K+的釋放,更利于作物吸收,但是長遠來看這些鉀會被淋洗到根層以下[25-26]。如果沒有足夠的鉀肥投入,長期咸水灌溉會導(dǎo)致作物產(chǎn)量下降[27]。在沙壤土上咸水灌溉會造成土壤 Ca2+、Mg2+、K+和磷的淋洗,同時增加淺層地下水鹽度增加的風(fēng)險[28]。
2.1優(yōu)化田間管理農(nóng)藝措施
田間管理農(nóng)藝措施主要是物理的改良措施,是對咸灌土壤改良最直接的方法,主要包括優(yōu)化灌溉方式和灌溉制度(如選用滴灌節(jié)水灌溉方式,利用灌水洗鹽,輪灌或混灌,優(yōu)化咸淡水的灌溉次序等),深耕、深松、翻土、無機物(塑料薄膜)和有機物(作物秸稈等材料)覆蓋等方法。
2.1.1優(yōu)化灌溉制度
從微咸水的灌溉方式來看,主要有漫灌、溝灌、噴灌和滴灌。漫灌和溝灌灌水定額大。從節(jié)水角度講,噴滴灌具有明顯優(yōu)勢。滴灌技術(shù)引入到微咸水利用中稱之為微咸水灌溉的一次革新。滴灌利用微咸水主要有兩方面優(yōu)勢:一是避免了葉面損傷,二是由于滴灌的淋洗作用,鹽分向濕潤鋒附近積累,因此在滴頭下面的土壤含鹽量比較小,有利于作物生長,并且維持一個高的基質(zhì)勢,同時在滴灌條件下土壤水分含量分布與鹽分分布正好相反,有利于作物根系發(fā)育生長和水分養(yǎng)分的吸收利用[29]。與溝灌相比,滴灌保持了理想的土壤水分含量,減少了根區(qū)的鹽分含量,同時土壤物理性質(zhì)和養(yǎng)分狀況都有明顯改善,土壤微生物量和土壤酶活性增強,在滴灌條件下水分利用效率比溝灌平均高1/3,有利于在不降低產(chǎn)量的前提下高效利用微咸水資源從而緩解淡水資源嚴重缺乏的問題[30]。
將覆蓋和滴灌相結(jié)合的微咸水膜下滴灌模式為干旱半干旱地區(qū)有效利用微咸水資源以及鹽堿地的開發(fā)利用提供了參考。膜下滴灌既具備滴灌的防止深層滲漏、減少棵間蒸發(fā)、節(jié)水、節(jié)肥的特點,同時還具備地膜栽培技術(shù)的增溫、保墑作用,滴灌在根區(qū)可以形成淡化的脫鹽區(qū),覆膜抑制了膜內(nèi)的土壤蒸發(fā)作用,并使膜內(nèi)鹽分發(fā)生側(cè)向運移,同時減少深層滲漏,降低了次生鹽漬化發(fā)生的可能性,因此膜下滴灌也被用于防治土壤次生鹽堿化。與傳統(tǒng)的表面滴灌相比,采用地下滴灌的方式進行微咸水灌溉對防止鹽分在耕層土壤的表聚有良好效果,已經(jīng)被廣泛應(yīng)用在淡水資源缺乏的干旱半干旱地區(qū)[31-32]。長期滴灌下土壤鹽分積累特征是決定這一灌溉方式能否可持續(xù)的重要問題。膜下滴灌的咸淡水輪灌時序?qū)ψ魑锂a(chǎn)量和土壤積鹽狀況也有很大影響[33]。但利用膜下滴灌方式進行微咸水灌溉,目前仍存在一些問題,需要進一步研究[34-35]。
咸水灌溉的技術(shù)關(guān)鍵是如何使土壤積鹽不超過作物耐鹽度,因此,需要通過試驗研究制定合理的咸水灌溉制度,包括咸水灌溉量、灌溉次數(shù)、灌溉時期、灌溉水鹽分濃度等。優(yōu)化灌溉方式結(jié)合根層土壤鹽分管理需要考慮蒸散、鹽分含量、土壤類型、降水、地下水位、作物類型和水分管理的交互作用,針對微咸水或者咸水灌溉土壤鹽分積累規(guī)律來因地制宜地制定合理的灌溉制度。目前,咸淡水混灌輪灌已被廣泛利用。該技術(shù)不僅可以實現(xiàn)微咸水資源充分高效利用,同時能較好地控制根層鹽分表聚,保持作物根層水鹽平衡并保障作物生產(chǎn)安全。作物不同生育時期對水分和鹽脅迫表現(xiàn)不同??梢虻刂埔说刂贫ê笃诼啻胧?,以便淋洗土壤中積累的鹽分。作物收獲后一次大的漫灌可有效減少土壤中鹽分的累積,該措施比在生育期灌溉同樣量的水在土壤控鹽方面更有效[36]。由于淡水資源的匱乏,淋鹽排鹽措施在有條件的地區(qū)才能進行。
2.1.2覆蓋和深松耕作措施
表層土壤中鹽分的累積可以通過減小土壤蒸發(fā)來控制。與裸地相比,塑料薄膜覆蓋,特別是作物秸稈覆蓋減少了土壤水蒸發(fā)損失,對控制鹽分積累更有效[37]。秸稈覆蓋可以降低微咸水灌溉所導(dǎo)致的表層土壤的鹽分累積和土壤鈉吸附比增加[38-39],與此同時還能夠改善鹽分在土體中的垂直分布,使土壤根系分布密集層保持較低鹽分水平,緩解鹽分對作物的危害,并有顯著的增產(chǎn)效果[40-41]。
深松和秸稈覆蓋處理降低了0~30cm土層的土壤容重,增加了土壤孔隙度,改善了土壤水溶性團聚體的分布。與傳統(tǒng)耕地和秸稈移除處理相比,由于土壤結(jié)構(gòu)和滲透性得到改善,深松和秸稈覆蓋使得土壤含鹽量降低了20.3%~73.4%[42]。
2.1.3起壟措施
起壟人為造成微域地形的高差,導(dǎo)致地表的不均衡蒸發(fā),低處水鹽向高處移動。起壟措施產(chǎn)生的土壤微地形變化改變了局部土壤水、鹽的空間分布,同時改善了土壤物理狀況,使壟溝內(nèi)土壤理化狀況優(yōu)化。壟作下溝灌方式較常規(guī)畦灌對于降低土壤鹽分具有更好的效果,溝灌玉米根系較發(fā)達,灌溉水利用效率高,綜合考慮溝灌是低水分條件下一種較好的灌溉方式[43]。起壟覆膜種植方法,是集農(nóng)田微域集水和地膜覆蓋兩大旱作栽培方法優(yōu)點于一體的作物栽培新技術(shù),依據(jù)農(nóng)田微工程覆膜雨水富集疊加、雨水就地入滲、覆蓋抑蒸三大理論,把“膜面集雨、覆蓋抑蒸、壟上種植”三大技術(shù)相互融合為一體,具有明顯的改善地溫和土壤物理性狀、培肥改善地力的作用[44]。與起壟不覆膜土壤鹽分的分布有所不同,起壟覆蓋相結(jié)合的方法使溝底部含鹽量高于壟下土壤含鹽量,作物種在壟上有助于微咸水灌溉下作物避開土壤積鹽對作物的影響[45]。
2.1.4施用土壤改良劑
鹽堿化土壤最有效的改良方法是根據(jù)可溶性鈉鹽的去除和交換,通過添加化學(xué)物質(zhì)改變土壤的離子構(gòu)成,同時把Na+淋出到土壤剖面以外。幾種降低咸水灌溉下鹽害的方法已經(jīng)被推薦使用。這些方法包括施用石膏或者氯化鈣、沸石等無機的土壤改良劑降低咸水灌溉條件下土壤中 Na+的置換??紤]到在土壤中施入化學(xué)物質(zhì)的成本和對環(huán)境的影響,尋找更廉價的天然改良劑更有意義。在土壤中添加有機物質(zhì)如植物秸稈、有機肥、綠肥、動物糞便、泥炭、褐煤粉和生物炭都是降低咸水灌溉下土壤鹽害行之有效的方法。
1)有機改良劑
添加有機物質(zhì)可以加速鈉的淋洗,降低ESP和電導(dǎo)率,增加土壤持水能力和土壤團聚體的穩(wěn)定性[8,46]。另外,Walker和Bernal[47]的研究結(jié)果表明有機添加物可以增加陽離子交換量,土壤交換點首先被Ca2+、Mg2+和K+占據(jù)從而阻止Na+進入交換點。長期定位試驗結(jié)果表明,在小麥-水稻輪作微咸水灌溉區(qū),單獨填加有機物質(zhì)如小麥秸稈、綠肥、農(nóng)家堆肥等可以溶解石灰性土壤中內(nèi)在的Ca2+和CaCO3沉淀中的Ca2+,增加了土壤滲透速率,從而獲得穩(wěn)定的產(chǎn)量[16]。施用畜禽糞便,農(nóng)家糞肥在提高土壤肥力的同時,降低了土壤電導(dǎo)率和pH,可以防治微咸水灌溉造成的土壤次生鹽漬化,緩解了微咸水灌溉對作物的危害[48-49]。施用腐殖質(zhì)可以增加土壤的持水能力和養(yǎng)分保持能力,保持良好的土壤結(jié)構(gòu)和高的微生物活性,腐植酸可以顯著減少土壤水的蒸發(fā),提高水的作物有效性。另外,腐殖質(zhì)促進了多種礦質(zhì)元素在土壤中轉(zhuǎn)化成作物利用的形式[50-51]。施用腐殖質(zhì)是消減咸水灌溉帶來的土壤鹽害的有效措施之一。
增施有機肥料不僅能增加土壤中腐殖質(zhì)含量,有利于土壤團粒結(jié)構(gòu)的形成,還能改善鹽堿土的通氣、透水和養(yǎng)分狀況。在鹽堿土上氮的釋放在很大程度上取決于有機填加物的可溶碳和總氮的比值[52]。秸稈添加大大增加了土壤氮磷的有效性。在鹽害條件下,微生物碳氮磷顯著受到土壤質(zhì)地和秸稈填加物的影響[53]。雖然隨著土壤鹽分的增加土壤微生物的呼吸作用和生物量降低,但是填加秸稈后則增加了土壤微生物的呼吸和生物量,且沙壤土高于黏土,苜蓿秸稈優(yōu)于小麥秸稈[53]。秸稈還田后的土壤耕層結(jié)構(gòu)疏松,容重降低,非毛管孔隙度顯著增加,能有效抑制土壤鹽分表聚,使作物主要根系活動層保持較低鹽分水平而不影響作物正常生長[54]。增加葡萄糖提高了鹽土微生物的活性和生長,減輕了土壤鹽分對微生物的負面影響[19]。因此,添加有機物質(zhì)增加了碳源,在一定程度上緩解了咸水灌溉造成的對土壤微生物和養(yǎng)分有效性的影響,提高了土壤質(zhì)量。
近年來由于國內(nèi)很多地區(qū)農(nóng)業(yè)實現(xiàn)了機械化,秸稈還田被大面積推廣應(yīng)用。土壤中深埋的秸稈層起到了水和鹽分上移的障礙層,阻止了深層土壤和淺層地下水鹽分上移,抑制了耕層土壤返鹽。利用作物秸稈和牛糞填滿到土壤里,結(jié)合薄膜覆蓋和滴灌技術(shù)做成生物反應(yīng)器應(yīng)用到大棚蔬菜種植中,對于消減咸水灌溉帶來的土壤鹽害有良好的使用效果[55]。生物反應(yīng)器既降低了土壤鹽分濃度,又提高了土壤有機質(zhì)和養(yǎng)分含量,改善了土壤環(huán)境,提高了作物產(chǎn)量和品質(zhì)[55]。
在旱地上良好的水分管理配以合理的土壤管理措施是作物生產(chǎn)可持續(xù)發(fā)展的必要條件。有機填加物含有大量的養(yǎng)分,它們可以釋放到土壤中供作物吸收利用。但是如果用含有高濃度的 Na+和Ca2+的微咸水灌溉時會導(dǎo)致養(yǎng)分淋洗出根區(qū)土壤。因此微咸水灌溉添加有機物質(zhì)時必須配套阻止養(yǎng)分流失的相關(guān)技術(shù)[48]。另外,有些研究表明施用動物糞便,例如,家禽糞便[56]和豬糞堆肥[57]會導(dǎo)致土壤鹽分增加,加重了咸水灌溉下土壤鹽害對作物的影響,所以在對鹽分敏感的土壤上應(yīng)該慎重施用有機肥。
生物質(zhì)炭(biochar)是近年來關(guān)注較多的新型土壤改良劑。生物質(zhì)炭是指動植物殘體或其他生物質(zhì)在完全或部分缺氧的情況下,以相對“低溫”(<700℃)熱解炭化,產(chǎn)生的一類高度芳香化難熔性固態(tài)高聚產(chǎn)物[58]。施用生物炭可以使作物產(chǎn)量平均提高11%左右[59]。生物質(zhì)炭可以改變土壤的物理化學(xué)性質(zhì),提高土壤肥力,同時可以預(yù)防土壤的生物化學(xué)性質(zhì)退化[60]。利用其高吸附性的特點,在鹽堿土上施用生物質(zhì)炭可以降低土壤容重,改善土壤通氣狀況,增加陽離子交換量,明顯改善土壤的物理化學(xué)性質(zhì)[61-62],降低土壤鹽含量、鈉吸附比(SAR)和ESP[63],同時增強鹽堿土壤碳的固定,減少溫室氣體排放,提高作物產(chǎn)量[64]。微咸水灌溉下施用生物炭促進了馬鈴薯的生長,降低了莖基部傷流液和葉片的脫落酸(ABA)含量,提高了莖基部傷流液中 K+/Na+比值,降低咸水灌溉下土壤積鹽對馬鈴薯的危害[65]。微咸水灌溉下,施用生物炭可以減少土壤中可溶性鉛(Pb)含量,降低玉米對鉛的吸收從而提高作物品質(zhì)[66]。
2)無機改良劑
在微咸水灌溉下加入石膏[23]、沸石[67]等無機土壤改良劑緩解土壤鹽漬化方面已經(jīng)做了大量研究。咸水灌溉下添加石膏可以明顯改善土壤的物理化學(xué)特性,可以使水稻產(chǎn)量提高12.5%,小麥產(chǎn)量提高50%[16]。長期微咸水灌溉增加了土壤 pH、SAR和ESP,降低了土壤有機碳和總氮,而施入石膏和有機添加物(如綠肥、農(nóng)家堆肥和水稻秸稈)都改善了這些土壤性質(zhì)[23]。微咸水灌溉對土壤的鹽漬化危害因土壤有機質(zhì)含量不同而不相同[68],經(jīng)過土壤添加硫酸鈣和淋洗措施后土壤結(jié)構(gòu)有不同的改良效果,有機質(zhì)含量高的土壤土壤孔隙度不受灌溉水鹽分的影響,而有機質(zhì)含量低的土壤咸水灌溉后孔隙度則變小,這可能因為土壤中鐵鋁氧化物的含量不同,從而造成土壤團聚體穩(wěn)定性不同的緣故[18]。微咸水灌溉條件下添加石膏和農(nóng)家堆肥還提高了土壤氮的礦化[23]。如果利用咸淡水輪灌或者添加合適的土壤改良劑等措施,微咸水灌溉對小麥-棉花輪作區(qū)作物產(chǎn)量和土壤質(zhì)量沒有負面影響[69]。在缺乏淡水資源無法實現(xiàn)咸淡水輪灌的情況下,如果用含有高量鈉離子的水進行灌溉必須使用石膏[69-70]。
2.2生物措施
2.2.1施用微生物肥料
在淡水或者有限淡水灌溉條件下,高氮肥施用量可以獲得更高的產(chǎn)量。而在微咸水灌溉條件下,在充足或者虧缺灌溉下,低氮肥施用量獲得最佳產(chǎn)量[71]。微咸水灌溉條件下過多的氮肥投入會加重對作物的鹽害[24]。若沒有其他脅迫,微咸水灌溉條件下作物需要較少的氮肥用量[72]。而微生物肥料一般具有無機養(yǎng)分含量比較低的特點,微生物肥料可以代替23%~52%的氮肥而不減少產(chǎn)量,但是并不能代替磷肥[73]。施用根際促生菌肥(plant-growthpromoting rhizobacteria,PGPR)已證明是一種促進小麥在鹽堿地生長的重要措施。根際促生菌具有成本低,易操作和對土壤無副作用等優(yōu)點。接種根際促生菌是在鹽害條件下促進作物生長和最大化利用鹽堿土的有效方法之一[74]。
微生物肥料的施用替代了部分化肥,提高了化肥利用率。近年來研制應(yīng)用的具有土壤調(diào)理等新型功能的微生物肥料,在提升耕地土壤環(huán)境質(zhì)量上意義重大[75]。微生物群體對土壤團聚體的穩(wěn)定性起著至關(guān)重要的作用[76]。在干旱半干旱地區(qū),土壤團聚體的穩(wěn)定性是促進作物生長和防治水土流失的一個重要性質(zhì)。因此,在退化的鹽堿土農(nóng)業(yè)體系中改善土壤團聚體的性質(zhì)顯得尤為重要。微生物肥料具有其他肥料無法比擬的優(yōu)點,具有多重功效,在提升咸水灌溉下土壤鹽害緩沖能力方面具有明顯的優(yōu)勢。
菌根真菌可以顯著地降低植物對Na+和Cl-的吸收,同時促進園藝作物對鉀和磷的吸收。接種菌根真菌是一種合適的可以提高中高鹽度微咸水灌溉時園藝作物抗鹽性的的方法[77]。接種叢枝菌根真菌可以改善土壤結(jié)構(gòu),提高土壤有機碳和土壤速效養(yǎng)分含量[78]。此外,叢枝菌根真菌提高了鹽害條件下作物的光合作用和水分利用效率[79]。菌根真菌可以改善作物的碳氮代謝過程,提高其相對含水量、膜的穩(wěn)定性和葉片光合速率,促進蛋白的合成和滲透調(diào)節(jié)物質(zhì)的累積,改善作物的營養(yǎng)狀況等,從而降低了土壤鹽害對作物產(chǎn)量的影響[80]。
利用固氮根際促生菌可以促進玉米對K+的吸收,排斥對Na+的吸收,增加K+/Na+比值,同時提高葉片葉綠素含量,從而增強玉米的抗鹽性。施用固氮根際促生菌是一種降低作物鹽害的重要生物方法[81]。根際促生菌在田間顯著促進小麥的生長并提高其產(chǎn)量[82]。根際促生菌接種的小麥體內(nèi)具有低鈉含量和高氮磷鉀含量[74]。根際促生菌促進了植物根際養(yǎng)分的循環(huán)[83],增強了作物吸收養(yǎng)分能力,在維持小麥體內(nèi)養(yǎng)分平衡方面起著重要作用。無論在鹽還是非鹽害條件下,根際促生菌主要通過直接或者間接調(diào)控植物的葉綠素含量、葉片的滲透勢和細胞膜的穩(wěn)定性和離子的積累等[84],促進了白三葉草的生長。
盡管根際促生菌作為降低鹽害對作物影響的新興技術(shù)具有非常多的優(yōu)點,但微生物肥料也有不足之處:在控制條件下(實驗室或者溫室)根際微生物對作物生長具有促進作用,但是在田間由于自然條件變化,PGPR的效果具有不確定性。由于根際促生菌不會永遠在土壤中存活,在田間必須每年或者每季重新接種[85],這促使我們篩選分離出更先進的菌種。這些菌種時而有效時而無效,其原因是根際促生菌的群體大小和活性受到土壤環(huán)境條件的影響[86]。根際促生菌的使用效果取決于水的鹽濃度和寄主作物的生長階段[87]。45%生物肥料的施用效果取決于作物氮磷鉀肥的施用量和施用時間[73]。農(nóng)民和農(nóng)學(xué)家需要認識到化肥和微生物肥料的雙重管理才能實現(xiàn)微生物肥料的成功應(yīng)用。
2.2.2植物改良技術(shù)
種植鹽土植物是鹽堿地脫鹽的一條重要途徑。田間和溫室試驗結(jié)果表明種植鹽土植物使得土壤電導(dǎo)率顯著下降,堿蓬可以移除氯化鈉1~6 t·hm-2·a-1[88]。這些結(jié)果與微咸水灌溉條件下根據(jù)干物質(zhì)中 Na+和Cl-濃度和總的生物量來計算的 NaCl移除量是一致的[88]。種植綠肥作物如田菁等可以改善微咸水灌溉下土壤的物理化學(xué)性質(zhì),提高小麥和水稻產(chǎn)量,尤其是石膏和種植綠肥配合改良效果最佳[89]。另外,種植轉(zhuǎn)基因的耐鹽植物可以提高產(chǎn)量[90-91]。
與土體土壤相比,鹽堿土根際土壤具有低含鹽量、高水分含量和較高的土壤微生物數(shù)量。豐富的根際土壤微生物表明根系可以降低土壤鹽害并提供有利于微生物生存的環(huán)境。植物根際土壤總的微生物豐度和多樣性提高了微生物維持退化土壤系統(tǒng)正常運行的能力[92]。土壤中的 Na+主要是間接通過根系分泌物的數(shù)量或/和質(zhì)量來影響根際土壤微生物結(jié)構(gòu),而不是對微生物有直接毒性[20]。根系分泌物與地上部[93]和根系[94]的生物量呈正比。寄主植物的耐鹽能力決定了在高鹽條件下能否成功組成根瘤菌-大豆共生體系[95]。植物的健康程度是根際微生物結(jié)構(gòu)和氮循環(huán)的主要決定因素[53]。種植耐鹽作物間接改善了咸水灌溉條件下土壤的微生物結(jié)構(gòu)和養(yǎng)分狀況,提升了咸灌土壤鹽害緩沖能力。作物各個品種之間耐鹽性差異較大,微咸水灌溉下種植耐鹽性較好的作物品種直接影響到其最終產(chǎn)量[96]。
除上述農(nóng)田調(diào)控措施以外,微咸水結(jié)冰灌溉能夠有效控制耕層土壤微咸水灌溉下的鹽分累積,與秸稈覆蓋措施配合效果更明顯[97]。
國內(nèi)外關(guān)于咸水灌溉對土壤、水分、鹽分和作物的關(guān)系研究較多,但大多研究礦化度為2~5g·L-1的微咸水,而對于礦化度大于5g·L-1的高礦度咸水許多研究都指出難以利用或應(yīng)慎重利用。高礦度咸水會對作物的生長造成很大影響,葉片凈光合速率下降[98],耕層土壤鹽分累積[38],加速土壤氮素淋洗,氮肥利用率降低[99],土壤退化,造成作物減產(chǎn)[38,98]。
高礦度咸水不能直接用于灌溉,大多通過混灌的方式配成微咸水進行灌溉[45]。由于極度缺乏淡水,以色列通過反滲透等技術(shù)將咸水淡化后用于灌溉,由于淡化后缺少作物生長所必須的鈣鎂硫等元素,采用淡化水和咸水混灌的形式取得良好的效果[100]。與淡水灌溉相比,高礦度咸水采用膜下滴灌的方式對馬鈴薯進行灌溉并沒有造成減產(chǎn)[32]。咸水灌溉可以作為一種抗干旱應(yīng)急措施用在淡水嚴重缺乏鹽堿地區(qū)的耐鹽作物上(如棉花等),但是咸水灌溉后,必須利用淋洗和排水等措施保持表層土壤脫鹽才能實現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展和糧食安全[101]。
咸水(16dS·m-1)灌溉顯著抑制了大麥生長,而添加土壤改良劑沸石以后大大促進了大麥的生長,這是因為添加沸石降低了土壤特別是表層土壤的Na+、Mg2+和Ca2+濃度[67]。覆蓋措施能夠改善高礦化度咸水灌溉下鹽分在土體中的垂直分布,抑制土體鹽分上移,防止鹽分表聚現(xiàn)象的發(fā)生,且比微咸水灌溉條件下對土壤的削減作用更明顯[38-39]。
冬季咸水結(jié)冰灌溉技術(shù),即冬季利用當?shù)氐叵孪趟喔塞}堿地,在低溫作用下,咸水形成冰層,由于不同含鹽量咸水的冰點不同,融化時先融化的高含鹽量咸水先入滲,后融化的微咸水和淡水入滲對土壤鹽分具有淋洗作用[102-103],可促進表層土壤的脫鹽作用,淋洗主要危害性離子Na+和Cl-等,保持土壤根系分布密集層較低鹽分水平和鹽基離子平衡,緩解或消除鹽分和鹽基離子對作物生長的危害[97]。咸水結(jié)冰灌溉技術(shù)必須配合秸稈覆蓋技術(shù)效果更加明顯,如果不配以覆蓋措施或者覆蓋較晚,咸水結(jié)冰灌溉也得不到理想的控鹽效果[104]。
暗管排鹽技術(shù)是目前治理鹽堿地比較成熟的技術(shù),其主要原理是根據(jù)“鹽隨水來,鹽隨水去”的水鹽運移原理,在有降水或灌溉發(fā)生時,鹽隨水下移至暗管處,通過暗管排除土體達到淋鹽洗鹽的效果,同時通過暗管將地下水位控制在臨界深度,有效抑制高礦化度水的上移,減輕土壤次生鹽漬化[105]。暗管排鹽技術(shù)在咸灌土壤防治次生鹽漬化方面有著顯著效果,尤其是濱海低平原地區(qū)有著廣闊的適用空間,該技術(shù)的應(yīng)用使濱海鹽堿地區(qū)可利用耕地面積擴大,區(qū)域生態(tài)服務(wù)功能得到提升[106-107]。
目前人們在生產(chǎn)實踐中認識到,防治土壤次生鹽漬化采取任何單一措施的效果均有限,且不穩(wěn)定。選用單一的改良措施進行改良,可能存在效果不全面或有不同程度的負面影響等不足之處。各國在應(yīng)用改良措施時,趨于強調(diào)綜合改良措施。將不同改良措施配合施用,特別是生物改良劑與工農(nóng)業(yè)廢棄物的配合施用近年來引起較多關(guān)注。多種改良物質(zhì)的混合物結(jié)合培肥對咸水灌溉土壤進行改良,可緩解咸水灌溉土壤結(jié)構(gòu)性差、肥力低的問題,真正實現(xiàn)土地的可持續(xù)利用和保護[108]。例如生物有機肥即有益微生物菌群與有機肥結(jié)合形成新型、高效、安全的微生物有機肥料[109]。
我們要以微咸水或咸水補灌為核心,結(jié)合雨水資源利用,通過種植耐鹽植物品種、秸稈還田減蒸抑鹽、增施土壤微生物肥、土壤調(diào)理劑等措施提高土壤緩沖能力,降低鹽分對作物的危害;配套壟作和地膜覆蓋等降低土壤蒸發(fā)措施,抑制土壤鹽分表層積聚,配套秸稈還田和土壤耕作技術(shù),提高土壤蓄雨淋鹽和養(yǎng)分快速提升,降低鹽害;集成微咸水安全高效灌溉技術(shù)模式,制定規(guī)范化的技術(shù)應(yīng)用規(guī)程,并對示范效果進行充分評價,有機地結(jié)合各種改良措施(如化學(xué)改良、耕作改良、秸稈覆蓋等),有效地控制咸水灌區(qū)土壤次生鹽漬化,達到咸水資源的高效安全可持續(xù)利用,提升水資源保障能力。
References
[1]Jiang J,Huo Z L,F(xiàn)eng S Y,et al.Effects of deficit irrigation with saline water on spring wheat growth and yield in arid Northwest China[J].Journal of Arid Land,2013,5(2):143-154
[2]Jiang J,Huo Z L,F(xiàn)eng S Y,et al.Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China[J].Field Crops Research,2012,137:78-88
[3]Kang Y H,Chen M,Wan S Q.Effects of drip irrigation with saline water on waxy maize(Zea mays L.var.ceratina Kulesh)in North China Plain[J].Agricultural Water Management,2010,97(9):1303-1309
[4]Wang Y R,Kang S Z,Li F S,et al.Saline water irrigation scheduling through a crop-water-salinity production function and a soil-water-salinity dynamic model[J].Pedosphere,2007,17(3):303-317
[5]Xu X,Huang G H,Sun C,et al.Assessing the effects of water table depth on water use,soil salinity and wheat yield:Searching for a target depth for irrigated areas in the upper Yellow River basin[J].Agricultural Water Management,2013,125:46-60
[6]Chauhan C P S,Singh R B,Gupta S K.Supplemental irrigation of wheat with saline water[J].Agricultural Water Management,2008,95(3):253-258
[7]Vlek P L G,Hilleld,Braimoh A K.Soil degradation under irrigation[M]//Braimoh A K,Vlek P L G.Land Use and Soil Resources.Netherlands:Springer,2008:101-119
[8]Lax A,Díaz E,Castillo V,et al.Reclamation of physical and chemical properties of a salinized soil by organic amendment[J].Arid Soil Research and Rehabilitation,1994,8(1):9-17
[9]Kohler J,Hernández J A,Caravaca F,et al.Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress[J].Environmental and Experimental Botany,2009,65(2/3):245-252
[10]Rietz D N,Haynes R J.Effects of irrigation-induced salinity and sodicity on soil microbial activity[J].Soil Biology and Biochemistry,2003,35(6):845-854
[11]Romicd,Ondrasek G,Romic M,et al.Salinity and irrigation method affect crop yield and soil quality in watermelon(Citrullus lanatus L.) growing[J].Irrigation and Drainage,2008,57(4):463-469
[12]Wang Q M,Huo Z L,Zhang Ld,et al.Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China[J].Agricultural Water Management,2016,163:125-138
[13]Saha N,Mandal B.Soil health — a precondition for crop production[M]//Khan M S,Zaidi A,Musarrat J.Microbial Strategies for Crop Improvement.Berlin Heidelberg:Springer,2009:161-184
[14]Zuccarini P.Biological and technological strategies against soil and water salinization I— Rhizosphere[J].Journal of Plant Nutrition,2010,33(9):1287-1300
[15]Choudhary O P,Ghuman B S,Josan A S,et al.Effect of alternating irrigation with sodic and non-sodic waters on soil properties and sunflower yield[J].Agricultural Water Management,2006,85(1/2):151-156
[16]Choudhary O P,Ghuman B S,Bijay-Singh,et al.Effects of long-term use of sodic water irrigation,amendments and crop residues on soil properties and crop yields in rice-wheat cropping system in a calcareous soil[J].Field Crops Research,2011,121(3):363-372
[17]Huang C H,Xue X,Wang T,et al.Effects of saline water irrigation on soil properties in northwest China[J].Environmental Earth Sciences,2011,63(4):701-708
[18]Cucci G,Lacolla G,Pagliai M,et al.Effect of reclamation on the structure of silty-clay soils irrigated with saline-sodic waters[J].International Agrophysics,2015,29(1):23-30
[19]Elmajdoub B,Marschner P,Burns R G.Addition of glucose increases the activity of microbes in saline soils[J].Soil Research,2014,52(6):568-574
[20]Nelson D R,Mele P M.Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations[J].Soil Biology and Biochemistry,2007,39(1):340-351
[21]張前前,王飛,劉濤,等.微咸水滴灌對土壤酶活性、CO2通量及有機碳降解的影響[J].應(yīng)用生態(tài)學(xué)報,2015,26(9):2743-2750
Zhang Q Q,Wang F,Liu T,et al.Effects of brackish water irrigation on soil enzyme activity,soil CO2flux and organic matter decomposition[J].Chinese Journal of Applied Ecology,2015,26(9):2743-2750
[22]Muscolo A,Mallamaci C,Panuccio M R,et al.Effect of long-term irrigation water salinity on soil properties and microbial biomass[J].Ecological Questions,2011,14:77-79
[23]Choudhary O P,Kaur G,Benbi D K.Influence of long-term sodic-water irrigation,gypsum,and organic amendments on soil properties and nitrogen mineralization kinetics under rice-wheat system[J].Communications in Soil Science and Plant Analysis,2007,38(19/20):2717-2731
[24]Min W,Hou Z A,Ma L J,et al.Effects of water salinity and N application rate on water-and N-use efficiency of cotton under drip irrigation[J].Journal of Arid Land,2014,6(4):454-467
[25]Jalali M.Effect of saline-sodic solutions on column leaching of potassium from sandy soil[J].Archives of Agronomy and Soil Science,2011,57(4):377-390
[26]Kolahchi Z,Jalali M.Effect of water quality on the leaching of potassium from sandy soil[J].Journal of Arid Environments,2007,68(4):624-639
[27]Ruan L,Zhang J B,Xin X L.Effect of poor-quality irrigation water on potassium release from soils under long-term fertilization[J].Acta Agriculturae Scandinavica,Section B-Soil & Plant Science,2014,64(1):45-55
[28]Jalali M,Merrikhpour H.Effects of poor quality irrigation waters on the nutrient leaching and groundwater quality from sandy soil[J].Environmental Geology,2008,53(6):1289-1298
[29]Zhang Z,Hu H C,Tian F Q,et al.Soil salt distribution under mulched drip irrigation in an arid area of northwestern China[J].Journal of Arid Environments,2014,104:23-33
[30]Malash N M,F(xiàn)lowers T J,Ragab R.Effect of irrigation methods,management and salinity of irrigation water on tomato yield,soil moisture and salinity distribution[J].Irrigation Science,2008,26(4):313-323
[31]Oron G,DeMalach Y,Gillerman L,et al.Improved salinewater use under subsurface drip irrigation[J].Agricultural Water Management,1999,39(1):19-33
[32]Patel R M,Prasher S O,Donnellyd,et al.Subirrigation with brackish water for vegetable production in arid regions[J].Bioresource Technology,1999,70(1):33-37
[33]黃丹,王春霞,何新林,等.微咸水膜下滴灌時序?qū)ν寥利}分及作物產(chǎn)量的影響[J].灌溉排水學(xué)報,2014,33(1):7-11
Huangd,Wang C X,He X L,et al.The impact of irrigation timing on soil salinity and crop yield under mulched drip irrigation with brackish water[J].Journal of Irrigation and Drainage,2014,33(1):7-11
[34]王毅萍,周金龍,郭曉靜.我國咸水灌溉對作物生長及產(chǎn)量影響研究進展與展望[J].中國農(nóng)村水利水電,2009(9):4-7
Wang Y P,Zhou J L,Guo X J.Experimental research on the effect of saline water irrigation in China on crop growth and yield[J].China Rural Water and Hydropower,2009(9):4-7
[35]何雨江.微咸水膜下滴灌土壤水鹽運移研究進展[J].中國農(nóng)學(xué)通報,2012,28(32):243-248
He Y J.Advances in soil water-salt transport of drip irrigation under mulch with saline water[J].Chinese Agricultural Science Bulletin,2012,28(32):243-248
[36]Chen W P,Hou Z A,Wu L S,et al.Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China[J].Agricultural Water Management,2010,97(12):2001-2008
[37]Pang H C,Li Y Y,Yang J S,et al.Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions[J].Agricultural Water Management,2010,97(12):1971-1977
[38]Bezborodov G A,Shadmanov D K,Mirhashimov R T,et al.Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia[J].Agriculture,Ecosystems & Environment,2010,138(1/2):95-102
[39]畢遠杰,王全九,雪靜.覆蓋及水質(zhì)對土壤水鹽狀況及油葵產(chǎn)量的影響[J].農(nóng)業(yè)工程學(xué)報,2010,26(S):83-89
Bi Y J,Wang Q J,Xue J.Effects of ground coverage measure and water quality on soil water salinity distribution and helianthus yield[J].Transactions of the CSAE,2010,26(S):83-89
[40]鄭九華,馮永軍,于開芹,等.秸稈覆蓋條件下微咸水灌溉棉花試驗研究[J].農(nóng)業(yè)工程學(xué)報,2002,18(4):26-31
Zheng J H,F(xiàn)eng Y J,Yu K Q,et al.Irrigation with brackish water under straw mulching[J].Transactions of the CSAE,2002,18(4):26-31
[41]逄煥成,楊勁松,嚴惠峻.微咸水灌溉對土壤鹽分和作物產(chǎn)量影響研究[J].植物營養(yǎng)與肥料學(xué)報,2004,10(6):599-603
Pang H C,Yang J S,Yan H J.Effects of irrigation with saline water on soil salinity and crop yield[J].Plant Nutrition and Fertilizer Science,2004,10(6):599-603
[42]Wang Q J,Lu C Y,Li H W,et al.The effects of no-tillage with subsoiling on soil properties and maize yield:12-Year experiment on alkaline soils of Northeast China[J].Soil and Tillage Research,2014,137:43-49
[43]倪東寧,李瑞平,史海濱,等.套種模式下不同灌水方式對玉米根系區(qū)土壤水鹽運移及產(chǎn)量的影響[J].土壤,2015,47(4):797-804
Ni D N,Li R P,Shi H B,et al.Effects of different irrigation methods on transport of root zone soil water-salt and yield of maize under interplanting mode[J].Soils,2015,47(4):797-804
[44]秦舒浩,張俊蓮,王蒂,等.覆膜與溝壟種植模式對旱作馬鈴薯產(chǎn)量形成及水分運移的影響[J].應(yīng)用生態(tài)學(xué)報,2011,22(2):389-394
Qin S H,Zhang J L,Wangd,et al.Effects of different film mulch and ridge-furrow cropping patterns on yield formation and water translocation of rainfed potato[J].Chinese Journal of Applied Ecology,2011,22(2):389-394
[45]Chen L J,F(xiàn)eng Q,Li F R,et al.Simulation of soil water and salt transfer under mulched furrow irrigation with saline water[J].Geoderma,2015,241/242:87-96
[46]Qadir M,Schubert S,Ghafoor A,et al.Amelioration strategies for sodic soils:A review[J].Land Degradation & Development,2001,12(4):357-386
[47]Walker D J,Bernal M P.The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil[J].Bioresource Technology,2008,99(2):396-403
[48]Jalali M,Ranjbar F.Effects of sodic water on soil sodicity and nutrient leaching in poultry and sheep manure amended soils[J].Geoderma,2009,153(1/2):194-204
[49]Munir A,Anwar-ul-Hassan,Nawaz S,et al.Farm manure improved soil fertility in mungbean-wheat cropping system and rectified the deleterious effects of brackish water[J].Pakistan Journal of Agricultural Sciences,2012,49(4):511-519
[50]Ouni Y,Ghnaya T,Montemurro F,et al.The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity[J].International Journal of Plant Production,2014,8(3):353-374
[51]Feleafel M N,Mirdad Z M.Ameliorating tomato productivity and water-use efficiency under water salinity[J].Journal of Animal and Plant Sciences,2014,24(1):302-309
[52]Clark G J,Dodgshun N,Sale P W G,et al.Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments[J].Soil Biology and Biochemistry,2007,39(11):2806-2817
[53]Elgharably A,Ito O.Available N and P,microbial activity,and biomass in saline sandy and clayey soils amended with residues of wheat and alfalfa[J].Communications in Soil Science and Plant Analysis,2014,45(22):2868-2877
[54]許建新,孫文彥,李燕青,等.秸稈還田對微咸水補灌的土壤鹽分抑制及作物產(chǎn)量的影響[J].中國土壤與肥料,2012(6):29-33
Xu J X,Sun W Y,Li Y Q,et al.The effect of supplementary irrigation with slight salt water and straw returned to field on soil salt content dynamic and grain yield[J].Soils and Fertilizers Sciences in China,2012(6):29-33
[55]Cao Y E,Tian Y Q,Gao L H,et al.Attenuating the negative effects of irrigation with saline water on cucumber(Cucumis sativus L.) by application of straw biological-reactor[J].Agricultural Water Management,2016,163:169-179
[56]Ahmed B A O,Inoue M,Moritani S.Effect of saline water irrigation and manure application on the available water content,soil salinity,and growth of wheat[J].Agricultural Water Management,2010,97(1):165-170
[57]Al-Busaidi K T S,Buerkert A,Joergensen R G.Carbon and nitrogen mineralization at different salinity levels in Omani low organic matter soils[J].Journal of Arid Environments,2014,100/101:106-110
[58]Van Zwieten L,Kimber S,Morris S,et al.Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J].Plant and Soil,2010,327(1/2):235-246
[59]Liu X Y,Zhang A F,Ji C Y,et al.Biochar’s effect on crop productivity and the dependence on experimental conditions — A meta-analysis of literature data[J].Plant and Soil,2013,373(1/2):583-594
[60]Conte P.Biochar,soil fertility,and environment[J].Biology and Fertility of Soils,2014,50(8):1175
[61]陳紅霞,杜章留,郭偉,等.施用生物炭對華北平原農(nóng)田土壤容重、陽離子交換量和顆粒有機質(zhì)含量的影響[J].應(yīng)用生態(tài)學(xué)報,2011,22(11):2930-2934
Chen H X,Du Z L,Guo W,et al.Effects of biochar amendment on cropland soil bulk density,cation exchange capacity,and particulate organic matter content in the North China Plain[J].Chinese Journal of Applied Ecology,2011,22(11):2930-2934
[62]Wu Y,Xu G,Shao H B.Furfural and its biochar improve the general properties of a saline soil[J].Solid Earth,2014,5(2):665-671
[63]Lashari M S,Ye Y X,Ji H S,et al.Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China:A 2-year field experiment[J].Journal of the Science of Food and Agriculture,2015,95(6):1321-1327
[64]Lin X W,Xie Z B,Zheng J Y,et al.Effects of biochar application on greenhouse gas emissions,carbon sequestration and crop growth in coastal saline soil[J].European Journal of Soil Science,2015,66(2):329-338
[65]Akhtar S S,Andersen M N,Liu F.Biochar mitigates salinity stress in potato[J].Journal of Agronomy and Crop Science,2015,201(5):368-378
[66]Almaroai Y A,Usman A R A,Ahmad M,et al.Effects of biochar,cow bone,and eggshell on Pb availability to maize in contaminated soil irrigated with saline water[J].Environmental Earth Sciences,2014,71(3):1289-1296
[67]Al-Busaidi A,Yamamoto T,Inoue M,et al.Effects of zeolite on soil nutrients and growth of barley following irrigation with saline water[J].Journal of Plant Nutrition,2008,31(7):1159-1173
[68]Jesus J,Castro F,Niemel? A,et al.Evaluation of the impact of different soil salinization processes on organic and mineral soils[J].Water,Air,& Soil Pollution,2015,226:102
[69]Murtaza G,Ghafoor A,Qadir M.Irrigation and soil management strategies for using saline-sodic water in a cotton-wheat rotation[J].Agricultural Water Management,2006,81(1/2):98-114
[70]Ahmad S,Ghafoor A,Akhtar M E,et al.Ionic displacement and reclamation of saline-sodic soils using chemical amendments and crop rotation[J].Land Degradation & Development,2013,24(2):170-178
[71]Azizian A,Sepaskhah A R.Maize response to water,salinity and nitrogen levels:Yield-water relation,water-use efficiency and water uptake reduction function[J].International Journal of Plant Production,2014,8(2):183-214
[72]Semiz Gd,Suarez D L,ünlükara A,et al.Interactive effects of salinity and N on pepper(Capsicum annuum L.) yield,water use efficiency and root zone and drainage salinity[J].Journal of Plant Nutrition,2014,37(4):595-610
[73]Rose M T,Phuong T P,Nhan D K,et al.Up to 52% N fertilizer replaced by biofertilizer in lowland rice via farmer participatory research[J].Agronomy for Sustainable Development,2014,34(4):857-868
[74]Nadeem S M,Zahir Z A,Naveed M,et al.Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions[J].Annals of Microbiology,2013,63(1):225-232
[75]張瑞福,顏春榮,張楠,等.微生物肥料研究及其在耕地質(zhì)量提升中的應(yīng)用前景[J].中國農(nóng)業(yè)科技導(dǎo)報,2013,15(5):8-16
Zhang R F,Yan C R,Zhang N,et al.Studies on microbial fertilizer and its application prospects in improving arable land quality[J].Journal of Agricultural Science and Technology,2013,15(5):8-16
[76]Jastrow Jd,Miller R M.Methods for assessing the effects of biota on soil structure[J].Agriculture,Ecosystems & Environment,1991,34(1/4):279-303
[77]Zuccarini P.Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation[J].Plant Soil and Environment,2007,53(7):283-289
[78]Xu P,Liang L Z,Dong X Y,et al.Effect of arbuscular mycorrhizal fungi on aggregate stability of a clay soil inoculating with two different host plants[J].Acta Agriculturae Scandinavica,Section B-Soil & Plant Science,2015,65(1):23-29
[79]Porcel R,Aroca R,Ruiz-Lozano J M.Salinity stress alleviation using arbuscular mycorrhizal fungi.A review[J].Agronomy for Sustainable Development,2012,32(1):181-200
[80]Talaat N B,Shawky B T.Protective effects of arbuscular mycorrhizal fungi on wheat(Triticum aestivum L.) plants exposed to salinity[J].Environmental and Experimental Botany,2014,98:20-31
[81]Rojas-Tapiasd,Moreno-Galván A,Pardo-Díaz S,et al.Effect of inoculation with plant growth-promoting bacteria(PGPB)on amelioration of saline stress in maize(Zea mays)[J].Applied Soil Ecology,2012,61:264-272
[82]Upadhyay S K,Singh J S,Saxena A K,et al.Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions[J].Plant Biology,2012,14(4):605-611
[83]Pauld,Lade H.Plant-growth-promoting rhizobacteria to improve crop growth in saline soils:A review[J].Agronomy for Sustainable Development,2014,34(4):737-752
[84]Han Q Q,Lü X P,Bai J P,et al.Beneficial soil bacterium Bacillus subtilis(GB03) augments salt tolerance of white clover[J].Frontiers in Plant Science,2014,5:525
[85]Hayat R,Ali S,Amara U,et al.Soil beneficial bacteria and their role in plant growth promotion:A review[J].Annals of Microbiology,2010,60(4):579-598
[86]Upadhyay S K,Singh D P,Saikia R.Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition[J].Current Microbiology,2009,59(5):489-496
[87]Zarea M J,Hajinia S,Karimi N,et al.Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl[J].Soil Biology and Biochemistry,2012,45:139-146
[88]Panta S,F(xiàn)lowers T,Lane P,et al.Halophyte agriculture:Success stories[J].Environmental and Experimental Botany,2014,107:71-83
[89]Ghafoor A,Murtaza G,Maann A A,et al.Treatments and economic aspects of growing rice and wheat crops during reclamation of tile drained saline-sodic soils using brackish waters[J].Irrigation and Drainage,2011,60(3):418-426
[90]He C M,Yang A F,Zhang W W,et al.Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis[J].Plant Cell,Tissue and Organ Culture(PCTOC),2010,101(1):65-78
[91]Munns R,James R A,Xu B,et al.Wheat grain yield on saline soils is improved by an ancestral Na+transporter gene[J].Nature Biotechnology,2012,30(4):360-364
[92]Nie M,Zhang Xd,Wang J Q,et al.Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization[J].Soil Biology and Biochemistry,2009,41(12):2535-2542
[93]Dijkstra F A,Cheng W X,Johnson D W.Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils[J].Soil Biology and Biochemistry,2006,38(9):2519-2526
[94]Fu S L,Cheng W X.Rhizosphere priming effects on the decomposition of soil organic matter in C4and C3grassland soils[J].Plant and Soil,2002,238(2):289-294
[95]Craig G F,Atkins C A,Bell D T.Effect of salinity on growth of four strains of Rhizobium and their infectivity and effectiveness on two species of Acacia[J].Plant and Soil,1991,133(2):253-262
[96]Pasternakd,Sagih M,DeMalach Y,et al.Irrigation with brackish water under desert conditions XI.Salt tolerance in sweet-corn cultivars[J].Agricultural Water Management,1995,28(4):325-334
[97]車升國,林治安,趙秉強,等.咸水結(jié)冰灌溉對鹽化潮土鹽基離子剖面遷移規(guī)律的影響[J].水土保持學(xué)報,2011,25(4):88-93
Che S G,Lin Z A,Zhao B Q,et al.Effects of agricultural irrigation by melting saline water ice on soil salt and ion movement under fluvo-aquic soils[J].Journal of Soil and Water Conservation,2011,25(4):88-93
[98]Sperling O,Lazarovitch N,Schwartz A,et al.Effects of high salinity irrigation on growth,gas-exchange,and photoprotection in date palms(Phoenix dactylifera L.,cv.Medjool)[J].Environmental and Experimental Botany,2014,99:100-109
[99]馬麗娟,侯振安,閔偉,等.適宜咸水滴灌提高棉花水氮利用率[J].農(nóng)業(yè)工程學(xué)報,2013,29(14):130-138
Ma L J,Hou Z A,Min W,et al.Drip irrigation with suitablesaline water improves water use efficiency for cotton[J].Transactions of the CSAE,2013,29(14):130-138
[100]Ben-Gal A,Yermiyahu U,Cohen S.Fertilization and blending alternatives for irrigation with desalinated water[J].Journal of Environmental Quality,2009,38(2):529-536
[101]Singh A.Poor quality water utilization for agricultural production:An environmental perspective[J].Land Use Policy,2015,43:259-262
[102]李志剛,劉小京,張秀梅,等.冬季咸水結(jié)冰灌溉后土壤水鹽運移規(guī)律的初步研究[J].華北農(nóng)學(xué)報,2008,23(S1):187-192
Li Z G,Liu X J,Zhang X M,et al.A primary study on the reclamation of coastal saline soil with freezing irrigation of saline water in winter[J].Acta Agriculturae Boreali-Sinica,2008,23(S1):187-192
[103]Guo K,Liu X J.Infiltration of meltwater from frozen saline water located on the soil can result in reclamation of a coastal saline soil[J].Irrigation Science,2015,33(6):441-452
[104]郭凱,張秀梅,劉小京.咸水結(jié)冰灌溉下覆膜時間對濱海鹽土水鹽運移的影響[J].土壤學(xué)報,2014,51(6):1202-1212
Guo K,Zhang X M,Liu X J.Effect of timing of plastic film mulching on water and salt movements in coastal saline soil under freezing saline water irrigation[J].Acta Pedologica Sinica,2014,51(6):1202-1212
[105]Ritzema H P,Nijland H J,Croon F W.Subsurface drainage practices:From manual installation to large-scale implementation[J].Agricultural Water Management,2006,86(1/2):60-71
[106]韓立樸,馬鳳嬌,于淑會,等.基于暗管埋設(shè)的農(nóng)田生態(tài)工程對運東濱海鹽堿地的改良原理與實踐[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2012,20(12):1680-1686
Han L P,Ma F J,Yu S H,et al.Principle and practice of saline-alkali soil improvement via subsurface pipe engineering in coastal areas of East Hebei Province[J].Chinese Journal of Eco-Agriculture,2012,20(12):1680-1686
[107]譚莉梅,劉金銅,劉慧濤,等.河北省近濱海區(qū)暗管排水排鹽技術(shù)適宜性及潛在效果研究[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2012,20(12):1673-1679
Tan L M,Liu J T,Liu H T,et al.Study on the adaptability and potential application effects of subsurface pipe drainage system in the coastal areas of Hebei Province[J].Chinese Journal of Eco-Agriculture,2012,20(12):1673-1679
[108]楊軍,邵玉翠,高偉,等.不同改良劑與培肥方式對咸灌土壤改良效果的研究[J].中國農(nóng)學(xué)通報,2012,28(36):113-118
Yang J,Shao Y C,Gao W,et al.Effect of different soil amendments and fertility betterments on improvement of saline water irrigating soil[J].Chinese Agricultural Science Bulletin,2012,28(36):113-118
[109]李慶康,張永春,楊其飛,等.生物有機肥肥效機理及應(yīng)用前景展望[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2003,11(2):78-80
Li Q K,Zhang Y C,Yang Q F,et al.The concept,mechanism,affecting factors and prospect of applying bio-organic fertilizer[J].Chinese Journal of Eco-Agriculture,2003,11(2):78-80
Advances in agricultural practices for attenuating salt stress under saline water irrigation*
NIU Junfang1,F(xiàn)ENG Junxia2,LU Yang1,3, CHEN Suying1,ZHANG Xiying1**
(1.Center for Agricultural Resources Research,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences / Key Laboratory of Agricultural Water Resources,Chinese Academy of Sciences / Hebei Key Laboratory of Water-saving Agriculture,Shijiazhuang 050022,China;2.School of Chemical Engineering,Shijiazhuang University,Shijiazhuang 050035,China;3.University of Chinese Academy of Sciences,Beijing 100049,China)
The shortage of freshwater resources has been a growing global concern.The use of saline groundwater and brackish water is an important way of solving water shortage in irrigated farmlands around the globe.Saline water and brackish water could partly replace freshwater in irrigated agriculture,but saline water or brackish water irrigation results in the accumulation of salts in surface soil and in the reduction of crop yield.This has been a significant research issue associated with water shortage and agricultural production in recent decades.In this study,measures developed to mitigate secondary salinizationdue to saline water irrigation were summarized.The measures included improving cultivation practices,biological practices and engineering designs that ameliorated soil salt stress under brackish water or saline water irrigation.The paper highlighted relevant current literatures and introduced detailed optimization agricultural cultivation manages,including the development of reasonable irrigation methods,mulching and subsoiling.There were also soil amendments with organic matter including crop residues,farm manure,green manure,gypsum,zeolite,etc.There was inoculation with plant growth promoting rhizobacteria,planting halophytes or salt-tolerance crop species,etc.All these measures were efficient in mitigating soil salt stress under saline water irrigation.In saline water and brackish water irrigation,the combination of rainfall with irrigation improved soil buffer capacity to salinity.Also planting salt tolerant crop cultivars and using biological fertilizers and soil conditioners could decrease soil salinity.Ridging and plastic mulching reduced evaporation loss while concurrently decreasing salt concentration in surface soil.Straw return to soil and deep tillage improved soil nutrient condition,water holding capacity and salt leaching.The integration of safe and efficient mode of saline water and brackish water irrigation,the designing of standard technology and application procedure,and the combination of various organic substances were all ameliorative measures.Field soil salt stress under saline water and brackish water irrigation was efficiently controllable.The effective,safe and sustainable use of brackish and saline water was achievable in improving water availability for agricultural production.
Jan.19,2016;accepted Mar.23,2016
Brackish water irrigation;Saline water irrigation;Agricultural regulation practice;Biological practice;Soil environment;Secondary soil salinization
S158.2
A
1671-3990(2016)08-1005-11
10.13930/j.cnki.cjea.160074
*河北省渤海糧倉科技示范工程專項和國家自然科學(xué)基金項目(31240014,31372131)資助
**通訊作者:張喜英,研究方向為農(nóng)業(yè)節(jié)水機理與節(jié)水技術(shù)。E-mail:xyzhang@sjziam.ac.cn
牛君仿,研究方向為農(nóng)業(yè)水肥高效利用。E-mail:niujf@sjziam.ac.cn
2016-01-19接受日期:2016-03-23
*This study was supported by the Hebei S&T Special Fund for “Bohai Granary” Project and the National Natural Science Foundation of China(31240014,31372131).
**Corresponding author,E-mail:xyzhang@sjziam.ac.cn
中國生態(tài)農(nóng)業(yè)學(xué)報(中英文)2016年8期