于志君,孫偉洋,張醒海,楊松濤,王鐵成,趙永坤,高玉偉,夏咸柱
?
流感病毒動物感染模型及其應(yīng)用
于志君,孫偉洋,張醒海,楊松濤,王鐵成,趙永坤,高玉偉,夏咸柱
[摘要]流感病毒動物感染模型是研究流感病毒致病性、傳播性和宿主抗病毒免疫機(jī)制的基礎(chǔ)。目前已有多種動物用于流感病毒研究,主要包括小鼠、雪貂和獼猴等。本文介紹了目前已經(jīng)建立的流感病毒動物感染模型及其應(yīng)用,為流感病毒的防控工作提供借鑒。
[關(guān)鍵詞]流感病毒;模型, 動物;感染
DOI∶ 10.3969/j.issn.1007-8134.2016.03.003
流感病毒屬于正粘病毒科,是單股負(fù)鏈RNA病毒[1]。根據(jù)核衣殼蛋白和基質(zhì)蛋白抗原性的差異,將流感病毒分為A、B和C型,而歷史上的4次流感大流行均由A型流感病毒引發(fā)[1]。根據(jù)血凝素和神經(jīng)氨酸酶抗原性的不同,A型流感病毒進(jìn)一步分為18種血凝素亞型和11種神經(jīng)氨酸酶亞型[2-3]。流感病毒抗原性由其2個表面糖蛋白——血凝素和神經(jīng)氨酸酶決定,其中血凝素起主要作用[4-5]。流感病毒血凝素蛋白存在一些能引起宿主產(chǎn)生中和抗體的氨基酸位點(diǎn),稱為抗原決定簇,根據(jù)這些氨基酸位點(diǎn)空間位置的不同,將其分成4類,即抗原決定簇Ca、抗原決定簇Cb、抗原決定簇Sa和抗原決定簇Sb[6]。這些抗原決定簇上的氨基酸位點(diǎn)一旦發(fā)生變化,容易引起流感病毒抗原性的改變,導(dǎo)致其發(fā)生抗原漂移或抗原轉(zhuǎn)換[4]。
由于抗原性的改變等原因,每年季節(jié)性流感在世界范圍內(nèi)可以造成250 000~500 000人死亡[1]。除此之外,近年來禽流感病毒跨越種屬障礙感染人疫情頻頻發(fā)生,如1997年香港H5N1禽流感疫情和2013年人H7N9禽流感疫情[1, 7-8]。以上事實(shí)說明流感病毒對公共衛(wèi)生安全構(gòu)成嚴(yán)重威脅。利用動物感染模型來進(jìn)行流感病毒致病和傳播機(jī)制研究及抗流感藥物和疫苗的研發(fā),將有助于增強(qiáng)我們防控流感病毒的能力。
在以往的研究中,流感動物感染模型常被用于評估流感病毒對人的感染能力以及研究流感病毒致病性和跨種傳播的分子機(jī)制,幫助我們理解宿主和病毒兩方面因素在流感病毒適應(yīng)新宿主和致病力方面的作用。此外,流感動物感染模型還能幫助我們開發(fā)新型抗流感藥物和評價流感疫苗的保護(hù)效力。目前用于流感研究的動物包括小鼠、雪貂、豚鼠、獼猴、犬、貓和禽類等[9-17]。本文將結(jié)合最新的研究進(jìn)展,綜述目前已建立的流感病毒動物感染模型及其在流感病毒致病性、傳播性及宿主抗病毒免疫機(jī)制研究、抗流感藥物開發(fā)和疫苗研究等方面的應(yīng)用。
1.1小鼠小鼠是用于評估流感感染最常用的哺乳動物感染模型。研究發(fā)現(xiàn),通常在實(shí)驗室使用的小鼠的呼吸道均表達(dá)SAα2,6和 SAα2,3 2種唾液酸受體,從而對人和禽流感病毒易感。然而小鼠品系不同,其受體分布也有所差別[18-19]。研究表明BALB/c小鼠的多數(shù)器官都表達(dá)SAα2,6和SAα2,3受體,包括氣管、肺、小腦、脾、肝和腎,而C57BL/6J小鼠的肺中缺乏SAα2,6受體,SAα2,3則被證明存在于纖毛孔和肺泡上皮Ⅱ型細(xì)胞上[18-19]。
雖然實(shí)驗室小鼠可同時表達(dá)2種受體,然而SAa2,3受體占有優(yōu)勢可以解釋為什么人甲型流感(H1、H2和 H3)一般要經(jīng)過在小鼠體內(nèi)適應(yīng)性傳代才能有效復(fù)制[20]。一些高致病性的人流感病毒如重新拯救的1918流感病毒也能不經(jīng)過適應(yīng)性傳代而直接感染小鼠[21]。然而,考慮到盡管小鼠存在SAa2,6受體,但大多數(shù)人流感病毒不能感染小鼠,從而可以推斷僅由受體分布并不能夠決定感染性。
雖然小鼠并非流感病毒的自然宿主,但是小鼠對流感病毒較為易感,多種流感毒株可以實(shí)驗感染小鼠甚至引起小鼠死亡。多株人的H1N1、H3N2亞型流感病毒和禽的H5N1、H7N7、H7N9、H9N2等亞型流感病毒均可在實(shí)驗條件下通過鼻內(nèi)接種[(感染劑量為107雞胚半數(shù)感染量(50% egg infectious dose, EID50)或空斑形成單位(plaque forming units, PFU)]的方式感染小鼠[22-27]。一旦成功感染不同亞型流感病毒(包括人的H1N1 和H3N2亞型季節(jié)性流感病毒、H5N1高致病性禽流感病毒、H7N9低致病性禽流感病毒等)后,均可表現(xiàn)出一些相似的臨床癥狀,如體重減輕、肺炎、弓背等[22-25],部分流感毒株(包括一些H5N1亞型高致病性禽流感病毒和1918西班牙流感病毒等等)感染小鼠后可引起小鼠死亡[28-29]。雖然小鼠在實(shí)驗條件下,可以成功感染多種亞型的流感病毒,但幾乎所有流感病毒均不能在小鼠間水平傳播,小鼠不是一個理想的流感病毒傳播模型。
小鼠作為流感動物感染模型,有其優(yōu)缺點(diǎn)。其優(yōu)點(diǎn)是價格低、遺傳譜系清楚和品系純等;缺點(diǎn)是小鼠非流感的天然宿主,缺少人流感病毒的臨床癥狀、多數(shù)毒株表現(xiàn)體溫過低而非發(fā)熱、不能傳播病毒和感染能力依賴鼠的種類等[30]。
1.2雪貂從1933年起,雪貂用來研究流感病毒,直至今天仍然被人們認(rèn)為是研究流感病毒最合適的動物。
雪貂比較易感多種人和禽流感病毒。雪貂與人在患病時的臨床表現(xiàn)、肺功能、氣道形態(tài)、呼吸道細(xì)胞種類等方面有許多相似性。與人相似,雪貂呼吸道分布SAα-2,6和SAα-2,3 受體,SAα-2,6從上呼吸道延伸到下呼吸道比如支氣管,SAα-2,3受體主要分布在下呼吸道末梢呼吸道細(xì)支氣管。然而,最新研究表明在雪貂體內(nèi)SAα-2,6優(yōu)勢受體貫穿于包括下呼吸道在內(nèi)的整個呼吸道[31]。
雪貂是一種較為理想的流感感染和傳播模型。雪貂對大部分流感病毒均易感。雪貂通過鼻內(nèi)接種方式(感染劑量107EID50或PFU)感染人H1N1、H3N2亞型和禽H5N1、H7N9、H9N2等亞型流感病毒后癥狀包括體重減輕、發(fā)熱、嗜睡、脈搏及呼吸頻率改變、感冒癥狀(如噴嚏、咳嗽)等[10, 32-35],雪貂感染H5N1高致病性禽流感病毒,可能出現(xiàn)重癥病情,導(dǎo)致雪貂死亡[36-37]。雪貂不但是一種良好流感病毒感染模型,還是一種良好的流感病毒傳播模型。人H1N1、人H3N2亞型流感病毒、H5N1高致病性禽流感病毒、H7N9低致病性禽流感病毒、H9N2亞型禽流感病毒均可在雪貂間通過直接接觸或水平傳播[38-42]。
雪貂作為流感動物感染模型,有其優(yōu)缺點(diǎn)。其優(yōu)點(diǎn)是唾液酸受體分布與人相似、與人類臨床癥狀相似、與人類呼吸道病理變化相似等;缺點(diǎn)是實(shí)驗雪貂的年齡和體積大小沒有標(biāo)準(zhǔn)化、缺少特定的免疫抗體、價格較高和飼養(yǎng)條件較高等[30]。
1.3非人靈長類動物雖然其他動物模型價格相對低廉并且更便于使用,但是從生理學(xué)角度以及基因序列角度來講卻沒有非人靈長動物那樣與人更為相近。人們研究將非人靈長類動物作為流感動物模型,因為這些動物對疾病的反應(yīng)比小動物更近似于人類本身。然而,從實(shí)際角度考慮,這種動物模型費(fèi)用消耗較高并且難于操作,因此并不常用。各種各樣的非人靈長動物,包括舊大陸猴(恒河猴和獼猴)和新大陸猴(卷尾猴)都被用作禽流感病毒的研究[30]。
與雪貂不同,病毒在非人靈長動物吸附模式與在人呼吸道具有顯著的不同;獼猴感染H3N2病毒后,病毒吸附不發(fā)生在氣管、支氣管或者細(xì)支氣管,這就可以解釋為什么獼猴感染人H3N2病毒后臨床癥狀不明顯。部分非人靈長動物對季節(jié)性流感病毒的敏感性降低歸因于非人靈長動物和人類的受體分布不同[31]。
非人靈長類動物是一種較為理想的流感病毒感染模型。非人靈長類動物對許多流感病毒均易感。非人靈長類動物通過鼻內(nèi)接種方式(感染劑量107EID50或PFU)感染人H1N1、H3N2亞型和禽H5N1、H7N9、H9N2等亞型流感病毒后癥狀包括食欲或體重下降、肺炎、發(fā)熱等[43-47],感染H5N1高致病性禽流感病毒后可出現(xiàn)致死性感染[48-49]。幾乎所有流感病毒均不能在非人靈長類動物間水平傳播,非人靈長類動物不是一個理想的流感病毒傳播模型。
非人靈長類動物作為流感動物感染模型,有其優(yōu)缺點(diǎn)。其優(yōu)點(diǎn)是在進(jìn)化上與人接近、臨床癥狀與人更相似、病理情況和病毒復(fù)制與人相似、易于采樣分析和細(xì)胞凋亡反應(yīng)與人相似等;缺點(diǎn)是非人靈長類動物的價格較高,不易于實(shí)驗操作,對人流感病毒不如人敏感,臨床癥狀與病毒、宿主種群及攻毒方式有關(guān),唾液酸受體分布與人不一定相似等[30]。
1.4新出現(xiàn)的流感病毒動物感染模型除以上3種主要的流感動物感染模型外,近年來豚鼠、犬和貓等流感動物感染模型也相繼建立起來并開始應(yīng)用于流感病毒傳播性和致病性等方面的研究[11,13-14]。
豚鼠是一種較為理想的傳播模型,豚鼠對流感病毒的易感性較好。研究發(fā)現(xiàn)將流感病毒通過107EID50或PFU的劑量鼻內(nèi)接種豚鼠,多株人H1N1、H3N2、H5N1和H9N2亞型流感病毒均可在豚鼠間水平傳播,但幾乎不表現(xiàn)出任何明顯的臨床癥狀[42, 50-52]。
犬和貓作為流感動物模型的應(yīng)用還較少。犬和貓對多種亞型流感病毒有一定的易感性。研究發(fā)現(xiàn)H1N1、H3N2、H5N1、H6N1和H9N2亞型禽流感病毒可以感染犬,而H1N1和H9N2亞型流感病毒可以感染貓,感染劑量一般大于107EID50或PFU[13-14, 53-56]。犬和貓感染后表現(xiàn)出相似的臨床癥狀,包括發(fā)熱、流鼻涕、肺炎等。犬和貓作為傳播模型的研究較少。有研究發(fā)現(xiàn)H3N2禽源犬流感病毒可以在犬群中水平傳播[57-58]。
禽類常用于評價禽流感病毒致病性和傳播性。4~10周齡的SPF雞常用于評估禽流感病毒的致病性強(qiáng)弱和疫苗開發(fā),而不同種類的鴨類用于研究禽流感病毒的地理分布[59-61]。
2.1致病性研究流感病毒小鼠感染模型目前多用于流感病毒致病性研究。Hatta等[9]報道利用H5N1小鼠感染模型發(fā)現(xiàn)決定H5N1高致病性的2個分子標(biāo)記PB2-E627K和HA多堿性裂解位點(diǎn),揭示了1997年香港H5N1流感高致病性的原因。Jiao等[62]報道發(fā)現(xiàn)NS1-42S能夠增強(qiáng)H5N1病毒對小鼠的致病性,而NS1-42P則減弱病毒對小鼠的致病性,從而證明NS1-P42S是H5N1病毒哺乳動物致病性分子標(biāo)記。Hensley等[63]報道發(fā)現(xiàn)血凝素受體親合力調(diào)控流感病毒抗原性變異。Jagger 等[64]報道發(fā)現(xiàn)PA-X缺失會導(dǎo)致感染流感病毒的小鼠免疫應(yīng)答改變,炎癥反應(yīng)、趨化作用及T細(xì)胞信號通路加強(qiáng)。Maines等[65]報道發(fā)現(xiàn)甲型H1N1流感病毒對小鼠具有一定的致病性,闡述了該病毒的毒力表型。
獼猴在致病表型研究中發(fā)揮著重要作用。通過獼猴模型,人們分析了甲型H1N1流感病毒、新型H7N9流感病毒和B型流感病毒在靈長類動物上的致病表型[66-68]。Zhang等[43]發(fā)現(xiàn)H9N2亞型禽流感病毒能夠在獼猴體內(nèi)有效復(fù)制。
由于犬和貓常作為寵物與人類密切接觸,有作為中間宿主將動物流感病毒傳染給人類的機(jī)會,因此犬和貓模型也被建立并應(yīng)用于流感致病性方面的研究。Song等[57]的研究發(fā)現(xiàn),犬能夠?qū)嶒炐愿腥綡3N2亞型禽流感病毒。Zhang[14]和Cheng等[69]的研究發(fā)現(xiàn),犬和貓能夠?qū)嶒炇腋腥綡9N2禽流感病毒,犬能夠?qū)嶒炐愿腥綡6N1亞型禽流感病毒并通過糞便和口腔途徑排毒。
2.2傳播性研究雪貂目前多用于研究流感病毒的傳播性。Tumpey等[70]報道發(fā)現(xiàn)2個位點(diǎn)決定1918年西班牙流感病毒能否在雪貂間進(jìn)行水平傳播,并發(fā)現(xiàn)SAα-2,6 Gal受體偏嗜性是流感病毒能否在哺乳動物間傳播的必要條件。Herfst等[71]和Imai等[72]發(fā)現(xiàn)通過基因改造和雪貂連續(xù)傳代,H5N1亞型禽流感病毒能獲得在雪貂間水平傳播的能力。Zhang等[41]發(fā)現(xiàn)2013年中國大陸新出現(xiàn)的H7N9流感病毒能夠通過呼吸道飛沫的形式在雪貂間水平傳播。雪貂作為評價流感病毒水平傳播能力的理想模型,一直在流感病毒傳播性研究中發(fā)揮重要作用。
豚鼠是近年來開發(fā)的一種用于研究流感病毒水平傳播能力的動物模型。Lowen等[73]報道發(fā)現(xiàn)豚鼠可以作為研究人流感病毒傳播能力的模型。Steel等[74]還報道PB2-E627K和PB2-D701N突變能夠增強(qiáng)流感病毒在豚鼠間水平傳播的能力。Zhang等[75]報道PB2和HA基因上的特殊分子標(biāo)記有助于甲型H1N1流感病毒在豚鼠間水平傳播。Gao等[76]報道發(fā)現(xiàn)PB2-D701N和HA-T160A是H5N1亞型禽流感病毒能夠在豚鼠間水平傳播的先決條件。Zhang等[11]報道H5N1和甲型H1N1流感病毒重配病毒能夠在豚鼠間水平傳播。隨著對流感病毒傳播性研究的深入,豚鼠動物模型在流感病毒研究中的作用越來越大。
2.3宿主抗病毒免疫機(jī)制研究小鼠、雞、鴨等也被應(yīng)用于宿主抗病毒免疫機(jī)制研究。Cao等[77]對感染雞和正常雞的腦組織進(jìn)行比較蛋白質(zhì)組學(xué)分析時發(fā)現(xiàn),嗜神經(jīng)性流感病毒感染雞以后,腦組織中共有31種蛋白發(fā)生了表達(dá)差異。這些差異表達(dá)的蛋白分別參與細(xì)胞骨架系統(tǒng)的調(diào)節(jié)以及宿主細(xì)胞的大分子生物合成代謝調(diào)節(jié)等。Boon 等[78]發(fā)現(xiàn)高致病H5N1流感病毒對C57BL/6J和DBA/2J 2種不同小鼠的致死劑量差距在10 000倍以上,利用全基因芯片技術(shù)分析發(fā)現(xiàn)DBA易感小鼠炎性趨化因子CCL2和TNF-α表達(dá)量增加,同時發(fā)現(xiàn)了溶血性補(bǔ)體作為抗病性的潛在靶點(diǎn)。Barber等[79]研究發(fā)現(xiàn)雞體內(nèi)缺少RIG-I受體,而鴨體內(nèi)存在RIG-I受體,在感染流感病毒后其體內(nèi)RIG-I表達(dá)水平可以調(diào)高200倍,而將鴨的RIG-I基因轉(zhuǎn)染進(jìn)入雞胚成纖維細(xì)胞后可以使流感病毒在細(xì)胞內(nèi)的毒力降低2倍左右,各種現(xiàn)象說明RIG-I可能是禽類的天然抗流感病毒基因。
2.4抗流感藥物篩選和疫苗研究動物模型在抗流感藥物篩選和流感疫苗研究方面發(fā)揮了重要作用。Webster團(tuán)隊通過將與唾液酸結(jié)合的Sp2CBMTD蛋白藥物通過鼻內(nèi)的方式對小鼠給藥,發(fā)現(xiàn)100 ng給藥劑量可100%保護(hù)小鼠抵御H7N9的致死性感染[80]。Wu等[81]通過給小鼠注射一種名為磷脂綴合TLR7配體的小分子藥物,發(fā)現(xiàn)該藥物可有效保護(hù)被H1N1亞型流感病毒攻擊的小鼠。Kong等給雪貂接種一種新型的H7N9冷適應(yīng)疫苗,免疫成功后用H7N9病毒接種雪貂,結(jié)果發(fā)現(xiàn)新型H7N9冷適應(yīng)疫苗可以保護(hù)雪貂免于水平傳播的感染[82]。Uraki等[83]將一種敲除PB2基因的新型流感疫苗免疫小鼠,發(fā)現(xiàn)小鼠體內(nèi)能產(chǎn)生有效的中和抗體,并可抵御甲型H1N1流感病毒A/ California/04/2009 (H1N1 pdm09)株和H5N1高致病性禽流感病毒A/Vietnam/1203/2004 (H5N1)的致死性感染。以上研究成果表明,抗流感藥物的篩選和疫苗研究離不開動物模型的支持,通過攻毒保護(hù)實(shí)驗,可以篩選出有效的抗流感藥物和有免疫保護(hù)效果的流感疫苗。
近年來流感疫情頻頻暴發(fā),如2009年的甲型H1N1流感[66, 84]和2013年的新型H7N9亞型流感[85-86],給公共健康構(gòu)成嚴(yán)重危害,給社會造成重大經(jīng)濟(jì)損失。然而目前我們對流感病毒的了解程度仍然有限,很多方面仍然知之甚少,因此加強(qiáng)對流感病毒的研究刻不容緩。流感病毒致病性、傳播性和宿主抗病毒免疫一直是流感病毒研究的熱點(diǎn),而構(gòu)建理想的動物感染模型則可以為上述研究奠定基礎(chǔ)。
本文討論了已被用于研究流感宿主范圍和發(fā)病機(jī)制的動物模型。到目前為止,尚沒有單一理想的動物模型可用于流感病毒感染研究。每一種流感病毒動物感染模型都有各自的優(yōu)缺點(diǎn),因此當(dāng)選擇動物模型時要慎重考慮不同動物感染模型的限制性條件。通過系統(tǒng)地研究,構(gòu)建流感病毒動物感染模型,發(fā)現(xiàn)流感病毒致病性增強(qiáng)的分子標(biāo)記和揭示流感病毒跨種傳播和致病性變異的分子機(jī)制,將有助于提高我們對流感病毒監(jiān)測和疫苗開發(fā)的能力,為新型疫苗和治療藥物的開發(fā)提供評價模型,為靶向制劑的研發(fā)提供候選靶點(diǎn),同時豐富流感病毒病原生物學(xué)知識儲備。
【參考文獻(xiàn)】
[1] Belser JA, Szretter KJ, Katz JM, et al. Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses[J]. Adv Virus Res, 2009, 73:55-97.
[2] Wu Y, Wu Y, Tefsen B, et al. Bat-derived influenza-like viruses H17N10 and H18N11[J]. T Trends Microbiol, 2014, 22(4):183-191.
[3] Zhu X, Yu W, McBride R, et al. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities[J]. Proc Natl Acad Sci USA, 2013, 110(4):1458-1463.
[4] Schmolke M, García-Sastre A. Evasion of innate and adaptive immune responses by influenza A virus[J]. Cell Microbiol, 2010,12(7):873-880.
[5] van de Sandt CE, Kreijtz JH, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses[J]. Viruses, 2012, 4(9):1438-1476.
[6] Xu R, Ekiert DC, Krause JC, et al. Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus[J]. Science, 2010, 328(5976):357-360.
[7] Gao R, Cao B, Hu Y, et al. Human infection with a novel avianorigin influenza A (H7N9) virus[J]. N Engl J Med, 2013,368(20):1888-1897.
[8] SHU Y. Human infection with H7N9 virus[J]. N Engl J Med,2013, 369(9):880.
[9] Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses[J]. Science,2001, 293(5536):1840-1842.
[10] Camp JV, Bagci U, Chu YK, et al. Lower respiratory tract infection of the ferret by 2009 H1N1 pandemic influenza A virus triggers biphasic, systemic, and local recruitment of neutrophils[J]. J Virol, 2015, 89(17):8733-8748.
[11] Zhang Y, Zhang Q, Kong H, et al. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet[J]. Science, 2013, 340(6139):1459-1463.
[12] Shinya K, Gao Y, Cilloniz C, et al. Integrated clinical, pathologic,virologic, and transcriptomic analysis of H5N1 influenza virusinduced viral pneumonia in the rhesus macaque[J]. J Virol,2012, 86(11):6055-6066.
[13] Cheng K, Yu Z, Gao Y, et al. Experimental infection of dogs with H6N1 avian influenza A virus[J]. Arch Virol, 2014,159(9):2275-2282.
[14] Zhang K, Zhang Z, Yu Z, et al. Domestic cats and dogs are susceptible to H9N2 avian influenza virus[J]. Virus Res, 2013,175(1):52-57.
[15] Fan Z, Ci Y, Liu L, et al. Phylogenetic and pathogenic analyses of three H5N1 avian influenza viruses (clade 2.3.2.1) isolated from wild birds in Northeast China[J]. Infect Genet Evol, 2015,29:138-145.
[16] Cheng K, Yu Z, Chai H, et al. PB2-E627K and PA-T97Isubstitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice[J]. Virology, 2014, 468-470:207-213.
[17] Yu Z, Sun W, Li X, et al. Adaptive amino acid substitutions enhance the virulence of a reassortant H7N1 avian influenza virus isolated from wild waterfowl in mice[J]. Virology, 2015,476:233-239.
[18] Ibricevic A, Pekosz A, Walter MJ, et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells[J]. J Viro, 2006, 80(15):7469-7480.
[19] Ning ZY, Luo MY, Qi WB, et al. Detection of expression of influenza virus receptors in tissues of BALB/c mice by histochemistry[J]. Vet Res Commun, 2009, 33(8):895-903.
[20] van Riel D, Munster VJ, de Wit E, et al. H5N1 virus attachment to lower respiratory tract[J]. Science, 2006, 312(5772):399.
[21] Belser JA, Wadford DA, Pappas C, et al. Pathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1)viruses in mice[J]. J Virol, 2010, 84(9):4194-4203.
[22] Otte A, Gabriel G. 2009 pandemic H1N1 influenza A virus strains display differential pathogenicity in C57BL/6J but not BALB/c mice[J]. Virulence, 2011, 2(6):563-566.
[23] Job ER, Bottazzi B, Short KR, et al. A single amino acid substitution in the hemagglutinin of H3N2 subtype influenza A viruses is associated with resistance to the long pentraxin PTX3 and enhanced virulence in mice[J]. J Immunol, 2014, 192(1):271-281.
[24] Li J, Ishaq M, Prudence M, et al. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2[J]. Virus Res, 2009,144(1-2):123-129.
[25] Bi Y, Xiao H, Chen Q, et al. Changes in the length of the neuraminidase stalk region impacts H7N9 virulence in mice[J]. J Virol, 2015, 90(4):2142-2149.
[26] Sang X, Wang A, Chai T, et al. Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adoption in mice[J]. Arch Virol, 2015,160(5):1267-1277.
[27] Chen Q, Yu Z, Sun W, et al. Adaptive amino acid substitutions enhance the virulence of an H7N7 avian influenza virus isolated from wild waterfowl in mice[J]. Vet Microbiol, 2015, 177(1-2):18-24.
[28] He S, Shi J, Qi X, et al. Lethal infection by a novel reassortant H5N1 avian influenza A virus in a zoo-housed tiger[J]. Microbes Infect, 2015, 17(1):54-61.
[29] Tumpey TM, García-Sastre A, Taubenberger JK, et al. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus[J]. Proc Natl Acad Sci USA,2004, 101(9):3166-3171.
[30] O'Donnell CD, Subbarao K. The contribution of animal models to the understanding of the host range and virulence of influenza A viruses[J]. Microbes Infect, 2011, 13(5):502-515.
[31] van Riel D, Munster VJ, de Wit E, et al. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals[J]. Am J Pathol, 2007, 171(4):1215-1223.
[32] Xie H, Wan XF, Ye Z, et al. H3N2 mismatch of 2014-15 northern hemisphere influenza vaccines and head-to-head comparison between human and ferret antisera derived antigenic maps[J]. Sci Rep, 2015, 5:15279.
[33] Park SJ, Kim EH, Pascua PN, et al. Evaluation of heterosubtypic cross-protection against highly pathogenic H5N1 by active infection with human seasonal influenza A virus or trivalent inactivated vaccine immunization in ferret models[J]. J Gen Virol, 2014, 95(Pt 4):793-798.
[34] Kreijtz JH, Wiersma LC, De Gruyter HL, et al. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9)pneumonia ferret model[J]. J Infect Dis, 2015, 211(5):791-800.
[35] Kimble JB, Sorrell E, Shao H, et al. Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model[J]. Proc Natl Acad Sci USA,2011, 108(29):12084-12088.
[36] Belser JA, Tumpey TM. H5N1 pathogenesis studies in mammalian models[J]. Virus Res, 2013, 178(1):168-185.
[37] Peng BH, Yun N, Chumakova O, et al. Neuropathology of H5N1 virus infection in ferrets[J]. Vet Microbiol, 2012, 156(3-4):294-304.
[38] Yen HL, Lipatov AS, Ilyushina NA, et al. Inefficient transmission of H5N1 influenza viruses in a ferret contact model[J]. J Virol,2007, 81(13):6890-6898.
[39] Roberts KL, Shelton H, Stilwell P, et al. Transmission of a 2009 H1N1 pandemic influenza virus occurs before fever is detected, in the ferret model[J]. PLoS One, 2012, 7(8):e43303.
[40] Gustin KM, Belser JA, Veguilla V, et al. Environmental conditions affect exhalation of H3N2 seasonal and variant influenza viruses and respiratory droplet transmission in ferrets[J]. PLoS One,2015, 10(5):e0125874.
[41] Zhang Q, Shi J, Deng G, et al. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet[J]. Science, 2013,341(6144):410-414.
[42] Sang X, Wang A, Ding J, et al. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets[J]. Sci Rep, 2015, 5:15928.
[43] Zhang K, Xu W, Zhang Z, et al. Experimental infection of nonhuman primates with avian influenza virus (H9N2)[J]. Arch Virol, 2013, 158(10):2127-2134.
[44] Siegers JY, Short KR, Leijten LM, et al. Novel avian-origin influenza A (H7N9) virus attachment to the respiratory tract of five animal models[J]. J Virol, 2014, 88(8):4595-4599.
[45] Fan S, Gao Y, Shinya K, et al. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates [J]. PLoS Pathog, 2009, 5(5):e1000409.
[46] Skinner JA, Zurawski SM, Sugimoto C, et al. Immunologic characterization of a rhesus macaque H1N1 challenge model for candidate influenza virus vaccine assessment[J]. Clin Vaccine Immunol, 2014, 21(12):1668-1680.
[47] Kobayashi SD, Olsen RJ, LaCasse RA, et al. Seasonal H3N2 influenza A virus fails to enhance Staphylococcus aureus coinfection in a non-human primate respiratory tract infection model [J]. Virulence, 2013, 4(8):707-715.
[48] Cillóniz C, Shinya K, Peng X, et al. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes[J]. PLoS Pathog, 2009, 5(10):e1000604.
[49] Baskin CR, Bielefeldt-Ohmann H, Tumpey TM, et al. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus [J]. Proc Natl Acad Sci USA, 2009, 106(9):3455-3460.
[50] Zhang H, Li X, Ma R, et al. Airborne spread and infection of a novel swine-origin influenza A (H1N1) virus[J]. Virol J, 2013,10:204.
[51] Gabbard JD, Dlugolenski D, Van Riel D, et al. Novel H7N9 influenza virus shows low infectious dose, high growth rate, and efficient contact transmission in the guinea pig model[J]. J Virol, 2014, 88(3):1502-1512.
[52] Tellier R. Aerosol transmission of influenza A virus: a review of new studies[J]. J R Soc Interface, 2009, 6 Suppl 6:S783-S790.
[53] Lin D, Sun S, Du L, et al. Natural and experimental infection of dogs with pandemic H1N1/2009 influenza virus[J]. J Gen Virol,2012, 93(Pt 1):119-123.
[54] Lee DH, Bae SW, Park JK, et al. Virus-like particle vaccine protects against H3N2 canine influenza virus in dog[J]. Vaccine,2013, 31(32):3268-3273.
[55] Songserm T, Amonsin A, Jam-on R, et al. Fatal avian influenza A H5N1 in a dog[J]. Emerg Infect Dis, 2006, 12(11):1744-1747.
[56] van den Brand JM, Stittelaar KJ, van Amerongen G, et al. Experimental pandemic (H1N1) 2009 virus infection of cats[J]. Emerg Infect Dis, 2010, 16(11):1745-1747.
[57] Song D, Lee C, Kang B, et al. Experimental infection of dogs with avian-origin canine influenza A virus (H3N2)[J]. Emerg Infect Dis, 2009, 15(1):56-58.
[58] Song D, Kang B, Lee C, et al. Transmission of avian influenza virus (H3N2) to dogs[J]. Emerg Infect Dis, 2008, 14(5):741-746.
[59] Munster VJ, Schrauwen EJ, de Wit E, et al. Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype[J]. J Virol, 2010, 84(16):7953-7960.
[60] Rimmelzwaan GF, Claas EC, van Amerongen G, et al. ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus[J]. Vaccine, 1999, 17(11-12):1355-1358.
[61] Latorre-Margalef N, Gunnarsson G, Munster VJ, et al. Effects of influenza A virus infection on migrating mallard ducks[J]. Proc Biol Sci, 2009, 276(1659):1029-1036.
[62] Jiao P, Tian G, Li Y, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice[J]. J Virol, 2008, 82(3):1146-1154.
[63] Hensley SE, Das SR, Bailey AL, et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift[J]. Science, 2009, 326(5953):734-736.
[64] Jagger BW, Wise HM, Kash JC, et al. An overlapping proteincoding region in influenza A virus segment 3 modulates the host response[J]. Science, 2012, 337(6091):199-204.
[65] Maines TR, Jayaraman A, Belser JA, et al. Transmission and pathogenesis of swine-origin 2009 A (H1N1) influenza viruses in ferrets and mice[J]. Science, 2009, 325(5939):484-587.
[66] Itoh Y, Shinya K, Kiso M, et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses[J]. Nature, 2009,460(7258):1021-1025.
[67] Watanabe T, Kiso M, Fukuyama S, et al. Characterization of H7N9 influenza A viruses isolated from humans[J]. Nature, 2013,501(7468):551-555.
[68] Kitano M, Itoh Y, Kodama M, et al. Establishment of a cynomolgus macaque model of influenza B virus infection[J]. Virology, 2010,407(2):178-184.
[69] Cheng K, Yu Z, Gao Y, et al. Experimental infection of dogs with H6N1 avian influenza A virus[J]. Arch Virol, 2014,159(9):2275-2282.
[70] Tumpey TM, Maines TR, Van Hoeven N, et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission[J]. Science, 2007, 315(5812):655-659.
[71] Herfst S, Schrauwen EJ, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets[J]. Science, 2012,336(6088):1534-1541.
[72] Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets[J]. Nature, 2012,486(7403):420-428.
[73] Lowen AC, Mubareka S, Tumpey TM, et al. The guinea pig as a transmission model for human influenza viruses[J]. Proc Natl Acad Sci USA, 2006, 103(26):9988-9992.
[74] Steel J, Lowen AC, Mubareka S, et al. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N[J]. PLoS Pathog, 2009, 5(1):e1000252.
[75] Zhang Y, Zhang Q, Gao Y, et al. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus[J]. J Virol, 2012,86(18):9666-9674.
[76] Gao Y, Zhang Y, Shinya K, et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host[J]. PLoS pathogens, 2009,5(12):e1000709.
[77] Cao Z, Han Z, Shao Y, et al. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus[J]. Proteome Sci, 2011, 9:11.
[78] Boon AC, deBeauchamp J, Hollmann A, et al. Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice[J]. J Virol, 2009, 83(20):10417-10426.
[79] Barber MR, Aldridge JR Jr, Webster RG, et al. Association of RIG-I with innate immunity of ducks to influenza[J]. Proc Natl Acad Sci USA, 2010, 107(13):5913-5918.
[80] Govorkova EA, Baranovich T, Marathe BM, et al. Sialic acidbinding protein Sp2CBMTD protects mice against lethal challenge with emerging influenza A (H7N9) virus[J]. Antimicrob Agents Chemother, 2015, 59(3):1495-1504.
[81] Wu CC, Crain B, Yao S, et al. Innate immune protection against infectious diseases by pulmonary administration of a phospholipidconjugated TLR7 ligand[J]. J Innate Immun, 2014, 6(3):315-324.
[82] Kong H, Zhang Q, Gu C, et al. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals[J]. Sci Rep, 2015, 5:11233.
[83] Uraki R, Kiso M, Iwatsuki-Horimoto K, et al. A novel bivalent vaccine based on a PB2-knockout influenza virus protects mice from pandemic H1N1 and highly pathogenic H5N1 virus challenges [J]. J Virol, 2013, 87(14):7874-7881.
[84] Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus[J]. Nature,2009, 459(7249):931-969.
[85] Bai T, Zhou J, Shu Y. Serologic study for influenza A (H7N9)among high-risk groups in China[J]. N Engl J Med, 2013,368(24):2339-2340.
[86] Zhou J, Wang D, Gao R, et al. Biological features of novel avian influenza A (H7N9) virus[J]. Nature, 2013, 499(7459):500-503.
(2015-11-20收稿 2016-01-05修回)
(責(zé)任編委 王永怡 本文編輯 張云輝)
[文獻(xiàn)標(biāo)志碼][中國圖書資料分類號] R373.1 A
[文章編號]1007-8134(2016)03-0133-06
*Corresponding author. YANG Song-tao, E-mail: yst62041@163.com; XIA Xian-zhu, E-mail: xiaxzh@cae.cn
[基金項目 ]國家新藥創(chuàng)制重大專項“H7N9馬血清制備”(2014ZX09102044-007);北京協(xié)和醫(yī)學(xué)院研究生創(chuàng)新基金項目(10023-1001-1010)
[作者單位]100021,北京協(xié)和醫(yī)學(xué)院和中國醫(yī)學(xué)科學(xué)院醫(yī)學(xué)實(shí)驗動物研究所(于志君、夏咸柱);130062 長春,解放軍軍事醫(yī)學(xué)科學(xué)院軍事獸醫(yī)研究所 吉林省人獸共患病預(yù)防與控制重點(diǎn)實(shí)驗室(于志君、孫偉洋、張醒海、楊松濤、王鐵成、趙永坤、高玉偉、夏咸柱);225009 揚(yáng)州,江蘇省重要動物傳染病防控協(xié)同創(chuàng)新中心(楊松濤、高玉偉、夏咸柱)
[通訊作者]楊松濤,E-mail∶ yst62041@163.com;夏咸柱,E-mail∶xiaxzh@cae.cn
Animal models of influenza and their application
YU Zhi-jun, SUN Wei-yang, ZHANG Xing-hai, YANG Song-tao*, WANG Tie-cheng, ZHAO Yong-kun, GAO Yu-wei, XIA Xian-zhu*
Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
[Abstract]Animal models of influenza are the basis for the study of the pathogenicity, transmissibility and the host antiviral immune mechanisms of influenza virus. A variety of animals including mice, ferrets and macaques, has been used for the study of influenza virus. The authors describe the animal models of influenza and their application, so as to provide reference for the prevention and control of influenza virus.
[Key words]influenza virus; models, animal; infection