楊朋兵 李 祥 黃 勇# 林 興 朱 強(qiáng) 朱 亮 周 健
(1.蘇州科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 蘇州 215011;2.蘇州科技大學(xué)環(huán)境生物技術(shù)研究所,江蘇 蘇州 215011)
圖1 Anammox反應(yīng)模型Fig.1 Anammox reaction model
圖2 傳統(tǒng)硝化、反硝化工藝與Anammox工藝對(duì)比Fig.2 Comparison of traditional nitrification and denitrification process and Anammox process
(1)
(2)
(3)
總反應(yīng)方程為:
(4)
這種感覺終于迎來了驗(yàn)證的一天。在雙方父母的一再催促下,我跟葉靄玲去領(lǐng)了結(jié)婚證。我明白這是一個(gè)極不靠譜的舉措,但我實(shí)在找不出理由來拒絕葉靄玲。事實(shí)上,這個(gè)日子被我往后推了又推,以各種各樣的理由,有些是完全站不住腳的。然后,它忽然呈現(xiàn)出不可動(dòng)搖的面目,被選定在下一個(gè)吉日良辰。真是千挑萬揀,實(shí)在沒有辦法再搪塞到下一次了。于是,我倆站在了結(jié)婚登記處的柜臺(tái)前,面對(duì)一個(gè)胖胖的面目慈祥的女登記員,聽她問,你愿意娶她為妻嗎?我答,我愿。她又問,你愿意嫁給他嗎?葉靄玲答,我愿意。然后登記員向我們收取了9元錢的登記費(fèi),給我們發(fā)了兩份大紅的結(jié)婚證書,打發(fā)我們走到陽光底下來。
Anammox菌由復(fù)雜的生物組成,同時(shí)包含了具有硝化功能和反硝化功能的細(xì)菌[11]1231-1233,因此體系中能夠發(fā)生異養(yǎng)反硝化、自養(yǎng)反硝化等附帶反應(yīng)。當(dāng)環(huán)境在有機(jī)和無機(jī)條件下變化時(shí),其發(fā)生的反應(yīng)就不僅僅是單一的硫酸鹽型Anammox反應(yīng),造成產(chǎn)物存在區(qū)別。若產(chǎn)物來源于單一反應(yīng),可采取反投加的方式來判斷體系中是否存在對(duì)應(yīng)的反應(yīng),針對(duì)存在中間反應(yīng)、反應(yīng)速率較快產(chǎn)物難以檢測(cè)或多個(gè)反應(yīng)都可生成同一產(chǎn)物的情況,則建議采用同位素示蹤技術(shù)對(duì)目標(biāo)元素進(jìn)行標(biāo)記,并結(jié)合功能酶活性抑制物來確定反應(yīng)途徑。
(5)
雖然Feammox在理論上具有很多重要的意義,但其目前仍處于研究初期,還有很多問題需要去探究和解決。
3.2.1 反應(yīng)產(chǎn)物
表1 不同環(huán)境中和Fe3+反應(yīng)情況
(6)
(7)
3.2.2 反應(yīng)物
3.2.3 影響因素
多種電子受體的發(fā)現(xiàn)拓展了氮素圈與其他系統(tǒng)之間的聯(lián)系,使Anammox的廣泛應(yīng)用在理論上變成可能,也為更經(jīng)濟(jì)有效的脫氮提供多方面選擇。目前傳統(tǒng)的亞硝酸鹽型Anammox技術(shù)在國內(nèi)外研究較多,理論知識(shí)也比較豐富,硫酸鹽型Anammox與Feammox在國外有一定的研究基礎(chǔ),但理論還不完善,而國內(nèi)相關(guān)研究目前仍處于起步階段。筆者認(rèn)為,后期應(yīng)在以下幾個(gè)方面開展進(jìn)一步研究:(1)如何快速培養(yǎng)Anammox菌,快速啟動(dòng)Anammox反應(yīng)器以適應(yīng)實(shí)際工程需求,是亞硝酸鹽型Anammox工藝后期還需繼續(xù)探究的地方;(2)硫酸鹽型Anammox的機(jī)制研究尚存爭議,而其工程應(yīng)用價(jià)值很高,后期可深入研究如何控制反應(yīng)階段而實(shí)現(xiàn)工程應(yīng)用價(jià)值最大化;(3)Feammox具有工藝簡單、經(jīng)濟(jì)、無二次污染等優(yōu)點(diǎn),但其反應(yīng)機(jī)制并未明確,后期應(yīng)結(jié)合同位素示蹤以及分子生物學(xué)手段深入研究,明確功能微生物種屬,探究微生物生存特性,掌握反應(yīng)的實(shí)現(xiàn)途徑,從而使該工藝更好地應(yīng)用于廢水處理,為脫氮提供更合理、更簡便的方式;(4)開展其他可以作為Anammox電子受體的研究,為氮素的轉(zhuǎn)化提供更多的可能性。
[1] 王亞宜,黎力,馬驍,等.厭氧氨氧化菌的生物特性及CANON厭氧氨氧化工藝[J].環(huán)境科學(xué)學(xué)報(bào),2014,34(6):1362-1374.
[2] OSHIKI M,ISHII S,YOSHIDA K,et al.Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (Anammox) bacteria[J].Applied and Environmental Microbiology,2013,79(13):4087-4093.
[3] 彭永臻,邵和東,楊延棟,等.基于厭氧氨氧化的城市污水處理廠能耗分析[J].北京工業(yè)大學(xué)學(xué)報(bào),2015,41(4):621-627.
[4] 賈方旭,彭永臻,楊慶.厭氧氨氧化菌與其他細(xì)菌之間的協(xié)同競爭關(guān)系[J].環(huán)境科學(xué)學(xué)報(bào),2014,34(6):1351-1361.
[5] 姜博,祝貴兵,周磊榴,等.低溫高海拔湖泊岸邊帶厭氧氨氧化菌的存在、生物多樣性及活性——以天山天池為例[J].環(huán)境科學(xué)學(xué)報(bào),2015,35(7):2045-2051.
[6] 劉福鑫,黃勇,袁怡,等.厭氧硫酸鹽還原—氨氧化的研究[J].環(huán)境工程學(xué)報(bào),2015,9(2).
[7] SAWAYAMA S.Possibility of anoxic ferric ammonium oxidation[J].Journal of Bioscience and Bioengineering,2006,101(1).
[8] VAN DE GRAAF A A,DE BRUIJNP A R L.Metabolic pathway of anaerobic ammonium oxidation on the basis of15N studies in a fluidized bed reactor[J].Microbiology,1997,143(7).
[9] JETTEN M S,VAN NIFTRIK L,STROUS M,et al.Biochemistry and molecular biology of anammox bacteria[J].Critical Reviews in Biochemistry and Molecular Biology,2009,44(2/3):65-84.
[10] KARTAL B,DE ALMEIDA N M,MAALCKE W J,et al.How to make a living from anaerobic ammonium oxidation[J].FEMS Microbiology Reviews,2013,37(3):428-461.
[11] 陳婷婷,鄭平,胡寶蘭.厭氧氨氧化菌的物種多樣性與生態(tài)分布[J].應(yīng)用生態(tài)學(xué)報(bào),2009,20(5).
[12] TANG Chongjian,ZHENG Ping,WANG Caihua,et al.Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J].Water Research,2011,45(1).
[13] 張正哲,金仁村,程雅菲,等.厭氧氨氧化工藝的應(yīng)用進(jìn)展[J].化工進(jìn)展,2015,34(5):1444-1452.
[14] ALI M,OKABE S.Anammox-based technologies for nitrogen removal:advances in process start-up and remaining issues[J].Chemosphere,2015,141:144-153.
[15] DOSTA J,VILA J,SANCHO I,et al.Two-step partial nitritation/Anammox process in granulation reactors:start-up operation and microbial characterization[J].Journal of Environmental Management,2015,164:196-205.
[16] CAO Shenbin,PENG Yongzhen,DU Rui,et al.Feasibility of enhancing the denitrifying ammonium oxidation (DEAMOX) process for nitrogen removal by seeding partial denitrification sludge[J].Chemosphere,2016,148:403-407.
[17] 陳珺,王洪臣,BERNHARD W.城市污水處理工藝邁向主流厭氧氨氧化的挑戰(zhàn)與展望[J].給水排水,2015,41(10):29-33.
[18] HU Baolan,ZHENG Ping,TANG Chongjian,et al.Identification and quantification of anammox bacteria in eight nitrogen removal reactors[J].Water Research,2010,44(17):5014-5020.
[19] 王淑瑩,劉曄,袁悅,等.厭氧氨氧化顆粒污泥上浮機(jī)理及控制策略進(jìn)展[J].北京工業(yè)大學(xué)學(xué)報(bào),2015,41(10):1501-1507.
[20] MIAO Lei,WANG Shuying,CAO Tianhao,et al.Optimization of three-stage Anammox system removing nitrogen from landfill leachate[J].Bioresource Technology,2015,185:450-455.
[21] 楊延棟,黃京,韓曉宇,等.一體式厭氧氨氧化工藝處理高氨氮污泥消化液的啟動(dòng)[J].中國環(huán)境科學(xué),2015,35(4):1082-1087.
[22] LIU Yiwen,NI Bingjie.Appropriate Fe(Ⅱ) addition significantly enhances anaerobic ammonium oxidation (Anammox) activity through improving the bacterial growth rate[J].Scientific Reports,2015,8204:1-7.
[23] ZHAO Q I,LI W,YOU S J.Simultaneous removal of ammonium-nitrogen and sulphate from wastewaters with an anaerobic attached-growth bioreactor[J].Water Science and Technology,2006,54(8):27-35.
[24] 張麗,黃勇,袁怡,等.硫酸鹽/氨的厭氧生物轉(zhuǎn)化試驗(yàn)研究[J].環(huán)境科學(xué),2013,34(11):4356-4361.
[25] 劉正川,袁林江,周國標(biāo),等.從亞硝酸還原厭氧氨氧化轉(zhuǎn)變?yōu)榱蛩猁}型厭氧氨氧化[J].環(huán)境科學(xué),2015,36(9):3345-3351.
[26] 秦永麗,蔣永榮,劉成良,等.硫酸鹽型厭氧氨氧化反應(yīng)器的啟動(dòng)特性[J].環(huán)境工程學(xué)報(bào),2015,9(12):5849-5854.
[27] 馬文娟,趙東風(fēng),劉春爽,等.pH值促進(jìn)硫酸鹽型厭氧氨氧化的快速啟動(dòng)[J].化學(xué)與生物工程,2015,32(10):17-20.
[28] RODEN E E,WETZEL R G.Organic carbon oxidation and suppression of methane production by microbial Fe(Ⅲ) oxide reduction in vegetated and unvegetated freshwater wetland sediments[J].Limnology and Oceanography,1996,41(8):1733-1748.
[29] CLEMENT J,SHRESTHA J,EHRENFELD J G,et al.Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J].Soil Biology & Biochemistry,2005,37(12):2323-2328.
[31] YANG W H,WEBER K A,SILVER W L.Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J].Nature Geoscience,2012,5(8).
[32] 李祥,黃勇,巫川,等.Fe2+和 Fe3+對(duì)厭氧氨氧化污泥活性的影響[J].環(huán)境科學(xué),2014,35(11):4224-4229.
[33] DING Longjun,AN Xinli,LI Shun,et al.Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J].Environmental Science & Technology,2014,48(18):10641-10647.
[34] ROBERTS K L,KESSLER A J,MICHAEL R G,et al.Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditionsin a periodically hypoxic estuary[J].Geochimica et Cosmochimica Act,2014,133:313-324.
[35] ZHANG Meng,ZHENG Ping,WANG Ru,et al.Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifyingbacteria:a perspective autotrophic nitrogen pollution control technology[J].Chemosphere,2014,117:604-609.