侯玉帛 劉歆嬋 于海燕 崔磊華 于維先
1.吉林大學(xué)口腔醫(yī)院牙周科 長(zhǎng)春 130021;2.吉林大學(xué)口腔醫(yī)院種植科 長(zhǎng)春 130021;3.吉林大學(xué)口腔醫(yī)院口腔頜面外科 長(zhǎng)春 130021;4.吉林省牙發(fā)育及頜骨重塑與再生重點(diǎn)實(shí)驗(yàn)室 長(zhǎng)春 130021
牙齦蛋白及其對(duì)破骨和成骨細(xì)胞功能的影響
侯玉帛1劉歆嬋2于海燕1崔磊華3于維先4
1.吉林大學(xué)口腔醫(yī)院牙周科長(zhǎng)春 130021;2.吉林大學(xué)口腔醫(yī)院種植科長(zhǎng)春 130021;3.吉林大學(xué)口腔醫(yī)院口腔頜面外科長(zhǎng)春 130021;4.吉林省牙發(fā)育及頜骨重塑與再生重點(diǎn)實(shí)驗(yàn)室長(zhǎng)春 130021
牙齦卟啉單胞菌分泌的牙齦蛋白作為牙周病的一種重要的毒力因子,一方面通過(guò)降解骨保護(hù)蛋白(OPG)及促進(jìn)核因子-κB(NF-κB)受體活化因子配體(RANKL)的釋放激活OPG/RANKL/NF-κB受體活化因子信號(hào)轉(zhuǎn)導(dǎo)通路,進(jìn)而誘導(dǎo)破骨細(xì)胞前體細(xì)胞向破骨細(xì)胞分化,增強(qiáng)破骨細(xì)胞功能;另一方面,牙齦蛋白可通過(guò)線粒體依賴性內(nèi)在程序性細(xì)胞死亡通路和腫瘤壞死因子受體家族介導(dǎo)的外在程序性細(xì)胞死亡通路誘導(dǎo)成骨細(xì)胞程序性細(xì)胞死亡,抑制成骨細(xì)胞功能,最終導(dǎo)致牙槽骨喪失。本文就近年來(lái)牙齦蛋白及其對(duì)破骨和成骨細(xì)胞功能的影響相關(guān)研究進(jìn)展作一綜述。
牙齦卟啉單胞菌;牙周炎;牙齦蛋白;成骨細(xì)胞;破骨細(xì)胞
This study was supported by the Jilin Province Health Department Funding Projects(20102045),Jilin Province Development and Reform Commission Funded Projects(2013C022-4) and Jilin Province Department of Funded Projects(20150101076JC).
[Abstract]Gingipains are cysteine proteases produced by Porphyromonas gingivalis,one of the major virulent agents of periodontal diseases. On the one hand,gingipains promote the differentiation of osteoclasts to enhance osteoclast function by activating the osteoprotegerin(OPG)/receptor activator of nuclear factor-κB(NF-κB) ligand(RANKL)/receptor activator of the NF-κB signaling pathways through degradation of OPG and induction of RANKL. On the other hand,gingipains inhibit osteoblast function by inducing osteoblast apoptosis through the external pathway mediated by the tumor necrosis factor receptor family and the mitochondrial pathway. These effects eventually lead to alveolar bone loss. This paper presents recent progress on gingipains and their effects on the functions of osteoclasts and osteoblasts.
[Key words]Porphyromonas gingivalis;periodontitis;gingipains;osteoclasts;osteoblasts
牙齦卟啉單胞菌是牙周炎的重要致病菌,能產(chǎn)生脂多糖、脂磷壁酸、菌毛和牙齦蛋白等多種毒力因子,其毒性成分中蛋白質(zhì)水解活性的85%以上來(lái)自牙齦蛋白[1]。牙齦蛋白是一種半胱氨酸蛋白酶,是目前公認(rèn)的牙齦卟啉單胞菌的主要毒力因子。Pathirana等[2]通過(guò)對(duì)小鼠牙周炎模型的研究后證實(shí),牙齦蛋白參與牙周炎引起的牙槽骨吸收這一病理變化。本文就牙齦蛋白及其對(duì)破骨和成骨細(xì)胞功能的影響等相關(guān)研究進(jìn)展作一綜述。
牙齦蛋白是一組由牙齦卟啉單胞菌分泌在外膜、膜泡或胞外的半胱氨酸蛋白酶,也稱為牙齦蛋白酶,為梭菌蛋白酶家族成員之一[3]。根據(jù)其特異性切割位點(diǎn)的不同,牙齦蛋白可分為精氨酸特異性牙齦蛋白酶(arginine gingipain,Rgp)和賴氨酸特異性牙齦蛋白酶(lysine gingipain,Kgp)。Rgp又進(jìn)一步分為RgpA和RgpB,分別由rgpA和rgpB基因編碼,其相對(duì)分子質(zhì)量分別為9.5×104和5.0×104;Kgp由kgp基因編碼,其相對(duì)分子質(zhì)量為1.05×105 [4]。RgpA和Kgp的結(jié)構(gòu)具有相似性,包括一個(gè)信號(hào)肽、N-末端結(jié)構(gòu)域、精氨酸或賴氨酸特異性催化結(jié)構(gòu)域、免疫球蛋白超家族域和C-末端血凝蛋白/黏附區(qū)域。RgpB是一種位于細(xì)胞膜外的單體蛋白,與RgpA的催化結(jié)構(gòu)域具有高度序列同源性,但RgpB的C-末端缺乏血凝蛋白/黏附區(qū)域。
牙齦蛋白在分泌及成熟的過(guò)程中,它們各自的催化結(jié)構(gòu)域形成穩(wěn)定的絡(luò)合物,能特異性結(jié)合并水解靶目標(biāo)。RgpA和Kgp的C-末端血凝蛋白/黏附區(qū)域通過(guò)非共價(jià)鍵互相結(jié)合,主要促進(jìn)細(xì)菌對(duì)細(xì)胞外基質(zhì)蛋白和宿主細(xì)胞的黏附;而免疫球蛋白超家族域的存在使其具有免疫原性,可被宿主免疫系統(tǒng)識(shí)別。有研究[5]顯示,給予牙周炎模型小鼠接種Kgp催化結(jié)構(gòu)域與RgpA和Kgp血凝蛋白/黏附區(qū)域復(fù)合物疫苗后,能有效減輕牙槽骨喪失。他們認(rèn)為,牙齦蛋白在牙齦卟啉單胞菌誘導(dǎo)的牙周炎病理性牙槽骨吸收中起到重要的作用。
牙周炎病理性牙槽骨吸收是破骨細(xì)胞功能增強(qiáng)使骨吸收增加,或成骨細(xì)胞功能減弱使骨新生減少,或兩者并存致牙槽骨代謝平衡失調(diào),使骨吸收大于骨形成的結(jié)果。破骨細(xì)胞是由來(lái)源于骨髓造血干細(xì)胞的單核-巨噬細(xì)胞譜系前體細(xì)胞融合而成的多核巨細(xì)胞,在炎性條件下,破骨細(xì)胞的分化受核因子-κB(nuclear factor-κB,NF-κB)受體活化因子配體(receptor activator of nuclear factor-κB ligand,RANKL)、骨保護(hù)蛋白(osteoprotegerin,OPG)、NF-κB受體活化因子(receptor activator of nuclear factor-κB,RANK)、Toll樣受體和炎性細(xì)胞因子等多種因素調(diào)控。RANK是RANKL的功能性受體,當(dāng)二者結(jié)合后,可引發(fā)細(xì)胞內(nèi)信號(hào)級(jí)聯(lián)反應(yīng),誘導(dǎo)破骨細(xì)胞成熟和分化;而OPG為RANKL的誘餌受體,可競(jìng)爭(zhēng)性地結(jié)合RANKL,抑制破骨細(xì)胞的形成。在牙周炎患者的牙周組織中,RANKL/OPG的比率是衡量牙槽骨喪失的重要指標(biāo)之一,RANKL表達(dá)上調(diào)或OPG表達(dá)下調(diào)可致骨喪失增加[6]。目前發(fā)現(xiàn),牙齦蛋白尤其是賴氨酸依賴性牙齦蛋白酶在誘導(dǎo)破骨細(xì)胞形成和分化進(jìn)而引起牙槽骨吸收過(guò)程中起重要作用。
2.1牙齦蛋白直接誘導(dǎo)破骨細(xì)胞的分化
牙齦蛋白具有直接誘導(dǎo)破骨前體細(xì)胞向破骨細(xì)胞分化的功能,三種牙齦蛋白各自誘導(dǎo)破骨細(xì)胞分化能力分別為Kgp最強(qiáng),RgpB次之,RgpA最弱[2]。Akiyama等[7]發(fā)現(xiàn),在無(wú)骨吸收刺激因子存在的條件下,Kgp與骨髓單核細(xì)胞和成骨細(xì)胞共培養(yǎng),Kgp可直接誘導(dǎo)骨髓單核細(xì)胞向破骨細(xì)胞分化,且隨著Kgp濃度的升高,破骨細(xì)胞數(shù)量增多。位于Kgp催化結(jié)構(gòu)域的Kgp467~477和位于RgpA和Kgp血凝蛋白/黏附蛋白結(jié)構(gòu)域的RgpA1054~1064/ Kgp1074~1084為結(jié)合在細(xì)胞組織相容性復(fù)合體2類分子表面的多肽,是CD4陽(yáng)性T淋巴細(xì)胞的抗原決定簇[8]。輔助型T細(xì)胞被牙齦蛋白激活后進(jìn)一步促進(jìn)B淋巴細(xì)胞分化為成熟漿細(xì)胞并釋放特異性抗體,誘發(fā)宿主體液免疫反應(yīng);而在激活的CD4陽(yáng)性T淋巴細(xì)胞與B淋巴細(xì)胞在巨噬細(xì)胞集落刺激因子或RANKL存在的條件下,可誘導(dǎo)破骨前體細(xì)胞向破骨細(xì)胞分化。RgpA缺陷型牙齦卟啉單胞菌株引起牙槽骨喪失的水平與野生型菌株無(wú)差異,故RgpA幾乎沒(méi)有直接誘導(dǎo)破骨細(xì)胞分化的能力。RgpB缺陷型牙齦卟啉單胞菌株可明顯地減輕牙槽骨喪失的水平,但其作用弱于Kgp缺陷型。Yasuhara等[9]證實(shí),RgpB與骨髓單核細(xì)胞和成骨細(xì)胞共培養(yǎng)時(shí),沒(méi)有誘導(dǎo)骨髓單核細(xì)胞向破骨細(xì)胞分化的能力。Gr?n等[10]指出,血清中的α2-巨球蛋白可有效地抑制Rgp的活性,進(jìn)而抑制RgpB誘導(dǎo)破骨細(xì)胞分化的能力,且α2-巨球蛋白對(duì)Kgp的活性無(wú)影響。Guo等[11]發(fā)現(xiàn)在犬種植體周圍炎模型中,Kgp核酸疫苗相比RgpA和RgpB核酸疫苗更有效地增強(qiáng)機(jī)體免疫反應(yīng)并減少骨吸收的程度,Kgp在誘導(dǎo)破骨細(xì)胞分化中起到主要作用。
2.2牙齦蛋白間接誘導(dǎo)破骨細(xì)胞的分化
牙齦蛋白可通過(guò)增強(qiáng)多種毒力因子的生物學(xué)功能間接地誘導(dǎo)破骨細(xì)胞前體細(xì)胞向破骨細(xì)胞分化。在牙齦卟啉單胞菌、中間普雷沃菌和福賽斯坦納菌等細(xì)菌感染的牙周組織中存在著脂多糖、地諾前列酮(舊稱前列腺素E2)、未甲基化的CpG DNA和肽聚糖等多種細(xì)菌分泌的毒力因子,這些因子均可促進(jìn)牙周炎病理性的牙槽骨吸收[12]。Yasuhara等[9]發(fā)現(xiàn)在誘導(dǎo)骨髓單核細(xì)胞向破骨細(xì)胞分化的過(guò)程中,有Kgp存在的情況下較無(wú)Kgp存在時(shí)脂多糖的濃度低100%。此外,Kgp可以提高骨化三醇、脂多糖、未甲基化的CpG DNA和肽聚糖等分別通過(guò)維生素D,Toll樣受體(Toil-like receptor,TLR)4、9以及核苷酸結(jié)合寡聚化結(jié)構(gòu)域2信號(hào)轉(zhuǎn)導(dǎo)通路誘導(dǎo)成骨細(xì)胞表達(dá)RANKL的能力,提高RANKL/RANK比值,促進(jìn)骨髓單核細(xì)胞向破骨細(xì)胞分化。
在牙周組織炎癥反應(yīng)中,牙齦蛋白可激活凝血酶原形成凝血酶或者直接作為補(bǔ)體(complement,C)5轉(zhuǎn)化酶[13],將C5裂解為具有生物學(xué)活性的C5a,進(jìn)一步激活C5a受體-TLR2信號(hào)轉(zhuǎn)導(dǎo)通路,破壞機(jī)體免疫防御功能;而在此過(guò)程中一些公認(rèn)的促進(jìn)骨吸收的炎性細(xì)胞因子被激活,如白細(xì)胞介素(interleukin,IL)-1、6、17以及腫瘤壞死因子(tumor necrosis factor,TNF)α[14]。
Abe等[15]發(fā)現(xiàn),給小鼠牙周炎模型應(yīng)用C5a受體拮抗劑后可有效抑制牙齦卟啉單胞菌引起的牙槽骨吸收,減輕牙周組織炎癥反應(yīng)。在激活炎性細(xì)胞因子的同時(shí),牙齦蛋白還作為蛋白水解酶可選擇性地降解IL-6[16]和IL-17[7],保留IL-1和TNFα,從而間接促進(jìn)IL-1和TNFα誘導(dǎo)破骨細(xì)胞前體細(xì)胞向破骨細(xì)胞分化的能力;因此牙齦蛋白在影響宿主免疫防御反應(yīng)的同時(shí)又促進(jìn)部分毒力因子和炎性細(xì)胞因子誘導(dǎo)破骨細(xì)胞前體細(xì)胞向破骨細(xì)胞分化的能力,進(jìn)而促進(jìn)牙槽骨吸收。
2.3牙齦蛋白通過(guò)OPG/RANKL/RANK信號(hào)轉(zhuǎn)導(dǎo)通路影響破骨細(xì)胞的功能
首先,Kgp通過(guò)有效降解OPG使其失去結(jié)合RANKL的活性,是其誘導(dǎo)破骨細(xì)胞前體細(xì)胞向破骨細(xì)胞分化重要途徑之一。Akiyama等[7]發(fā)現(xiàn),Kgp可在OPG的相應(yīng)死亡結(jié)構(gòu)域分解其二硫鍵同源二聚體,該結(jié)構(gòu)是結(jié)合和抑制RANKL的關(guān)鍵,進(jìn)而使OPG失去活性。Yasuhara等[9]在將Kgp與OPG基因缺陷型成骨細(xì)胞和骨髓單核細(xì)胞共培養(yǎng)時(shí)發(fā)現(xiàn),Kgp誘導(dǎo)骨髓單核細(xì)胞向破骨細(xì)胞分化的作用不明顯。其次,牙齦蛋白可通過(guò)蛋白酶激活受體途徑刺激成骨細(xì)胞中RANKL表達(dá),增加牙周炎組織周圍RANKL的表達(dá)[17]。Akiyama等[7]通過(guò)研究還證實(shí),Kgp與成骨細(xì)胞共培養(yǎng)時(shí)可通過(guò)增加RANKL mRNA的量使RANKL表達(dá)增多,而對(duì)RANK的表達(dá)無(wú)影響。牙齦蛋白Kgp和RgpA作為CD4陽(yáng)性T淋巴細(xì)胞特異性抗原決定簇,可激活CD4陽(yáng)性T、B淋巴細(xì)胞,這些細(xì)胞可通過(guò)直接分泌RANKL或間接分泌炎性細(xì)胞因子TNFα、IL-1和干擾素-γ等促進(jìn)RANKL表達(dá),進(jìn)一步增加RANKL的量[18]。
除此之外,Kgp在有效降解OPG的同時(shí)可以提高RANKL的表達(dá),使RANKL/OPG比率增加,增加RANKL/RANK結(jié)合率,進(jìn)而激活RANK;RANK與接頭蛋白TNF受體(TNF receptor,TNFR)相關(guān)因子(TNFR associated factor,TRAF)6結(jié)合,激活下游NF-κB信號(hào)轉(zhuǎn)導(dǎo)通路,啟動(dòng)破骨細(xì)胞前體細(xì)胞內(nèi)破骨細(xì)胞形成樹(shù)突細(xì)胞-特異性跨膜蛋白、腺苷三磷酸6v0d2、破骨細(xì)胞相關(guān)受體和抗酒石酸酸性磷酸酶等基因的轉(zhuǎn)錄,促進(jìn)破骨細(xì)胞的成熟和分化[19]。
成骨細(xì)胞是參與骨代謝中骨形成的主要細(xì)胞。成骨細(xì)胞的增殖與程序性死亡對(duì)維持骨代謝平衡起著重要的作用,而成骨細(xì)胞程序性死亡的增加會(huì)進(jìn)一步干擾成骨細(xì)胞功能,影響新骨生成。牙齦蛋白可誘導(dǎo)牙齦上皮細(xì)胞、牙齦成纖維細(xì)胞、內(nèi)皮細(xì)胞和成骨細(xì)胞等程序性死亡,導(dǎo)致牙周結(jié)締組織的破壞及牙槽骨組織的喪失,加重牙周炎病情。目前,成骨細(xì)胞程序性死亡主要由兩條細(xì)胞內(nèi)信號(hào)通路介導(dǎo),即腫瘤壞死因子受體家族介導(dǎo)的外在程序性細(xì)胞死亡通路和B細(xì)胞白血病/淋巴癌(B cell lymphoma/leukmia,BCL)2家族成員介導(dǎo)的線粒體依賴性內(nèi)在程序性細(xì)胞死亡通路。
有研究在牙齦蛋白與成骨細(xì)胞共培養(yǎng)過(guò)程中檢測(cè)到BCL2家族的BH3域促程序性細(xì)胞死亡蛋白B細(xì)胞淋巴瘤-2細(xì)胞死亡調(diào)節(jié)蛋白(B cell lymphoma-2 interacting mediator of cell death,BIM)和B細(xì)胞淋巴瘤2相關(guān)死亡蛋白(BCL2-associated death,BAD)表達(dá)增高,進(jìn)一步活化下游促程序性細(xì)胞死亡蛋白BCL2同源同源拮抗劑或殺手蛋白(BCL2 homologous antagonist-killer,BAK)和BCL2相關(guān)蛋白X(BCL2 associated protein X,BAX),最終激活半胱氨酸天冬酰胺特異蛋白酶(cysteinyl aspartale specific protease,caspase)-3 和caspase-7,誘導(dǎo)成骨細(xì)胞程序性死亡[20-21],而抑制牙齦蛋白的活性,可有效抑制BIM和BAD的表達(dá),減少成骨細(xì)胞程序性死亡。
Kgp通過(guò)增強(qiáng)炎性細(xì)胞因子TNFα的生物學(xué)功能,可促進(jìn)TNFα與跨膜蛋白死亡受體脂肪酸合成酶(fatty acid synthase,F(xiàn)AS)、CD95、載脂蛋白1和TNFR1結(jié)合,增強(qiáng)caspase-3、8的活性,誘導(dǎo)成骨細(xì)胞程序性死亡[22]。抑制miRNA-23a和miRNA-17~92a[23]的表達(dá),可有效促進(jìn)TNFα誘導(dǎo)成骨細(xì)胞程序性死亡,進(jìn)而抑制骨形成[24]。此外牙齦蛋白可誘導(dǎo)細(xì)胞周期G1期阻滯。程序性細(xì)胞死亡與細(xì)胞周期進(jìn)程密切關(guān)聯(lián),Kato等[25]發(fā)現(xiàn)牙齦蛋白,尤其是Kgp可引起人成骨細(xì)胞周期G1期的阻滯,而G1期的阻滯使成骨細(xì)胞無(wú)法到達(dá)G1/S期分化位點(diǎn),進(jìn)而抑制成骨細(xì)胞增殖,最終導(dǎo)致程序性細(xì)胞死亡;因此,抑制牙齦蛋白的活性可有效保護(hù)成骨細(xì)胞,降低程序性細(xì)胞死亡水平,進(jìn)而減少牙槽骨吸收。
目前,有研究[26]合成的對(duì)Rgp和Kgp均有良好選擇和抑制作用的新型抑制劑KYT-41,在犬牙周炎模型中表現(xiàn)出較好的治療效果和安全性。相信隨著對(duì)牙齦蛋白特別是Kgp的結(jié)構(gòu)及其在牙周炎牙槽骨吸收中作用機(jī)制研究的深入,可以此為靶點(diǎn)為牙周炎這種難治性疾病提供全新的預(yù)防或治療策略。
[1]Yongqing T,Potempa J,Pike RN,et al. The lysinespecific gingipain of Porphyromonas gingivalis:importance to pathogenicity and potential strategies for inhibition[J]. Adv Exp Med Biol,2011,712:15-29.
[2]Pathirana RD,O'Brien-Simpson NM,Brammar GC,et al. Kgp and RgpB,but not RgpA,are important for Porphyromonas gingivalis virulence in the murine periodontitis model[J]. Infect Immun,2007,75(3):1436-1442.
[3]Thomas MV,Puleo DA. Infection,inflammation,and bone regeneration: a paradoxical relationship[J]. J Dent Res,2011,90(9):1052-1061.
[4]Guo Y,Nguyen KA,Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins[J]. Periodontol 2000,2010,54(1):15-44.
[5]O'Brien-Simpson NM,Pathirana RD,Paolini RA,et al. An immune response directed to proteinase and adhesin functional epitopes protects against Porphyromonas gingivalis-induced periodontal bone loss[J]. J Immunol,2005,175(6):3980-3989.
[6]Belibasakis GN,Bostanci N. The RANKL-OPG system in clinical periodontology[J]. J Clin Periodontol,2012,39(3):239-248.
[7]Akiyama T,Miyamoto Y,Yoshimura K,et al. Porphyromonas gingivalis-derived lysine gingipain enhances osteoclast differentiation induced by tumor necrosis factor-α and interleukin-1β but suppresses that by interleukin-17A: importance of proteolytic degradation of osteoprotegerin by lysine gingipain [J]. J Biol Chem,2014,289(22):15621-15630.
[8]Bittner-Eddy PD,F(xiàn)ischer LA,Costalonga M. Identification of gingipain-specific I-A(b) -restricted CD4+T cells following mucosal colonization with Porphyromonas gingivalis in C57BL/6 mice[J]. Mol Oral Microbiol,2013,28(6):452-466.
[9]Yasuhara R,Miyamoto Y,Takami M,et al. Lysinespecific gingipain promotes lipopolysaccharide- and active-Vitamin D3-induced osteoclast differentiation by degrading osteoprotegerin[J]. Biochem J,2009,419(1):159-166.
[10]Gr?n H,Pike R,Potempa J,et al. The potential role of alpha 2-macroglobulin in the control of cysteine proteinases(gingipains) from Porphyromonas gingivalis[J]. J Periodont Res,1997,32(1 Pt 1):61-68.
[11]Guo M,Wang Z,F(xiàn)an X,et al. kgp,rgpA,and rgpB DNA vaccines induce antibody responses in experimental peri-implantitis[J]. J Periodontol,2014,85 (11):1575-1581.
[12]Ebersole JL,Dawson DR 3rd,Morford LA,et al. Periodontal disease immunology: ‘double indemnity' in protecting the host[J]. Periodontol 2000,2013,62(1):163-202.
[13]Imamura T,Banbula A,Pereira PJ,et al. Activation of human prothrombin by arginine-specific cysteine proteinases(Gingipains R) from Porphyromonas gingivalis[J]. J Biol Chem,2001,276(22):18984-18991.
[14]Braun T,Zwerina J. Positive regulators of osteo-clastogenesis and bone resorption in rheumatoid arthritis[J]. Arthritis Res Ther,2011,13(4):235.
[15]Abe T,Hosur KB,Hajishengallis E,et al. Local complement-targeted intervention in periodontitis:proof-of-concept using a C5a receptor(CD88) antagonist[J]. J Immunol,2012,189(11):5442-5448.
[16]Stathopoulou PG,Benakanakere MR,Galicia JC,et al. The host cytokine response to Porphyromonas gingivalis is modified by gingipains[J]. Oral Microbiol Immunol,2009,24(1):11-17.
[17]Okahashi N,Inaba H,Nakagawa I,et al. Porphyromonas gingivalis induces receptor activator of NF-kappa B ligand expression in osteoblasts through the activator protein 1 pathway[J]. Infect Immun,2004,72(3):1706-1714.
[18]Han X,Lin X,Yu X,et al. Porphyromonas gingivalis infection-associated periodontal bone resorption is dependent on receptor activator of NF-κB ligand[J]. Infect Immun,2013,81(5):1502-1509.
[19]Maruyama K,Kawagoe T,Kondo T,et al. TRAF family member-associated NF-κB activator(TANK)is a negative regulator of osteoclastogenesis and bone formation[J]. J Biol Chem,2012,287(34):29114-29124.
[20]Lausson S,Cressent M. Signal transduction pathways mediating the effect of adrenomedullin on osteoblast survival[J]. J Cell Biochem,2011,112 (12):3807-3815.
[21]陳玉婷,宋祥晨,張福萍,等. 促凋亡蛋白Bim、Bax和Bak在牙齦蛋白酶誘導(dǎo)成骨細(xì)胞凋亡中的表達(dá)[J]. 中華口腔醫(yī)學(xué)雜志,2013,48(5):272-277. Chen YT,Song XC,Zhang FP,et al. Expression of Bim,Bax and Bak in the process of gingipaininduced osteoblast apoptosis[J]. Chin J Stomatol,2013,48 (5):272-277.
[22]Thammasitboon K,Goldring SR,Boch JA. Role of macrophages in LPS-induced osteoblast and PDL cell apoptosis[J]. Bone,2006,38(6):845-852.
[23]Guo L,Xu J,Qi J,et al. MicroRNA-17-92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblast apoptosis[J]. J Cell Sci,2013,126 (Pt 4):978-988.
[24]Dong J,Cui X,Jiang Z,et al. MicroRNA-23a modulates tumor necrosis factor-alpha-induced osteoblasts apoptosis by directly targeting Fas[J]. J Cell Biochem,2013,114(12):2738-2745.
[25]Kato T,Tsuda T,Inaba H,et al. Porphyromonas gingivalis gingipains cause G(1) arrest in osteoblastic/ stromal cells[J]. Oral Microbiol Immunol,2008,23 (2):158-164.
[26]Kataoka S,Baba A,Suda Y,et al. A novel,potent dual inhibitor of Arg-gingipains and Lys-gingipain as a promising agent for periodontal disease therapy [J]. FASEB J,2014,28(8):3564-3578.
(本文采編王晴)
Effect of gingipains on osteoclasts and osteoblasts
Hou Yubo1,Liu Xinchan2,Yu Haiyan1,Cui Leihua3,Yu Weixian4. (1. Dept. of Periodontics,Hospital of Stomatology,Jilin University,Changchun 130021,China;2. Dept. of Implantation,Hospital of Stomatology,Jilin University,Changchun 130021,China;3. Dept. of Oral and Maxillofacial Surgery,Jilin University,Changchun 130021,China;4. Key Laboratory of Mechanism of Tooth Development and Jaw Bone Remodeling and Regeneration in Jilin Province,Changchun 130021,China)
Q 51
A
10.7518/gjkq.2016.05.025
2015-12-07;[修回日期]2016-05-30
吉林省衛(wèi)生廳資助項(xiàng)目(20102045);吉林省發(fā)改委資助項(xiàng)目(2013C022-4);吉林省科技廳資助項(xiàng)目(20150101076JC)
侯玉帛,碩士,Email:1163586460@qq.com
于維先,教授,博士,Email:yu-wei-xian@163.com