李魏芳,楊康 綜述 黃衛(wèi)鋒 審校(.宜昌市三峽大學(xué)醫(yī)學(xué)院,湖北宜昌443000;.宜昌市三峽大學(xué)人民醫(yī)院,湖北宜昌443000)
·綜述·
Sirtuins在缺血再灌注損傷中的作用
李魏芳1,楊康2綜述 黃衛(wèi)鋒1審校
(1.宜昌市三峽大學(xué)醫(yī)學(xué)院,湖北宜昌443000;2.宜昌市三峽大學(xué)人民醫(yī)院,湖北宜昌443000)
缺血再灌注損傷是臨床上一種復(fù)雜的病理生理過(guò)程,在器官移植中尤為重要。許多因素都能導(dǎo)致缺血再灌注損傷,如缺血過(guò)程中能量的缺失,再灌注過(guò)程中氧化應(yīng)激的損傷均能啟動(dòng)一系列的機(jī)制,最終導(dǎo)致細(xì)胞死亡和器官的衰竭。由于能廣泛調(diào)控細(xì)胞功能,sirtuins家族受到日益的關(guān)注。哺乳動(dòng)物有7種sirtuins,在胞核和胞漿中表達(dá)的sirtuin 1(SIRT1)和在線粒體中表達(dá)的sirtuin 3(SIRT3)在多種組織器官中有廣泛的表達(dá)。在缺血再灌注損傷(IRI)過(guò)程中,Sirtuins通過(guò)抵抗細(xì)胞應(yīng)激和調(diào)節(jié)代謝發(fā)揮著重要的保護(hù)性作用。本文主要綜述SIRT1和SIRT3在缺血的過(guò)程中抵御能量耗竭發(fā)揮的調(diào)節(jié)作用,及在再灌注過(guò)程中如何發(fā)揮其抗氧化、抗凋亡及抗炎的功能。
沉默信息調(diào)節(jié)因子1;沉默信息調(diào)節(jié)因子3;缺血再灌注損傷;作用
乙?;甘歉弑U娴暮徒湍赋聊畔⒄{(diào)節(jié)因子高度同源的3類組蛋白去乙?;?,目前已知在哺乳動(dòng)物中有7種去乙酰化酶。最近的研究表明,沉默調(diào)節(jié)蛋白調(diào)節(jié)多種細(xì)胞過(guò)程,如基因轉(zhuǎn)錄、代謝和細(xì)胞應(yīng)激。作為家族中研究最多的蛋白,SIRT1從細(xì)胞周期調(diào)控到能量穩(wěn)態(tài)的過(guò)程中均發(fā)揮著重要的作用,最近已報(bào)道SIRT3在線粒體能量代謝和功能中發(fā)揮著同樣重要的作用。臨床上常見(jiàn)的缺血再灌注損傷與能量代謝密切相關(guān),因此本文主要綜述SIRT1和SIRT3在功能缺血再灌注損傷中的作用。
沉默信息調(diào)節(jié)因子組成了高保真性的蛋白家族,其中的一種或多種sirtuins普遍地表達(dá)于細(xì)菌到哺乳動(dòng)物體內(nèi)。在哺乳動(dòng)物體內(nèi)已確定有7種sirtuin基因即SIRT1-SIRT7[1]。亞細(xì)胞定位發(fā)現(xiàn),SIRT1、SIRT6和SIRT7表達(dá)于胞核,SIRT2表達(dá)于胞漿,SIRT3-SIRT5表達(dá)于線粒體[2]。已有研究發(fā)現(xiàn)SIRT1具有胞質(zhì)活性,SIRT2已發(fā)現(xiàn)與核蛋白具有相關(guān)性。最近幾項(xiàng)研究表明,沉默調(diào)節(jié)蛋白調(diào)節(jié)各種各樣的細(xì)胞過(guò)程,如基因的轉(zhuǎn)錄、代謝和細(xì)胞應(yīng)激反應(yīng)[3-4]。在這7個(gè)哺乳動(dòng)物去乙酰化酶中,SIRT1是研究最廣泛的一個(gè)[5]。SIRT1高表達(dá)于多種腦區(qū)域,在心、腎、肝、腦、胰腺、骨骼肌等組織中也高表達(dá)[6]。SIRT3也高表達(dá)于骨骼肌、心、肝、腎等其他具有代謝活性的線粒體內(nèi)。
缺血再灌注損傷是器官移植中最重要的問(wèn)題,將導(dǎo)致移植器官的功能紊亂和無(wú)功能[7]。缺血再灌注損傷的機(jī)制有很多,缺血過(guò)程中供氧的缺失導(dǎo)致ATP合成的降低和隨后離子通道的改變,由此所致的酸中毒和細(xì)胞腫脹均可能最終導(dǎo)致細(xì)胞死亡。血流恢復(fù)后,過(guò)度急性炎癥反應(yīng)將引發(fā)再灌注損傷[8]。雖然缺血損傷引起顯著的細(xì)胞損傷,但組織損傷更嚴(yán)重。而再灌注期間,由于氧供的恢復(fù),代謝加快,大量的氧自由基、細(xì)胞因子、炎癥因子導(dǎo)致炎癥細(xì)胞(單核細(xì)胞、樹(shù)突細(xì)胞和粒細(xì)胞)的聚集,活性氧(reactive oxygen species,ROS)和過(guò)量產(chǎn)生的一氧化氮(nitric oxide,NO)協(xié)同作用,誘導(dǎo)DNA損傷,激活多種細(xì)胞死亡通路[9]。
了解IRI的機(jī)制是減輕其損傷的首要步驟,而乙酰化酶是已知的能在缺血再灌注損傷、細(xì)胞代謝和應(yīng)激反應(yīng)中發(fā)揮作用的蛋白。因此,sirtuins可能成為治療IRI的重要靶點(diǎn)。
缺血過(guò)程中低能量的狀態(tài)能夠?qū)е孪佘账峄罨鞍准っ?Adenosine Monophosphate Activated Protein Kinase,AMPK)的活化。AMPK的激活能維持ATP的水平,抑制其他消耗ATP的代謝過(guò)程[10]。已有研究表明,在缺血的條件下,AMPK和SIRT1可能具有相關(guān)性[11]。AMPK的激動(dòng)劑5-am inoim idazole-4-carboxam ide-1-β-D-ribofuranoside能改善IRI,并能提高大鼠腎臟中SIRT1的表達(dá)量。此外,SIRT1的激動(dòng)劑白藜蘆醇的運(yùn)用也被證實(shí)能保護(hù)腦缺血再灌注損傷[12]。在缺氧狀態(tài)下誘發(fā)細(xì)胞保護(hù)作用的另一個(gè)重要因素是缺氧誘導(dǎo)因子(HIFs)。哺乳動(dòng)物具有HIFα的三種亞型,HIF1α與HIF2α是研究的最多且結(jié)構(gòu)最為相似。缺氧時(shí),HIF2α蛋白水平略有增加,但其活性顯著增高,這表明它的活性是由其他的翻譯后調(diào)控機(jī)制來(lái)調(diào)節(jié)的。在人類癌細(xì)胞低氧刺激下,SIRT3也起著保護(hù)作用[13]。SIRT3的過(guò)表達(dá)能降低ROS的表達(dá),影響HIF1α的穩(wěn)定性,抑制腫瘤的發(fā)生[14]。SIRT1調(diào)節(jié)代謝最重要的一個(gè)因子是過(guò)氧化物酶體增殖物激活受體γ共激活劑1α(peroxisome proliferator-activated receptor-γcoactivator 1α,PGC1α),它是許多核受體的轉(zhuǎn)錄共激活因子和轉(zhuǎn)錄因子。SIRT1與PGC1α相互作用,并導(dǎo)致其乙酰化,誘導(dǎo)ATP產(chǎn)生途徑中線粒體線粒體蛋白的表達(dá)。PGC1α活性的增高能降低缺血過(guò)程中氧化應(yīng)激的損傷。已有研究表明,PGC1α降低導(dǎo)致的ROS增高將導(dǎo)致腦缺血損傷[15]。
線粒體內(nèi)膜蛋白、解耦連蛋白2(uncoupling protein 2,UCP2)能夠調(diào)節(jié)質(zhì)子電化學(xué)梯度,在神經(jīng)細(xì)胞中,PGC1α參與UCP2的誘導(dǎo)進(jìn)而抵抗氧化應(yīng)激的損傷。缺血預(yù)處理或白藜蘆醇預(yù)處理能提高SIRT1活性,由此導(dǎo)致的UCP2表達(dá)的降低和ATP水平的增高能夠保護(hù)腦缺血損傷[16]。目前UCP2在缺血時(shí)的確切作用仍不完全清楚,對(duì)其作用研究結(jié)果并不統(tǒng)一。
盡管移植的器官在缺血階段由于氧的缺失會(huì)產(chǎn)生嚴(yán)重的病變,但最嚴(yán)重的階段在于再灌注期間移植器官氧供的恢復(fù)。再灌注時(shí),細(xì)胞代謝采取需氧途徑,將導(dǎo)致各種活性氧的聚集,包括超氧化物、過(guò)氧化氫和活性氮,如過(guò)氧亞硝酸鹽的產(chǎn)生。ROS主要產(chǎn)生于線粒體并觸發(fā)多種現(xiàn)象,如積累的鈣離子,胱天蛋白酶活化,細(xì)胞因子的上調(diào),脂質(zhì)、蛋白質(zhì)和DNA損傷[17]。ROS可通過(guò)酶促途徑包括錳超氧化物歧化酶(manganese superoxide dismutase,MnSOD),過(guò)氧化氫酶(catalase,CAT)和過(guò)氧化物酶來(lái)消除。ROS的產(chǎn)生與消除失衡導(dǎo)致氧化應(yīng)激損傷。在心臟,過(guò)表達(dá)的SIRT1通過(guò)上調(diào)抗氧化物如錳超氧化物、硫氧還原蛋白來(lái)抵御缺血再灌注過(guò)程中氧化應(yīng)激的損傷[17]。SIRT1活化的水平?jīng)Q定了其是否有保護(hù)性作用,因?yàn)樾呐K中過(guò)高量表達(dá)的SIRT1會(huì)導(dǎo)致線粒體功能紊亂,提高氧化應(yīng)激損傷。已有研究證實(shí)SIRT1在腦、腎、小腸的缺血再灌注過(guò)程中均有保護(hù)作用[18]。
大量研究證實(shí),SIRT3在線粒體的生物功能中發(fā)揮著重要作用。SIRT3是一種重要的去乙?;?,SIRT3去乙酰化能提高許多在線粒體抗氧化機(jī)制中發(fā)揮重要作用的蛋白,如MnSOD,一種谷胱甘肽和硫氧還蛋白系統(tǒng)的調(diào)節(jié)蛋白[18]。SIRT3去乙?;疐oxO (forkhead boxcontaining protein O)轉(zhuǎn)錄因子,誘導(dǎo)核轉(zhuǎn)錄和其他抗氧化分子的轉(zhuǎn)錄,此外SIRT3也能去乙?;疐oxO3α誘導(dǎo)導(dǎo)致抗氧化酶,如MnSOD,過(guò)氧化物酶表達(dá)的上調(diào)[19]。細(xì)胞色素C具有清除過(guò)氧化物和超氧化物的能力,而SIRT3是提高細(xì)胞色素C表達(dá)所必需的[20]。再灌注損傷中線粒體功能的降低與一種多蛋白復(fù)合物即線粒體通透性轉(zhuǎn)換孔(themitochondrial permeability transition poremPTP)有關(guān)。已知SIRT3能去乙酰化mPTP中的調(diào)節(jié)成分cyclophilin D,從而降低其活性和心臟中線粒體腫脹[21]。
IRI能導(dǎo)致組織中炎性細(xì)胞的浸潤(rùn)和炎癥反應(yīng)。各種細(xì)胞因子、趨化因子、粘附分子以及胞外基質(zhì)成分都能夠介導(dǎo)炎性損傷。這些因子的表達(dá)均受到炎性反應(yīng)中關(guān)鍵調(diào)節(jié)因子(nuclear factorkappa B,NF-κB)的調(diào)節(jié)?;罨?,轉(zhuǎn)錄因子遷移至核,并提高促炎性基因增效的炎癥反應(yīng)的轉(zhuǎn)錄,之后淋巴細(xì)胞、單核細(xì)胞/巨噬細(xì)胞和粒細(xì)胞浸潤(rùn)到損傷組織[22]。SIRT1可通過(guò)去乙?;鸵种苝53和NF-κB通路在腦缺血神經(jīng)保護(hù)中發(fā)揮著重要的作用。在SIRT1過(guò)表達(dá)的心臟,SIRT1能夠降低NF-κB乙?;阶柚寡装Y反應(yīng)。此外,SIRT1能通過(guò)去乙?;疦F-κB而發(fā)揮抗炎作用,其在人主動(dòng)脈內(nèi)皮細(xì)胞抑制血管內(nèi)皮粘附分子的表達(dá)也得到了證實(shí)[23]。
在IRI中,通過(guò)活化Caspases能夠?qū)е碌蛲鲂约?xì)胞死亡。研究表明,SIRT1與哺乳動(dòng)物長(zhǎng)壽有關(guān),并能通過(guò)調(diào)節(jié)特異的底物提高哺乳動(dòng)物應(yīng)激狀況下的細(xì)胞存活率。事實(shí)上大量研究已提出SIRT1在IRI中的抗凋亡作用[9]。SIRT1能去乙?;阎牡蛲鼋橘|(zhì),如腫瘤抑制基因p53,從而抑制其轉(zhuǎn)錄活性[24]。在缺血的腎臟和大腦SIRT1被證實(shí)為重要的存活介質(zhì),由于SIRT1表達(dá)量的增高會(huì)降低p53的表達(dá),減少細(xì)胞凋亡[25]。此外,SIRT1還可以通過(guò)去乙?;疐oxO轉(zhuǎn)錄因子家族來(lái)調(diào)節(jié)凋亡相關(guān)分子。在IRI中,心臟特異性表達(dá)SIRT1的轉(zhuǎn)基因小鼠,SIRT1能誘導(dǎo)FoxO1核轉(zhuǎn)錄因子,通過(guò)上調(diào)抗凋亡因子Bcl-2和下調(diào)Bax的表達(dá)起到抗凋亡的作用[26]。
再灌注期間由mPTP打開(kāi)所致的胱天蛋白酶活化分子的釋放能夠啟動(dòng)凋亡通路,由于SIRT3位于線粒體內(nèi),可能在抗凋亡通路中發(fā)揮著作用[27]。SIRT3能保護(hù)多種細(xì)胞避免基因毒性和氧化應(yīng)激損傷導(dǎo)致的凋亡性細(xì)胞死亡。SIRT3的促凋亡作用與腫瘤抑制和ROS的抑制作用有關(guān)。已有報(bào)道在人大腸癌細(xì)胞中SIRT3與Bcl-2和JNK凋亡途徑相關(guān)[28]。
IRI是一種復(fù)雜的病理生理過(guò)程,會(huì)導(dǎo)致移植器官功能紊亂,因此闡明IRI的機(jī)制非常重要。近年研究表明sirtuins在多種細(xì)胞過(guò)程中均發(fā)揮著重要的作用。在本文中我們討論了SIRT1和SIRT3信號(hào)通路在IRI中的保護(hù)性作用,在IRI中SIRT1可以通過(guò)活化FoxO1、PGC1α、HIF2α或抑制NF-κB轉(zhuǎn)錄因子來(lái)發(fā)揮對(duì)IRI的保護(hù)作用。同時(shí),SIRT3在IRI介導(dǎo)的保護(hù)作用也可通過(guò)活化FoxO3α和線粒體抗氧化酶來(lái)實(shí)現(xiàn)。本文綜述了SIRT1和SIRT3在IRI中的作用,闡明sirtuins家族在IRI的作用,為以后藥物的開(kāi)發(fā)及緩解缺血再灌注損傷提供了新思路。
[1]Kong L,Wu H,ZhouW,etal.Sirtuin 1∶A target for kidney diseases [J].MolecularMedicine(Cambridge,Mass),2015,12(21)∶87-97.
[2]M ichishita E,Park JY,Burneskis JM,etal.Evolutionarily conserved and nonconserved cellular localizationsand functionsof human SIRT proteins[J].Molecular Biology of the Cell,2005,16(10)∶4623-4635.
[3]Nogueiras R,Habegger KM,Chaudhary N,etal.Sirtuin 1 and sirtuin 3∶physiological modulators of metabolism[J].Physiological Review s,2012,92(3)∶1479-1514.
[4]Pillarisetti S.A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases[J].Recent Patents on Cardiovascular Drug Discovery,2008,3(3)∶156-164.
[5]Tang BL.Sirt1 and the M itochondria[J].Molecules and Cells,2016, 39(2)∶87-95.
[6]Shan T,Wang Y,Wu T,etal.Porcine sirtuin 1 gene clone,expression pattern,and regulation by resveratrol[J].Journal of Animal Science, 2009,87(3)∶895-904.
[7]Treska V,Kobr J,Hasman D,etal.Ischemia-reperfusion injury in kidney transplantation from non-heart-beating donor--do antioxidants or antiinflammatory drugs play any role?[J].Bratislavske Lekarske Listy,2009,110(3)∶133-136.
[8]Czubkowski P,Socha P,Paw lowaka J.Oxidative stress in liver transplant recipients[J].Annalsof Transplantation,2011,16(1)∶99-108.
[9]Datta G,Fuller BJ,Davidson BR.Molecular mechanisms of liver ischemia reperfusion injury∶insights from transgenic knockoutmodels[J].World Journalof Gastroenterology,2013,19(11)∶1683-1698.
[10]Ruderman NB,Xu XJ,Nelson L,et al.AMPK and SIRT1∶a long-standing partnership?[J].American Journal of Physiology Endocrinology and Metabolism,2010,298(4)∶751-760.
[11]SuchankovaG,Nelson LE,Gerhart-Hines Z,etal.Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells [J].Biochem Biophys ResCommun,2009,378(4)∶836-841.
[12]Lempiainen J,Finckenberg P,Levijoki J,et al.AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney [J].British Journalof Pharmacology,2012,166(6)∶1905-1915.
[13]Chen R,Dioum EM,Hogg RT,et al.Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner[J].The Journalof BiologicalChemistry,2011,286(16)∶13869-13878.
[14]Bell EL,Emerling BM,RicoultSJ,etal.SirT3 suppresseshypoxia inducible factor 1alpha and tumor grow th by inhibiting m itochondrial ROSproduction[J].Oncogene,2011,30(26)∶2986-2996.
[15]Chen SD,Lin TK,Yang DI,et al.Protective effects of peroxisome proliferator-activated receptors gamma coactivator-1alpha against neuronal cell death in the hippocampal CA1 subfield after transient global ischem ia[J].Journal of Neuroscience Research,2010,88(3)∶605-613.
[16]Della-Morte D,Dave KR,Defazio RA,et al.Resveratrol pretreatment protects rat brain from cerebral ischem ic damage via a sirtuin 1-uncoupling protein 2 pathway[J].Neuroscience,2009,159(3)∶993-1002.
[17]Sanderson TH,Reynolds CA,Kumar R,etal.Molecularmechanisms of ischemia-reperfusion injury in brain∶pivotal role of them itochondrialmembrane potential in reactive oxygen species generation[J]. Molecular Neurobiology,2013,47(1)∶9-23.
[18]Yamamoto T,Tamaki K,Shirakawa K,et al.Cardiac Sirt1 Mediates the Cardioprotective Effectof Caloric Restriction by Suppressing Local Complement System Activation after Ischem ia/Reperfusion[J]. American Journal of Physiology Heart and Circulatory Physiology, 2016,310(8)∶1003-1014.
[19]Daitoku H,Hatta M,MatsuzakiH,et al.Silent information regulator 2 potentiates Foxo1-mediated transcription through itsdeacetylaseactivity[J].Proc NatAcad Sci,USA,2004,101(27)∶10042-10047.
[20]Kong X,Wang R,Xue Y,etal.Sirtuin 3,anew targetof PGC-1alpha, plays an important role in the suppression of ROS andmitochondrial biogenesis[J].PLoSOne,2010,5(7)∶e11707.
[21]Hafner AV,Dai J,Gomes AP,et al.Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy[J].Aging,2010,2(12)∶914-923.
[22]Stein S,Matter CM.Protective roles of SIRT1 in atherosclerosis[J]. CellCycle(Georgetown,Tex),2011,10(4)∶640-647.
[23]Stein S,Schafer N,Breitenstein A,et al.SIRT1 reduces endothelial activation w ithout affecting vascular function in ApoE-/-mice[J]. Aging,2010,2(6)∶353-360.
[24]Cheng HL,Mostoslavsky R,Saito S,et al.Developmental defects and p53 hyperacetylation in Sir2 homolog(SIRT1)-deficient m ice [J].Proc NatAcad Sci,USA,2003,100(19)∶10794-10799.
[25]Fan H,Yang HC,You L,etal.The histone deacetylase,SIRT1,contributes to the resistance of young m ice to ischem ia/reperfusion-induced acute kidney injury[J].Kidney International,2013,83(3)∶404-413.
[26]YamamotoT,Sadoshima J.Protection of theheartagainst ischemia/reperfusion by silent information regulator 1[J].Trends in CardiovascularMedicine,2011,21(1)∶27-32.
[27]Zhao G,Ma H,Shen X,etal.Role of glycogen synthase kinase 3beta in protective effect of propofol against hepatic ischemia-reperfusion injury[J].The Journalof SurgicalResearch,2013,185(1)∶388-398.
[28]A llison SJ,M ilner J.SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways[J].Cell Cycle(Georgetown,Tex), 2007,6(21)∶2669-2677.
Roles of sirtuins in ischem ia-reperfusion injury.
LIWei-fang1,YANG Kang2,HUANGWei-feng1.1.School of Medicine,China Three Gorges University,Yichang 443000,Hubei,CHINA;2.Yichang People's Hospital,China Three GorgesUniversity,Yichang 443000,Hubei,CHINA
Ischem ia-reperfusion injury(IRI)remains a complicated situation in clinical practice,especially in the case of organ transplantation.Large number of factors can contribute to its complexity.The depletion of energy during ischem ia and the induction of oxidative stress during reperfusion initiate a cascade of pathways that lead to cell death and finally to severe organ injury.In the recent years,the sirtuin family has gainedmountings of attention,due to their involvement in themodulation of aw ide variety of cellular functions.There are sevenmammalian sirtuins.The nuclear/cytoplasm ic sirtuin1(SIRT1)and them itochondrial sirtuin 3(SIRT3)arew idely expressed inmany tissues.Sirtuins are known to play a key role in protecting against cellular stress and in controlling metabolic pathways,which are key processes during IRI.In this review,wemainly focus on the roles of SIRT1 and SIRT3 in modulating pathways againstenergy depletion during ischemia and their involvement in oxidative stress,apoptosis,microcirculatory stressand inflammation during reperfusion.
SIRT1;SIRT3;Ischem ia-reperfusion injury(IRI);Roles
R364
A
1003—6350(2016)16—2671—03
2016-03-28)
doi∶10.3969/j.issn.1003-6350.2016.16.031
黃衛(wèi)鋒。E-mail:81609903@qq.com