邢 萌,劉衛(wèi)國,
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061;2. 西安交通大學(xué) 人居與環(huán)境學(xué)院,西安 710049)
浐河、灞河硝酸鹽端元貢獻(xiàn)比例
——基于硝酸鹽氮、氧同位素研究
邢 萌1,劉衛(wèi)國1,2
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061;2. 西安交通大學(xué) 人居與環(huán)境學(xué)院,西安 710049)
近年來,河流氮污染一直是生物地球化學(xué)領(lǐng)域研究的熱點(diǎn)問題。然而,識別水體硝酸鹽來源、端元貢獻(xiàn)比例及其在水體中存在生物轉(zhuǎn)化(硝化、反硝化)過程,仍舊是氮循環(huán)研究的難點(diǎn)問題。本研究選取流經(jīng)西安市的兩條河流——浐河和灞河,測定其河水溶解態(tài)硝酸鹽氮、氧同位素組成,并結(jié)合Bayesian同位素混合模型,有效識別了兩條河流從源頭到匯入渭河河口處,氮素來源的變化,同時(shí),定量分析了其貢獻(xiàn)比例的變化。結(jié)果顯示,河流源頭附近,土壤有機(jī)氮是河流硝酸鹽主要來源,其貢獻(xiàn)比例接近30%;河流中游,由于沿河農(nóng)業(yè)活動的增加,同位素指示河流硝酸鹽主要來源轉(zhuǎn)化為化學(xué)肥料,其貢獻(xiàn)比例接近25%;河流下游,由于城市用水的匯入,硝酸鹽氮、氧同位素值偏正,主要位于污水及糞肥區(qū)間,指示硝酸鹽含量較高的生活污水及工業(yè)廢水的輸入,其貢獻(xiàn)比例能達(dá)到30%以上。通過本研究,研究者定性及半定量的區(qū)分和浐河、灞河氮素來源,為今后有效控制氮污染提供了理論基礎(chǔ)。
河水;硝酸鹽;氮同位素;氧同位素;Bayesian
近些年,隨著城市經(jīng)濟(jì)的不斷增長,城市人口不斷增多,在以工農(nóng)業(yè)為主的城市,大量氮素通過人類活動(工業(yè)廢水和生活污水的排放、農(nóng)業(yè)化肥和農(nóng)藥的使用、人畜糞便的排放、污染物填埋、化石燃料的泄漏等)不斷排入水體,導(dǎo)致水體中硝酸鹽濃度不斷升高(Fernandez et al,2004),引起研究者的廣泛關(guān)注。目前,水體硝酸鹽污染已經(jīng)成為一個(gè)世界性的水質(zhì)問題(Aravena and Robertson,1998;Liu et al,2006; Xue et al,2009)。
水體硝酸鹽具有多來源的特點(diǎn),包括化肥和糞肥、大氣氮沉降、生產(chǎn)和生活污水、土壤有機(jī)氮轉(zhuǎn)化等(Xue et al,2009;劉隨心等,2013)。傳統(tǒng)水化學(xué)方法利用各種污染源的排放數(shù)據(jù)、質(zhì)量濃度及其他離子濃度特征來分析水體的污染程度(邢光熹等,2001;Petitta et al,2009)。然而,僅僅測定水體硝酸鹽濃度并不能為我們提供具體的硝酸鹽來源及可能發(fā)生的生物地球化學(xué)轉(zhuǎn)化過程(Yue et al,2014)。隨著技術(shù)的進(jìn)步,氮、氧穩(wěn)定同位素技術(shù)已經(jīng)廣泛應(yīng)用于環(huán)境污染方面的研究,并在示蹤水體污染來源、遷移和轉(zhuǎn)化方面顯示出較強(qiáng)的優(yōu)越性。
氮同位素分餾能夠引起自然界含氮物質(zhì)δ15N的顯著差異,大多數(shù)陸地物質(zhì)的δ15N組成為-20‰—30‰,例如人工合成化肥δ15N大多在0‰ ± 3‰左右,土壤含氮有機(jī)物經(jīng)過微生物硝化作用δ15N值在-3‰—10‰變化(Kendall et al,1998);而有機(jī)肥、污水中δ15N較重,來源于動物糞便產(chǎn)生的硝酸鹽δ15N值域?yàn)椋?‰—25‰;來源于污水產(chǎn)生的硝酸鹽δ15N值域?yàn)椋?‰—19‰;大氣氮沉降的δ15N值受到大氣中復(fù)雜的化學(xué)反應(yīng)及各種人類活動(化石燃料的燃燒)的影響,其典型值域范圍是-13‰—13‰(Xue et al,2009)。由于來源于大氣氮沉降、土壤、化肥、有機(jī)肥中的的δ15N值分布有重疊現(xiàn)象,為了更好地研究硝酸鹽污染源問題,學(xué)者們開始注意到利用硝酸鹽中氧同位素方法(Mayer et al,2002)。大氣沉降的中的δ18O的值域?yàn)?5‰—75‰(邢萌和劉衛(wèi)國,2012);硝態(tài)化肥δ18O的值域?yàn)?8‰—24‰;硝化作用形成的δ18O的值域?yàn)?5‰—7‰(Xue et al,2009)。因此,研究人員根據(jù)不同污染來源的氮、氧同位素特征值的差異性原理,并與其他環(huán)境同位素及化學(xué)分析技術(shù)相結(jié)合,計(jì)算地表水、地下水、降水中不同來源貢獻(xiàn)率、評價(jià)硝化/反硝化過程,有效判別水體污染來源(Li et al,2010;Liu and Xing,2012;Xing and Liu,2012;Xue et al,2012;Xing et al,2013)。
本文利用硝酸鹽氮、氧同位素技術(shù),選取西安市兩條主要河流浐河、灞河作為研究對象,沿河從源頭到渭河口處進(jìn)行采樣。通過分析河水中不同河段δ15N-和δ18O-的變化,討論河水來源變化及可能存在的生物、化學(xué)轉(zhuǎn)化過程。同時(shí),根據(jù)硝酸鹽氮、氧同位素的典型分布值域,利用stable isotope analysis in R(SIAR)模型定量研究各污染端元的貢獻(xiàn)率。
浐河、灞河是西安地區(qū)主要的河流,也是渭河的主要支流。浐河位于西安市的東郊,是灞河左岸支流。浐河源出藍(lán)田縣西南秦嶺北坡湯峪鄉(xiāng)之南,海拔2197 m的秦嶺紫云山南的月亮石西側(cè),最終匯入渭河。浐河原為渭河一級支流,后因灞河西倒奪浐河而成為灞河支流,其全長64.6 km,流域面積760 km2。流域?qū)儆谂瘻貛Т箨懶约撅L(fēng)季候,四季分明,多年平均氣溫13.3℃,多年平均降水量744.47 mm(宋德明等,1988)。
灞河發(fā)源于藍(lán)田縣東部華山斷塊向南傾斜的老剝蝕面上,河長109 km,流域面積2581 km2。該流域內(nèi)降雨極不均勻,雨季集中在7、8、9月份,約占全年降雨量的53%。浐河、灞河都是典型的季風(fēng)性河流,徑流量年內(nèi)分配不均而年際變化顯著。在徑流量的年內(nèi)變化中有汛期和非汛期之分。汛期是指6月至9月,非汛期是指1月至5月、l0月至l2月(宋德明等,1988) 。黃土高原地區(qū)汛期時(shí)河流水土流失嚴(yán)重,同時(shí)造成嚴(yán)重的營養(yǎng)物質(zhì)流失,據(jù)估計(jì),每噸土壤流失中,包含0.8—1.5 kg 銨態(tài)氮、1.5 kg 全磷和20 kg 全鉀(李相儒等,2015)。
浐河、灞河主要流經(jīng)西安市的藍(lán)田縣和灞橋區(qū)。藍(lán)田縣總面積1969 km2,耕地面積410 km2,灌溉面積11.4 km2,總?cè)丝?2.7萬,其中農(nóng)業(yè)人口56.0萬。灞橋區(qū)全區(qū)總面積322 km2,耕地面積13.4 km2,灌溉面積9.3 km2,總?cè)丝?7.6萬,其中農(nóng)業(yè)人口27.6萬(西安市地方志辦公室,2006)。西安市從2000年到2011年工業(yè)廢水排放量從9.15×107t增長到13.15×107t;2006—2011年農(nóng)業(yè)化肥使用量從69.7×104t增長到78.6×104t,其中藍(lán)田縣2013年農(nóng)業(yè)產(chǎn)值達(dá)到了21.4億元,灞橋區(qū)達(dá)到15.8億元;2011年工業(yè)總產(chǎn)值藍(lán)田縣和灞橋區(qū)分別達(dá)到35.87億元和280.52億元(西安統(tǒng)計(jì)局,2012)??梢姡@幾年浐河、灞河流經(jīng)的區(qū)域農(nóng)業(yè)產(chǎn)值和工業(yè)產(chǎn)值都不斷增加,但是產(chǎn)值的增加是建立在工業(yè)廢水排放量和農(nóng)業(yè)化肥使用量增長的基礎(chǔ)上的。人類活動對于小流域生態(tài)環(huán)境影響不容忽視(郭嬌等,2013)。
本研究于2011年11月沿浐河從源頭到?jīng)汉訁R入灞河處共采集5個(gè)河水樣,沿灞河從源頭到灞河匯入渭河處共采集7個(gè)河水樣,所有樣點(diǎn)均以GPS定位(圖1)。野外取河水樣1.5 L,利用校準(zhǔn)過的哈納筆式pH 計(jì)(HI98310),在野外現(xiàn)場測定水體pH、水溫(T)、電導(dǎo)率(EC)和總?cè)芙夤腆w物(TDS)水化學(xué)參數(shù)。水樣采集后冷藏并迅速運(yùn)回實(shí)驗(yàn)室。水樣過0.4 μm Whatman濾膜,過濾后的水樣在4℃下冷藏保存,用于的測定。采樣完成24 h內(nèi),取適量河水樣用離子色譜儀(Dionex ICS-1000)測定Cl-,濃度,再取適量河水樣用納氏試劑分光光度法測定-N含量(GB 7479-87)。所有樣品均在中科院地球環(huán)境研究所同位素實(shí)驗(yàn)室測試完成。
圖1 浐河、灞河采樣點(diǎn)位置示意圖Fig.1 Map of the Chanhe and Bahe rivers showing the location of the sampling sites for river waters
同位素樣品采用改進(jìn)的陰離子交換樹脂法進(jìn)行處理(Xing and Liu,2011)。根據(jù)-N 濃度,取一定體積的水樣,通過陰離子交換樹脂柱(Bio-Rad AG1-X8型樹脂)進(jìn)行離子交換。取8 mL 3 mol·L-1鹽酸洗脫吸附在樹脂柱上的,向洗脫液中逐次加入Ag2O,每次加入約1 g進(jìn)行反應(yīng),共加入約3.3 g Ag2O。最后用pH試紙檢驗(yàn),pH值要在5.5—6.0。用過濾方法除去AgCl 沉淀,將含有AgNO3的濾液收集在容積為50 mL的燒杯中。將樣品分成兩份,其中一份進(jìn)行冷凍干燥,將冷凍干燥后得到的AgNO3樣品用去離子水溶解后轉(zhuǎn)移入尖底離心管中,再次進(jìn)行冷凍干燥,使樣品均勻的濃縮至較小體積。最后將凍干的AgNO3樣品轉(zhuǎn)移到5 mm×9 mm的銀杯中,按照常規(guī)方法將銀杯壓褶,進(jìn)行同位素質(zhì)譜分析。為了測根中的δ18O同位素,必須除掉、和溶解有機(jī)物(Dissolved organic materials,DOM)中氧的干擾。在上個(gè)步驟的另一部分AgNO3萃取液中加入2 mol·L-1BaCl2產(chǎn)生沉淀后過濾,除去、,再將溶液抽濾通過陽離子交換樹脂柱(Dowex 50W-X8),除去多余的Ba2+;用Ag2O去除多余的Cl-,過濾后將試劑凍干,獲得固態(tài)AgNO3用來分析δ18O同位素(Silva et al,2000)。
氮同位素質(zhì)譜分析采用Flash EA和 Delta Plus連續(xù)流同位素比值質(zhì)譜聯(lián)用系統(tǒng);氧同位素質(zhì)譜分析采用高溫裂解元素分析儀(TC/EA)連接Delta Plus連續(xù)流同位素比值質(zhì)譜聯(lián)用系統(tǒng)。Finnigan Delta plus質(zhì)譜儀是美國熱電(Thermo)公司產(chǎn)品,備有連續(xù)流裝置Con fl o Ⅲ。
樣品測試在中國科學(xué)院地球環(huán)境研究所同位素實(shí)驗(yàn)室進(jìn)行。該方法采用的氮的參考標(biāo)準(zhǔn),為國際上通用的同位素參考標(biāo)準(zhǔn)IAEA-N3(δ15N = 4.7‰)和本實(shí)驗(yàn)室標(biāo)準(zhǔn)KNO(3δ15N = 6.3‰)。該方法測定δ15N的標(biāo)準(zhǔn)偏差為± 0.2‰。O同位素參考標(biāo)準(zhǔn)為IAEA-N3(δ18O = 25.6‰)和纖維素(δ18O = 29.0‰),δ18O的測定標(biāo)準(zhǔn)偏差為±1‰。
Parnell et al(2010)開發(fā)并制作了一個(gè)穩(wěn)定同位素模型,稱做SIAR。SIAR 基于狄利克雷分布用貝葉斯框架建立了一個(gè)邏輯先驗(yàn)分布,來估算各來源貢獻(xiàn)比例的可能分布,然后確定各來源對混合物的貢獻(xiàn)比例的概率分布。通過定義K個(gè)來源N個(gè)混合物的J個(gè)同位素,考慮到上述的不確定性,混合模型可以如下表示:
Xij是第i個(gè)混合物的j同位素值,i= 1,2,3…N,j=1,2,3…J;Sjk是第k個(gè)端元的j同位素值(k= 1,2,3…K),μjk為平均值,ωjk為標(biāo)準(zhǔn)偏差;pk為端元k的貢獻(xiàn)比例,需要根據(jù)SIAR模型來預(yù)測;cjk是端元k在j同位素上的分餾因子,λjk為分餾因子的平均值,τjk為標(biāo)準(zhǔn)偏差;εij為剩余誤差,代表不同單個(gè)混合物之間未能確定的變量,其平均值為0,標(biāo)準(zhǔn)偏差為σj。
4.1 河水水化學(xué)變化
從表1可以看出2條河流河水的pH 值的變化不大,浐河變化范圍為7.8—9.3,灞河變化范圍為7.7—8.3,總體偏堿性。電導(dǎo)率(EC)反映水體中的離子強(qiáng)度,總?cè)芙馕镔|(zhì)(TDS)反映了水體中總?cè)芙馕镔|(zhì)濃度,2條河流EC的變化范圍在100—460 μS·cm-1,TDS濃度在50—230 mg·L-1。2條河流EC和TDS 濃度均從上游到下游呈增加趨勢。浐河和灞河-N濃度要遠(yuǎn)高于-N和-N濃度,因此,2條河主要氮素污染物質(zhì)為-N。
表1 浐河、灞河河水水文化學(xué)參數(shù)及河水硝酸鹽氮、氧同位素組成Tab.1 Hydrogeochemical parameters and isotopic analysis of Chanhe and Bahe water samples
氯在自然界中是相對穩(wěn)定的元素,其可能來源包括農(nóng)用鉀肥,動物糞便,生活污水等,因此氯可以作為指示污染源的元素(Mengis et al,1999)。從圖2可以看出,在浐河、灞河上游地區(qū),河水中和Cl-濃度較低,表明該地區(qū)未受人類活動影響或受人類活動影響較小。隨著河流流經(jīng)農(nóng)耕區(qū)和城市活動區(qū),沿岸含有高和Cl-濃度的農(nóng)業(yè)用水或城市污水不斷匯入,導(dǎo)致河水和Cl-濃度不斷升高。浐河和灞河和Cl-濃度(除去B7點(diǎn))呈正相關(guān)(R2= 0.95,n= 11),這表明Cl-濃度明顯受人類活動的影響。
圖2 浐河、灞河河水-N和Cl-濃度變化相關(guān)關(guān)系圖Fig.2 Variation in the-N concentration with the Clconcentration in Chanhe and Bahe waters
4.2 河水硝酸鹽來源解析
Xing et al(2015)和Yue et al(2014)對中國涇河流域和松花江研究表明,河水濃度及同位素組成受沿河土地利用類型及人類活動影響嚴(yán)重。浐河、灞河源頭(C1、C2;B1)主要來自于降水及土壤有機(jī)氮。浐河、灞河源頭河水發(fā)源于秦嶺山間,植被覆蓋較好,遠(yuǎn)離人類活動,因此,水體中同位素組成較為偏負(fù)。浐河、灞河中游段(C3;B2—B5),河水δ15N-和δ18O-同位素比值逐漸升高,可能是受沿途農(nóng)業(yè)活動施加化肥及糞肥影響。農(nóng)田表土上未被農(nóng)作物利用和吸收的肥料,隨雨水沖刷進(jìn)入河道,從而導(dǎo)致河水同位素組成逐漸偏正。2條河下游(C4、C5; B6、B7),河流進(jìn)入西安市區(qū),河水呈現(xiàn)最高值,河水值也明顯偏正,主要分布在同位素污水及有機(jī)肥區(qū)間。邢萌等(2010)年對西安浐河和澇河采樣過程中,采集城市排污口污水,測定其組成均大于10‰。因此,本研究中河流下游同位素不斷升高可能是受城市污水、廢水匯入河流影響。
4.3 河水可能發(fā)生的硝化、反硝化作用
硝酸鹽氮、氧同位素不僅能夠區(qū)分氮素來源,而且還能輔助判斷氮素經(jīng)歷的生物地球轉(zhuǎn)化過程。在水土環(huán)境中,硝化、反硝化和氨揮發(fā)等作用會引起氮同位素的分餾,導(dǎo)致水體中的硝酸鹽的同位素組成發(fā)生變化(Kendall,1998)。其中氨揮發(fā)為一個(gè)物理化學(xué)過程,其發(fā)生程度受pH 值影響很大,一般情況下,水溶液中的轉(zhuǎn)化為NH3的pH值為9.3(Korom,1992),在此臨界值,pH增加有利于氨揮發(fā),而pH降低氮主要以離子態(tài)存在,不考慮氨揮發(fā)的影響。當(dāng)反硝化作用發(fā)生時(shí),殘余硝酸鹽的δ15N和δ18O會發(fā)生同步富集,δ15N/δ18O比值大約是2:1(Amberger and Schmidt,1987)。當(dāng)硝化作用產(chǎn)生硝酸鹽時(shí),該方法也是很有用的,由于中2 個(gè)氧來自于H2O,1個(gè)氧來自于溶解O2,據(jù)此可以利用氧同位素技術(shù)有效的識別硝化作用。通常情況下,微生物的反硝化作用更能引起顯著的氮同位素分餾(Heaton,1986;Kendall,1998),是污染地下水中最常見的反應(yīng),它會使得地下水中的濃度減少,δ15N值增加,從而改變了初始硝酸鹽來源的同位素組成,因此,識別反硝化作用是識別硝酸鹽污染源的一個(gè)重要前提。
圖3 典型硝酸鹽端元組分氮、氧同位素范圍及浐河、灞河河水硝酸鹽氮、氧關(guān)系分布圖Fig.3 Generalsource fi ngerprints in a diagram ofδ15N andδ18O, and characteristic
Xing et al(2015)對涇河研究,測定涇河河水δ18O-H2O變化范圍為-9.1‰—-8.6‰。本研究利用涇河河水δ18O變化范圍,結(jié)合大氣δ18O典型值23.5‰(Kroopnic and Craig,1972),計(jì)算得出,如果浐河、灞河河水經(jīng)歷硝化過程,其的變化范圍應(yīng)從1.7‰—2.1‰。
根據(jù)圖3,發(fā)現(xiàn)浐河、灞河河水δ18O-值均高于理論硝化反應(yīng)產(chǎn)生的δ18O-值,因此,該2條河河水并未經(jīng)歷明顯的硝化作用。從河流上游到下游,2條河水δ18O-值不斷升高,可能是由于沿途具有較高δ18O-組成的合成化肥輸入比例升高造成。
根據(jù)SIAR模型輸出結(jié)果發(fā)現(xiàn),2條河流4類端元貢獻(xiàn)比例依次為:污水及糞肥>土壤有機(jī)氮>化肥>大氣沉降(圖4)。其中浐河污水及糞肥貢獻(xiàn)比例為30%,灞河該端元貢獻(xiàn)比例達(dá)到36%。大氣沉降的氮在浐河和灞河貢獻(xiàn)比例最低,在浐河其貢獻(xiàn)率為16%,在灞河其貢獻(xiàn)率僅為14%。2條河大氣沉降氮貢獻(xiàn)比例較低可能是由于本次采樣均在11月份。西安地區(qū)受東亞季風(fēng)氣候影響顯著,降雨多集中在6—9月,11月2條河流基本進(jìn)入枯水期,雨水補(bǔ)給較少,因此,雨水氮貢獻(xiàn)比例在此次研究中表現(xiàn)為最低。土壤有機(jī)氮和化肥貢獻(xiàn)比例在2條河中比較接近。土壤有機(jī)氮在浐河和灞河的貢獻(xiàn)比例分別為28%和26%,化肥在浐河和灞河貢獻(xiàn)比例分別為26%和24%。該結(jié)果可能與沿河流的化肥使用量及水土流失狀況密切相關(guān)。
表2 硝酸鹽端元組分氮、氧同位素組成Tab.2 The range ofδ15N-andδ18O-from main sources
表2 硝酸鹽端元組分氮、氧同位素組成Tab.2 The range ofδ15N-andδ18O-from main sources
δ15N-/ ‰δ18O-端元平均值±標(biāo)準(zhǔn)偏差Mean ± Standard deviation大氣沉降A(chǔ)tmospheric deposition1.4 ± 2.438.5 ± 13.4Xing and Liu(2012)土壤氮sources 平均值±標(biāo)準(zhǔn)偏差Mean ± Standard deviation / ‰文獻(xiàn)References Soil nitrogen3.3 ± 1.01.7 ± 0.5Xing and Liu(2015)邢萌等(2010)化肥Manure and sewage11.3 ± 0.214.5 ± 1.8Xing and Liu(2015)邢萌等(2010)Fertilizer0.3 ± 3.01.7 ± 0.5Xing and Liu (2015)邢萌等(2010)污水及糞肥
圖4 利用SIAR計(jì)算4種端元對于浐河、灞河貢獻(xiàn)比例,箱線圖圖例從淺到深表明5%, 25%, 50%, 75%, 和 95%的比例。Fig.4 SIAR estimated four potentialsources contribution proportion to Chanhe and Bahe rivers. Boxplots illustrate the 5th, 25th, 50th, 75th, and 95th percentiles from light to dark.
通過2011年11月份對流經(jīng)西安市2條河流浐河和灞河的硝酸鹽氮、氧同位素研究,獲得以下結(jié)論:
通過本研究,研究者定性及半定量的區(qū)分和浐河、灞河氮素來源,為今后有效控制氮污染提供了理論基礎(chǔ)。
郭 嬌, 葉 浩, 吳利杰, 等. 2013. 氣候變化和人類活動對黃土高原小流域生態(tài)環(huán)境的影響 [J].地球環(huán)境學(xué)報(bào), 4(2): 1261 – 1265. [Guo J, Ye H, Wu L J, et al. 2013. In fl uence of climatic change and human activities on ecological environment in small watershed of Loess Plateau [J].Journal of Earth Environment, 4(2): 1261 – 1265.]
李相儒, 金 釗, 張信寶, 等. 2015.黃土高原近60年生態(tài)治理分析及未來發(fā)展建議[J].地球環(huán)境學(xué)報(bào), 6(4): 248 – 254. [Li X R, Jin Z, Zhang X B, et al. 2015. Analysis of ecosystem management of the Loess Plateau during the past 60 years and suggestions for the future development [J].Journal of Earth Environment, 6(4): 248 – 254.]
劉隨心, 曹軍驥, 何建輝, 等. 2013. 西安大氣PM2.5中有機(jī)氮和無機(jī)氮的理化特征[J].地球環(huán)境學(xué)報(bào), 4(2): 1272 – 1279. [Liu S X, Cao J J, He J H, et al. 2013. Characteristics of water soluble organic and inorganic nitrogen in atmospheric fi ne particles (PM2.5) from Xi’an [J].Journal of Earth Environment, 4(2): 1261 – 1265.]
宋德明, 吳成基, 焦尊生. 1988. 西安市地理志 [M].西安:陜西人民出版社, 127 – 133. [Song M D, Wu C J, Jiao Z S. 1988. Records of Xi’an geography [M]. Xi’an: ShaanXi People’s Publishing House, 127 – 133.]
西安市地方志辦公室. 2006. 西安年鑒2006 [M].西安: 西安出版社, 339 – 357.[Records of Xi’an Geography of fi ce. 2006. Xi’an book 2006 [M]. Xi’an: Xi’an Publishing House. 339 – 357.]
西安統(tǒng)計(jì)局. 2012. 西安統(tǒng)計(jì)年鑒2011 [M].北京:中國統(tǒng)計(jì)出版社, 207 – 264.[Xi’an Municipal Bureau of Statistics. 2012. Xi’an statistics book 2011 [M]. Beijing: China Statistics Publishing House, 207 – 264.]
邢光熹, 施書蓮, 杜麗娟, 等. 2001. 蘇州地區(qū)水體氮污染狀況 [J].土壤學(xué)報(bào), 38( 4): 540 – 546. [Xing G X, Shi S L, Du L J, et al. 2001. Situation of nitrogen pollution in water bodies in Suzhou region [J].Acta Pedologica Sinica, 38(4): 540 – 546.]
邢 萌, 劉衛(wèi)國. 2012. 雨水硝酸鹽同位素研究現(xiàn)狀及展望 [J].
地球環(huán)境學(xué)報(bào), 3(4): 995 – 1004. [Xing M, Liu W G. 2010. The progress and prospect of nitrate stable isotopes in rainwaters [J].Journal of Earth Environment, 3(4): 995 – 1004.]
邢 萌, 劉衛(wèi)國, 胡 婧. 2010. 浐河、澇河河水硝酸鹽氮污染來源的氮同位素示蹤 [J].環(huán)境科學(xué), 31(10): 39 – 44. [Xing M, Liu W G, Hu J. 2010. Using nitrate isotope to trace the nitrogen pollution in Chanhe and Laohe River [J].Environmental Science, 31(10): 39 – 44.]
Amberger A, Schmidt H L. 1987. Nitürliche isotopengehalte von nitrate als indikatoren für dessen Hantwerkunft [J].Geochimica et Cosmochimica Acta, 51: 2699 – 2705.
Aravena R, Robertson W D. 1998. Use of multiple isotope tracers to evaluate denitri fi cation in ground water: study of nitrate from a large- fl ux septic system plume [J].Ground Water, 36: 975 – 982.
Elliott E M, Kendall C,Wankel S D, et al. 2007. Nitrogen isotopes as indicators of NOxsource contributions to atmospheric nitrate deposition across the Midwestern andNortheastern United States [J].Environmental Science and Technology, 41: 7661–7667.
Fernandez J, Curt M D, Aguado P, et al. 2004. Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain [J].Water Air and Soil Pollution, 151: 135 – 142.
Heaton T H E. 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review [J].Chemical Geology, 59: 87 – 102.
Kendall C. 1998. Tracing nitrogen sources and cycling in catchments [A]. In: Kendalll C, McDonnel J J (ed.). Isotope tracers in catchment hydrology [M]. Amsterdam: Elsevier Science, 517 – 576.
Korom S F. 1992. Natural denitri fi cation in the saturated zone: A review [J].Water Resource Research, 8 (6):1657 – 1668.
Kroopnic P, Craig H. 1972. Atmospheric oxygen: Isotopic composition and solubility fractionation [J].Science, 175: 54 – 55.
Li S L, Liu C Q, Li J, et al. 2010. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach [J].Environmental Science and Technology, 44: 1573 – 1578.
Liu C Q, Li S L, Lang Y C, et al. 2006. Usingδ15N- andδ18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China [J].Environmental Science and Technology, 40: 6928 – 6933.
Liu W G, Xing M. 2012. Isotopic indicators of carbon and nitrogen cycles in river catchments during soil erosion in the arid Loess Plateau of China [J].Chemical Geology, 296 / 297: 66 – 72.
Mayer B, Boyer E W, Goodale C, et al. 2002. Sources of nitrate in rivers draining sixteen watersheds in the northeastern US: Isotopic constraints. Biogeochemistry, 57(1): 171 – 197.
Mengis M, Schiff S L, Harris M, et al.1999. Multiple geochemicaland isotopic approaches for assessing ground waterelimination in a riparian zone [J].Ground Water, 37(3): 448–459.
Parnell A C, Inger R, Bearhop S, et al. 2010. Source partitioning using stable isotopes: Coping with too much variation [J].PLoS ONE, 5(3), e9672, doi:10.1371/journal. pone.0009672.
Petitta M, Fracchiolla D, Aravena R, et al. 2009. Application of isotopic and geochemical tools for the evaluation of nitrogen cycling in an agricultural basin, the Fucino Plain, Central Italy [J].Journal of Hydrology, 372(1/2/3/4): 124 – 135.
Silva S R, Kendall C, Wilkison D H, et al. 2000. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios [J].Journal of Hydrology, 228: 22 – 36.
Vuorenmaa J, Rekolainen S, Lepisto A, et al. 2002. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s [J].Environmental Monitoring and Assessment, 76 (2): 213 – 248.
Xing M, Liu W G. 2011. An improved method of ion exchange for nitrogen isotope analysis of water nitrate [J].Analytica Chimica Acta, 686: 107 – 114.
Xing M, Liu W G. 2012. Variations in the concentration and isotopic composition of nitrate nitrogen in wet deposition and their relation with meteorological conditions in Xi’an city, Northwest China [J].Applied Geochemistry, 27: 831 – 840.
Xing M, Liu W G, Wang Z F, et al. 2013. Relationship of nitrate isotopic character to population density in the Loess Plateau of Northwest China [J].Applied Geochemistry, 35: 110 – 119.
Xing M, Liu W G. 2015. Using dual isotopes to identify sources and transformations of nitrogen in water catchments with different land uses, Loess Plateau of China [J].Environmental Science and Pollution Research, doi: 10.1007/s11356-015-5268-y.
Xue D M, Botte J, Baets B de, et al. 2009. Present limitations and future prospects of stable isotope methods for nitrate source identi fi cation in surface and groundwater [J].Water Resource, 43: 1159 – 1170.
Xue D M, De Baets B, Van Cleemput O, et al. 2012. Use of the Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water [J].Environmental Pollution, 161: 43 – 49.
Yue F J, Li S L, Liu C Q, et al. 2013. Using dual isotopes to evaluate sources and transformation of nitrogen in the Liao River, Northeast China [J].Applied Geochemistry, 36: 1 – 9.
Yue F J, Liu C Q, Li S L, et al. 2014. Analysis ofδ15N andδ18O to identify nitrate sources and transformations in Songhua River, Northeast China [J].Journal of Hydrology, 519: 329 – 339.
Nitrate source proportional contributions in the Chanhe and Bahe rivers— Using its isotopic ratios in combination with a Bayesian isotope mixing mode
XING Meng1, LIU Weiguo1,2
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. School of Human Settlement and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
Background, aim, and scopeIn recent years, nitrogen pollution in rivers is a research hotspot in the fi eld of biogeochemistry. However, the types and sources of pollution have historically been poorly understood in the water catchments of the Loess Plateau in China. This study had chosen two rivers, Chanhe and Bahe rivers, which fl owed through the Xi’an city. By using the dual nitrate isotopic composition, the nitrate sources were well identi fi ed from its sources to the site where they entered the Weihe River.Materials and methodsWaters from the two river catchments were sampled along the reaches from their sources to the site where they entered the Weihe River. 5 water samples from Chanhe River, and 7 water samples from Bahe River were collected during November 2011. The Cl-,,-N, and-N concentrations were measured using ionchromatography (Dionex ICS-1000),-N concentrations were determined by spectrophotometry using the Nessler method. Isotopic measurements ofδ15N-andδ18O-were performed using the improved ion exchange method. In addition, the nitrate sources contribution proportions were quanti fi ed by using the Bayesian isotope mixing mode.ResultsThe-N concentrations of Chanhe and Bahe rivers ranged from 1.8 mg·L-1to 6.0 mg·L-1and 2.0 mg·L-1to 4.5 mg·L-1, respectively. The study found that-N was the primary nitrogen species in the rivers. The-N and-N concentrations were lower, such that-N could not be detected in most samples. Theδ15N-values of Chanhe and Bahe rivers from upper to lower stream were from 1.4‰ to 7.8‰ and 2.9‰ to 8.3‰, respectively.DiscussionTheisotope results in the studied river water samples were mainly distributed in three sections: soil organic nitrogen, manure and sewage, and syntheticfertilizer source pool, indicating that these might be the sources of river. All of the samples hadδ18O-value above theoretical nitri fi cation values. This indicated thatconcentrations and isotopic compositions were less affected by nitri fi cation in these rivers. In the present study, no positive interaction was found betweenδ15N-andδ18O-in spatial change of these rivers. This indicated that no signi fi cant denitri fi cation was found to impact ondistribution in the river waters. The isotopic results show that theδ15N-values in the headstream of the Chanhe and Bahe rivers are the lowest and attributed to the organic nitrogen from the natural soil. The contribution of soil organic nitrogen can reach approximately 30%. The nitrate isotopic compositions indicate that the nitrate sources change intoandfertilizer with the increasing agricultural activities in the middle reaches, and the proportions can reach approximately 25%. The highestδ15N-values in the lower reaches of the two rivers result mainly from industrial wastewater, sewage and manure in this area. The industrial wastewater, sewage and manure input can reach above 30%.ConclusionsIn this study, we observed the spatial variability of dissolved nitrogen and the isotopic composition of nitrate in water from two rivers. The result of the present study demonstrated that-N was the dominant species of dissolved inorganic nitrogen in the rivers. By using the dual nitrate isotope, the study found that there was little nitri fi cation or denitri fi cation in the river waters, and the spatial variation of isotopic composition in rivers re fl ected the nitrogen sources change along the rivers. Further, the nitrogen sources change mainly was controlled by the land use types around the rivers. The contributions of thesources were quantified and estimated using the SIAR model given isotopic data in the two rivers andsources. The results showed that source contributions were manure and sewage > soil organic nitrogen > synthetic fertilizer > atmospheric deposition. The results suggest that the more anthropogenic impacted river water had higher nitrate concentration and enriched dual isotopes imprinting.Recommendations and perspectivesThis study quantitative and semi-qualitative proved the nitrogen source in the Chanhe and Bahe rivers, and better agricultural management practices and sewage disposal programs can be implemented to protect water quality in this watershed.
river water; nitrate; nitrogen isotope; oxygen isotope; Bayesian
XING Meng, E-mail: xingmeng@ieecas.cn
10.7515/JEE201601004
2015-11-13;錄用日期:2015-12-14
Received Date:2015-11-13;Accepted Date:2015-12-14
國家自然科學(xué)基金項(xiàng)目(41303011);中國科學(xué)院重點(diǎn)部署項(xiàng)目(KZZD-EW-04-06);中國科學(xué)院西部之光西部博士資助項(xiàng)目
Foundation Item:National Natural Sciences Foundation of China (41303011); Key Research Program of the Chinese Academy of Sciences (KZZD-EW-04-06); West Light Foundation of the Chinese Academy of Sciences
邢 萌,E-mail: xingmeng@ieecas.cn