朱厚飛++董祥美++馬振新++姜利平++王海鳳
摘要:
從理論角度與實(shí)驗(yàn)角度研究了三次相位調(diào)制參數(shù)對(duì)艾里光束的影響。理論上分析說(shuō)明三次相位對(duì)應(yīng)的頻譜為艾里光束,并引入三次相位調(diào)制參數(shù)a3以表征相位變化速率。實(shí)驗(yàn)上通過(guò)設(shè)定不同的三次相位調(diào)制參數(shù),觀察其對(duì)艾里光束的影響。結(jié)果表明,三次相位調(diào)制參數(shù)可以影響艾里光束的光瓣尺寸、光瓣間距以及能量分布等,并確定a3最佳值在2~4之間。
關(guān)鍵詞:
三次相位調(diào)制參數(shù); 艾里光束; 光瓣尺寸; 光瓣間距; 能量分布
中圖分類號(hào): O 436 文獻(xiàn)標(biāo)志碼: A doi: 10.3969/j.issn.10055630.2016.01.006
The influence of cubic phase modulation parameter on Airy beam
ZHU Houfei, DONG Xiangmei, MA Zhenxin, JIANG Liping, WANG Haifeng
(School of OpticalElectrical and Computer Engineering, University of Shanghai
for Science and Technology, Shanghai 200093, China)
Abstract:
In the paper, we theoretically and experimentally study the influence of cubic phase modulation parameter on Airy beam. In the theory, we demonstrate that the frequency spectrum induced by cubic phase is Airy beam. To represent the change rate of phase, we introduce the cubic phase modulation parameter a3. In the experiment, we observe the variation of Airy beam with different cubic phase modulation parameters. The results show that the parameter can regulate spot size of Airy beam, spot space and intensity distribution. And the optimum value of a3 is betweent 2 and 4.
Keywords: cubic phase modulation parameter; Airy beam; spot size; spot space; intensity distribution
引 言
1979年,Berry等從理論上證明描述自由粒子運(yùn)動(dòng)的薛定諤方程具有無(wú)衍射艾里光束解[1]。由于艾里光束具有橫向加速特性[26]、無(wú)衍射特性[78]以及自修復(fù)特性[911]等,因此其在光學(xué)微操縱[1213]、等離子體引導(dǎo)[14]、粒子輸運(yùn)[15]等方面具有廣泛應(yīng)用。
2013年,F(xiàn)an等研究了三次相位附加光柵相位時(shí)對(duì)產(chǎn)生的艾里光束的影響,并發(fā)現(xiàn)光柵相位調(diào)制參數(shù)g可以改變光束在橫向場(chǎng)上的指向分布,但并不影響其橫向加速軌跡[1617]。本文基于以上研究進(jìn)一步討論三次相位調(diào)制參數(shù)a3對(duì)產(chǎn)生的艾里光束的影響,并通過(guò)實(shí)驗(yàn)發(fā)現(xiàn)三次相位調(diào)制參數(shù)可以改變光束的光瓣尺寸、光瓣間距以及能量分布等物理量,并確定其最佳值。探討三次相位調(diào)制參數(shù)對(duì)艾里光束的影響有助于加深對(duì)艾里光束的認(rèn)識(shí)與理解,并實(shí)現(xiàn)對(duì)光束結(jié)構(gòu)的控制,這在實(shí)際生活中有很多應(yīng)用之處。
由此可見,艾里光束的光場(chǎng)分布受到三次相位調(diào)制參數(shù)a3的影響。圖2(a)、(b)表示光柵相位調(diào)制參數(shù)g=0、三次相位調(diào)制參數(shù)a3=2.5時(shí)的三次相位及對(duì)應(yīng)的二維艾里光束。
圖2 二維三次相位及對(duì)應(yīng)的艾里光束
Fig.2 Two dimensional cubic phase and the corresponding Airy beam
2 實(shí)驗(yàn)驗(yàn)證
為了驗(yàn)證以上理論分析的正確性,進(jìn)行實(shí)驗(yàn)觀測(cè),其實(shí)驗(yàn)裝置如圖3所示。HeNe激光器用于產(chǎn)生632 nm的線偏振光,經(jīng)擴(kuò)束鏡后變?yōu)槭霃綖?.32 mm的高斯光束,經(jīng)分光棱鏡入射到空間光調(diào)制器液晶屏上。高斯光束經(jīng)液晶屏上的三次相位調(diào)制后經(jīng)分光棱鏡反射再經(jīng)焦距為500 mm的傅里葉透鏡進(jìn)行傅里葉變換產(chǎn)生艾里光束,并利用CCD測(cè)得其光強(qiáng)分布。其中,空間光調(diào)制器和CCD分別放在傅里葉透鏡的前焦平面與后焦平面處??臻g光調(diào)制器選用Holoeye公司Pluto型純相位空間光調(diào)制器,液晶屏像素為1 920×1 080,像素尺寸為8 μm,有效面積為15.36 mm×8.64 mm。
圖3 實(shí)驗(yàn)裝置圖
Fig.3 Experimental setup
現(xiàn)探究不同的三次相位調(diào)制參數(shù)對(duì)三次相位及對(duì)應(yīng)艾里光束的影響。圖4(a)、(b)、(c)、(d)表示光柵相位調(diào)制參數(shù)g=15、三次相位調(diào)制參數(shù)a3=2,3,4,5時(shí)三次相位圖樣??梢钥闯?,當(dāng)a3較小時(shí),相位變化速率較小,隨著a3的增大,相位變化速率增加,但由于變化太快,相位出現(xiàn)紊亂現(xiàn)象。圖4(a)、(b)、(c)、(d)對(duì)應(yīng)的艾里光束光強(qiáng)如圖4(e)、(f)、(g)、(h)所示。當(dāng)a3=2時(shí),光束主光瓣寬度為407 μm,主旁瓣間距為21 μm;當(dāng)a3=3時(shí),光束主光瓣寬度為542 μm,主旁瓣間距為42 μm;當(dāng)a3=4時(shí),光束主光瓣寬度為588 μm,主旁瓣間距為88 μm;當(dāng)a3=5時(shí),光束主光瓣寬度為748 μm,主旁瓣間距為134 μm。由此可見,a3可以影響艾里光束的光瓣尺寸與光瓣間距。隨著a3的增大,艾里光束光瓣尺寸增加,光瓣間距也增加。另外,隨著a3的增大,艾里光束的能量降低,且當(dāng)a3>4時(shí)光瓣出現(xiàn)離散化現(xiàn)象,光束質(zhì)量下降。因此a3最佳值在2~4之間。
3 結(jié) 論
本文研究了三次相位調(diào)制參數(shù)對(duì)產(chǎn)生的艾里光束的影響。并通過(guò)理論分析與實(shí)驗(yàn)驗(yàn)證發(fā)現(xiàn),三次相位調(diào)制參數(shù)會(huì)對(duì)艾里光束的光瓣尺寸、光瓣間隔以及能量分布產(chǎn)生影響,其最佳值在2~4之間。因此,可以通過(guò)調(diào)節(jié)三次相位調(diào)制參數(shù)來(lái)控制艾里光束的結(jié)構(gòu),以滿足不同的應(yīng)用需求。
參考文獻(xiàn):
[1] BERRY M V,BALAZS N L.Nonspreading wave packets[J].American Journal of Physics,1979,47(3):264267.
[2] SIVILOGLOU G A,CHRISTODOULIDES D N.Accelerating finite energy Airy beams[J].Optics Letters,2007,32(8):979981.
[3] SIVILOGLOU G A,BROKY J,DOGARIU A,et al.Ballistic dynamics of Airy beams[J].Optics Letters,2008,33(3):207209.
[4] BAUMGARTL J,MAZILU M,DHOLAKIA K.Optically mediated particle clearing using Airy wavepackets[J].Nature Photonics,2008,2(11):675678.
[5] ROGELSALAZAR J,JIMNEZROMERO H A,CHVEZCERDA S.Full characterization of Airy beams under physical principles[J].Physical Review A,2014,89(2):023807.
[6] KOTLYAR V,KOVALEV A A.Airy beam with a hyperbolic trajectory[J].Optics Communications,2014,313:290293.
[7] BESIERIS I M,SHAARAWI A M.A note on an accerating finite energy Airy beam[J].Optics Letters,2007,32(16):24472449.
[8] NOVITSKY A V,NOVITSKY D V.Nonparaxial Airy beams:role of evanescent waves[J].Optics Letters,2009,34(21):34303432.
[9] BROKY J,SIVILOGLOU G A,DOGARIU A,et al.Selfhealing properties of optical Airy beams[J].Optics Express,2008,16(17):1288012891.
[10] DAI H T,SUN X W,LUO D,et al.Airy beams generated by a binary phase element made of polymerdispersed liquid crystals[J].Optics Express,2009,17(22):1936519370.
[11] WEN W,CHU X X,MA H T.The propagation of a combining Airy beam in turbulence[J].Optics Communications,2015,336:326329.
[12] ZHANG P,PRAKASH J,ZHANG Z,et al.Trapping and guiding microparticles with morphing autofocusing Airy beams[J].Optics Letters,2011,36(15):28832885.
[13] HWANG C Y,KIM K Y,LEE B.Bessellike beam generation by superposing multiple Airy beams[J].Optics Express,2011,19(8):73567364.
[14] POLYNKIN P,KOLESIK M,MOLONEY J V,et al.Curved plasma channel generation using ultraintense Airy beams[J].Science,2009,324(5924):229232.
[15] BAUMGARTL J,CˇIMR T,MAZILU M,et al.Optical path clearing and enhanced transmission through colloidal suspensions[J].Optics Express,2010,18(16):1713017140.
[16] FAN Y T,WEI J S,MA J Y,et al.Tunable twin Airy beams induced by binary phase patterns[J].Optics Letters,2013,38(8):12861288.
[17] WANG X Z,LI Q,WANG Q.Arbitrary scanning of the Airy beams using additional phase grating with cubic phase mask[J].Applied Optics,2012,51(28):67266731.
[18] SIVILOGLOU G A,BROKY J,DOGARIU A,et al.Observation of accelerating Airy beams[J].Physics Review Letters,2007,99(21):213901.
(編輯:張 磊)