国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

2016-02-15 11:28SHUYu
關(guān)鍵詞:積分算子安徽師范大學(xué)算子

SHU Yu

(Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

SHU Yu

(Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

In this paper, we prove the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces.

Marcinkiewicz integrals; commutator; Schr?dinger operator; variable exponent; Morrey spaces

Classification code:O174.3 Document code: A Paper No:1001-2443(2016)06-0535-07

0 Introduction

In this paper, we consider the Schr?dinger differential operator onRn(n≥3).

L=-△+V(x)

AnonnegativelocallyLqintegrablefunctionV(x)onRnis said to belong toBq(q>1)ifthereexistsaconstantC>0suchthatthereverseH?lderinequality

holdsforeveryballinRn, see [1].

The commutator of Marcinkiewicz integral operatorμbisdefinedby

Stein[2]firstintroducedtheoperatorμandprovedthatμisoftype(p,p)(1

It is well known that function spaces with variable exponents were intensively studied during the past 20 years, due to their applications to PDE with non-standard growth conditions and so on, we mention e.g. ([8, 9]). A great deal of work has been done to extend the theory of maximal, potential, singular and Marcinkiewicz integrals operators on the classical spaces to the variable exponent case, see([10]-[15]). It will be an interesting problem whether we can establish the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces. The main purpose of this paper is to answer the above problem.

To meet the requirements in the following sections, here, the basic elements of the theory of the Lebesgue spaces with variable exponent are briefly presented.

Letp(·):Rn→[1,∞) be a measurable function. The variable exponent Lebesgue spaceLp(·)(Rn) is defined by

Lp(·)(Rn)isaBanachspacewiththenormdefinedby

Wedenote

LetP(Rn)bethesetofmeasurablefunctionp(·)onRnwith value in [1,∞) such that 1

andonedefines

B(Rn)isthesetofp(·)∈P(Rn)satisfyingtheconditionthatMisboundedonLp(·)(Rn).

Forx∈Rn,thefunctionmV(x)isdefinedby

Forbrevity,inthispaper,Calwaysmeansapositiveconstantindependentofthemainparametersandmaychangefromoneoccurrencetoanother.B(x,r)={y∈Rn:|x-y|

1 Results and Some Lemmas

Definition 1.1[12]For anyp(·)∈B(Rn),letkp(·)denotethesupremumofthoseq>1suchthatp(·)/q∈B(Rn).Letep(·)betheconjugateofkp′(·).

Definition 1.2[12]Letp(·)∈L∞(Rn)and10suchthatforanyx∈Rnandr>0,ufulfills

(1)

WedenotetheclassofMorreyweightfunctionsbyWp(·).

NextwedefinetheMorreyspaceswithvariableexponentrelatedtothenonnegativepotentialV.

Nowitisinthispositiontostateourresults.

Theorem 1.1 SupposeV∈Bqwithq>1andp(x)∈B(Rn),then

Theorem 1.2 SupposeV∈Bqwithq>1,b∈BMO,-∞<α<∞andp(x)∈B(Rn).If

(2)

then

Remark 1 We can easily show thatufulfills(2)impliesu∈Wp(·),see[16].

Inordertoproveourresult,weneedsomeconclusionsasfollows.

Lemma 1.1[18]Letp(·)∈P(Rn):Thenthefollowingconditionsareequivalent:

(1)p(·)∈B(Rn).

(2)p′(·)∈B(Rn).

(3) (p(·)/q∈B(Rn)forsome1

(4) (p(·)/q)′∈B(Rn)forsome1

Lemma1.1ensuresthatkp(·)iswell-definedandsatisfies1

Lemma 1.2[19]Ifp(·)∈P(Rn),thenforallf∈Lp(·)(Rn)andallg∈Lp′(·)(Rn)wehave

∫Rn|f(x)g(x)|dx≤rp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

whererp:=1+1/p--1/p+.

Lemma 1.3[10]Ifp(·)∈B(Rn),thenthereexistsC>0suchthatforallballsBinRn,

C-1|B|≤‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn)≤C|B|.

Lemma 1.4[12]Letp(x)∈B(Rn).Forany10suchthatforanyx0∈Rnandr>0,wehave

Lemma 1.6[21]LetΩ∈Lipγ(Sn-1),b(x)∈BMOandp(·)∈B(Rn),wehave

‖μbf‖Lp(·)(Rn)≤C‖f‖Lp(·)(Rn).

Lemma 1.7[1]For everyN>0thereexistsaconstantCsuchthat

and

Lemma 1.8[1]SupposeV∈Bqwithq≥n/2.ThenthereexistpositiveconstantsCandk0suchthat

Lemma 1.9[22]Letkbeapositiveinteger.Thenwehavethatforallb∈BMO(Rn) and alli,j∈Zwithi>j,

2 Proof of Theorems

Proof of Theorem 1.1 Fixx∈Rnand letr=ρ(x).Usingthesameideain[5]and[4],wehave

ForA1,byLemma1.7,wehave

Obviously,

ForA3,byLemma1.7,wehave

ItremainstoestimateA4.FromLemma1.7,takeN=1,weobtain

Thus,usingLemma1.5andLemma1.6,wearrivethefollowinginequality

andhencetheproofofTheorem1.1iscomplete.

wheref0=fχB(z,2r),fi=fχB(z,2i+1r)B(z,2ir)fori≥1.Hence,wehave

ByTheorem1.1,weobtain

Becauseinequality(1)andLemma1.4implythatu(x,r)≥Cu(x,2r).Therefore,weobtain

Furthermore,foranyi≥1,x∈B(z,r)andy∈B(z,2i+1r)B(z,2ir),wenotethat|x-y|≥|y-z|-|x-z|>C2ir.ByLemma1.7andMinkowski'sinequality,wehave

UsingLemma1.8,wederivetheestimate

(3)

ApplyingLemma1.2andinequality(3),wegetthat

Subsequently,takingthenorm‖·‖Lp(·)(Rn)andusingLemma1.9,wehave

×‖b‖BMO‖fχB(z,2i+1r)‖Lp(·)(Rn)‖χB(z,r)‖Lp(·)(Rn)‖χB(z,2i+1r)‖Lp′(·)(Rn).

ApplyingLemma1.3withB=B(z,2i+1),wehave

TakingN=(-[α]+1)(k0+1),weobtain

Asufulfills(2)andα<0,weobtain

andhencetheproofofTheorem1.2iscomplete.

[1] SHEN Z. Lp estimates for Schr?dinger operators with certain potentials[J]. Ann Inst Fourier(Grenoble), 1995,45(2):513-546.

[2] STEIN E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz[J]. Transactions of the American Mathematical Society, 1958,88:430-466.

[4] GAO W, TANG L. Boundedness for marcinkiewicz integrals associated with Schr?dinger operators[J]. Proceedings-Mathematical Sciences Indian Acad Sci, 2014,124(2):193-203.

[5] CHEN D, ZOU D. The boundedness of Marcinkiewicz integral associated with Schr?dinger operator and its commutator[J]. Journal of Function Spaces, Article ID402713, 10pages, 2014.

[6] TANG L, DONG J. Boundedness for some Schr?dinger type operators on Morrey spaces related to certain nonnegative potentials[J]. J Math Anal Appl, 2009,355(1):101-109.

[7] CHEN D, JIN F. The Boundedness of Marcinkiewicz integrals associated with Schr?dinger operator on Mmorrey spaces[J]. J Fun Spaces, Article ID901267, 11pages, 2014.

[8] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006,66(4):1383-1406.

[10] CRUZ-URIBE D, FIORENZA A, MARTELL J M, et al. The boundedness of classical operatorson variableLpspaces[J]. Annales Academiae Scientiarum Fennicae Math., 2006,31(1):239-264.

[11] NEKVINDA A. Hardy-Littlewood maximal operator onLp(x)(Rn) [J]. Math Inequal Appl, 2004,7:255-265.

[12] HO K-P. The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J]. Math Inequal Appl, 2013,16:363-373.

[13] XUAN Z, SHU L. Boundedness for commutators of Calderón-Zygmund operator on Morrey spaces with variable exponent[J]. Anal Theory Appl, 2013,29(2):128-134.

[14] ALMEIDA A, HASANOV J, SAMKO S. Maximal and potential operators in variable exponent Morrey spaces[J]. Georgian Math J, 2008,15:195-208.

[15] KOKILASHVILI V, MESKHI A. Boundedness of maxmial and singular operators in Morrey spaces with variable exponent[J]. Armenian Math J, 2008,1:18-28.

[16] BONGIOANNI B, HARBOURE E, SALINAS O. Class of weights related to Schr?dinger operators[J]. J Math Anal Appl, 2011,373:563-579.

[17] TANG L. Weighted norm inequalities for commutators of Littlewood-Paley functionsrelated to Schr?dinger operators[J]. Archive der Mathematik, 2014,102:215-236.

[18] DIENING L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J]. Bulletin des Sciences Mathématiques, 2005,129(8):657-700.

[20] ZHANG P, WU J. Commutators of the fractional maximal function on variable exponent Lebesgue spaces[J]. Czechoslovak Mathematical Journal, 2014,64(139):183C197.

[21] WANG H, FU Z, LIU Z. Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces[J]. Acta Math Scientia(Ser A), 2012,32(6):1092-1101.

[22] IZUKI M. Boundedness of commutators on Herz spaces with variable exponent[J]. Rend Circ Mat Palermo, 2010,59(2):199-213.

2016-03-10

SupportedbyNSFC(11201003)andEducationCommitteeofAnhuiProvince(KJ2016A253;SKSM201602).

SHU Yu(1985-), male, born in Wuhu, Anhui Province, Lecture, M.S.D.

束宇.變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewica積分算子交換子[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,39(6):535-541.

變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewicz積分算子交換子

束 宇

(安徽商貿(mào)職業(yè)技術(shù)學(xué)院 經(jīng)濟(jì)貿(mào)易系,安徽 蕪湖 241002)

在本文中,我們主要證明了變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewicz積分算子交換子的有界性.

Marcinkiewicz積分;交換子;Schr?dinger算子;變指數(shù);Morrey空間

10.14182/J.cnki.1001-2443.2016.06.006

猜你喜歡
積分算子安徽師范大學(xué)算子
某類振蕩積分算子在Lebesgue空間及Wiener共合空間上的映射性質(zhì)
與由分?jǐn)?shù)階Laplace算子生成的熱半群相關(guān)的微分變換算子的有界性
齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
Dirichlet空間上一類積分算子的約化子空間
擬微分算子在Hp(ω)上的有界性
Heisenberg群上與Schr?dinger算子相關(guān)的Riesz變換在Hardy空間上的有界性
帶變量核奇異積分算子的ρ-變差
各向異性次Laplace算子和擬p-次Laplace算子的Picone恒等式及其應(yīng)用
《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
《安徽師范大學(xué)學(xué)報(bào)( 人文社會(huì)科學(xué)版) 》征稿啟事
阜阳市| 庆元县| 库车县| 邵东县| 阳曲县| 谷城县| 临猗县| 博白县| 哈巴河县| 钟祥市| 汨罗市| 万州区| 南丰县| 宜兰县| 永靖县| 齐齐哈尔市| 宜州市| 莆田市| 临猗县| 柞水县| 修武县| 抚宁县| 玛曲县| 莱州市| 寻甸| 应城市| 剑川县| 调兵山市| 彭山县| 孟连| 山西省| 玉环县| 辰溪县| 萨迦县| 镶黄旗| 壶关县| 普陀区| 莒南县| 灵丘县| 江孜县| 东山县|