劉晴川, 陳 峰, 劉 飛, 林佩靜, 黃香綺
(1.合肥工業(yè)大學(xué) 生物與醫(yī)學(xué)工程學(xué)院,安徽 合肥 230009;2.美國克萊姆森大學(xué) 農(nóng)業(yè)、森林與生命科學(xué)學(xué)院,美國 克萊姆森 29634;3.淮北師范大學(xué) 生命科學(xué)學(xué)院,安徽 淮北 235000)
頂空固相微萃取在古井貢酒香氣分析中的方法優(yōu)化
劉晴川1, 陳 峰2, 劉 飛3, 林佩靜2, 黃香綺2
(1.合肥工業(yè)大學(xué) 生物與醫(yī)學(xué)工程學(xué)院,安徽 合肥 230009;2.美國克萊姆森大學(xué) 農(nóng)業(yè)、森林與生命科學(xué)學(xué)院,美國 克萊姆森 29634;3.淮北師范大學(xué) 生命科學(xué)學(xué)院,安徽 淮北 235000)
對古井貢酒香氣物質(zhì)頂空固態(tài)微萃取的條件即萃取溫度、萃取時(shí)間和離子濃度進(jìn)行優(yōu)化.通過比較香氣物質(zhì)的總萃取量和10種白酒中特征香氣化合物的變化特征,得到最優(yōu)萃取條件為:用飽和食鹽水將酒樣稀釋至酒精度5%v/v,40℃水浴平衡30分鐘后,插入萃取頭頂空萃取60分鐘.此條件下可萃取到67種香氣物質(zhì),包括酯類38種,醇類9種,醛4種及其他化合物.
古井貢酒;香氣;固相微萃取;氣相色譜-質(zhì)譜連用
中國白酒為蒸餾酒,由98%的乙醇-水溶液和2%香氣物質(zhì)組成[1],有醬香型,濃香型,清香型和兼香型四大香型分類[2,3].不同香型白酒有其特有的特征香氣物質(zhì),如濃香型白酒中的古井貢酒,由己酸乙酯提供濃烈的水果菠蘿香,其他香氣源自酯,醇,醛,酸,酮等物質(zhì)[4].香氣是白酒風(fēng)味的保證,研究其組分對白酒質(zhì)量控制,新產(chǎn)品研發(fā)均有重要作用.
頂空固相微萃取(HS-SPME)為集萃取,濃縮和進(jìn)樣三種功能于一身的無溶劑萃取手段.此法高效簡便,適用于痕量物質(zhì)的萃取濃縮,現(xiàn)廣泛用于酒的香氣分析[5,6].HS-SPME的萃取結(jié)果受萃取條件影響[7],溶液的離子濃度升高可降低水分子與香氣物質(zhì)的結(jié)合,有利于醇和酸的揮發(fā)[8].常用的萃取溫度為40-60℃,低溫有利于小分子易揮發(fā)物質(zhì)的萃取[9],高溫有利于高沸點(diǎn)香氣的揮發(fā),過高也會(huì)引起部分香氣的分解或相互反應(yīng)[10].在宋河酒的香氣萃取優(yōu)化中酯類數(shù)量和醇類總濃度隨著溫度升高先增后減,酸在高溫下萃取量更大[1].在平衡前SPME的萃取量由萃取時(shí)間決定[6].合適的萃取時(shí)間可兼顧萃取濃度和實(shí)驗(yàn)效率[11].古井貢酒的有機(jī)香氣物質(zhì)可溶于水或乙醇,香氣數(shù)量多,香氣間濃度,性質(zhì)差異巨大[9].因此,萃取條件的優(yōu)化十分必要.本文研究了不同萃取時(shí)間,萃取溫度,和離子濃度下頂空固相微萃取技術(shù)對古井貢酒香氣萃取的效率,嘗試找出最優(yōu)的萃取條件.
1.1 實(shí)驗(yàn)材料
實(shí)驗(yàn)用古井貢酒為“26年原漿酒”,酒精度50%v/v,購于安徽亳州古井貢酒廠;固相微萃取手柄,100μmPDMS萃取頭,5.0mL玻璃樣品瓶及配套瓶蓋和聚四氟乙烯硅膠密封墊(Supelco,USA);ACS標(biāo)準(zhǔn)丙酮(優(yōu)級純)和205型恒溫水浴鍋(FisherScientific,USA);直鏈烷烴標(biāo)準(zhǔn)品(C8-C20)和氯化鈉 (純度>99.5%)購自美國Sigma-Aldrich公司;以及Millipore凈水系統(tǒng)(Millipore,USA).
1.2 主要儀器設(shè)備
氣相色譜-質(zhì)譜聯(lián)用儀(GC-MS):ShimadzuGC-17A-QP5050Amassspectrometerdetector(MSD).DB-5型號毛細(xì)管色譜柱(60m×0.26mm×0.25μm)購自美國Agilent公司.
1.2.1 氣相色譜設(shè)定 氣相色譜儀升溫程序由預(yù)實(shí)驗(yàn)得出.載氣為高純氦氣(99.999%),載氣流速1.0mL/min.進(jìn)樣口安裝0.75mmRestek襯管,DB-5毛細(xì)管色譜柱.進(jìn)樣口溫度250℃,不分流模式進(jìn)樣.升溫程序:
初始35°C保持5min; 5°C/min升至80°C保持5min;然后1°C/min升至115°C保持3min;再以4℃/min升至160℃保持1min;最后20℃/min升到300℃保持5min.
1.2.2 質(zhì)譜設(shè)定 質(zhì)譜采用四級桿質(zhì)量選擇器,EI離子源,離子源電離電壓70eV,溫度250℃,掃描以0.3s為間隔,掃描時(shí)間1-81min,掃描離子碎片質(zhì)量范圍40-350m/z.
1.3 物質(zhì)定性分析
揮發(fā)性香氣成分由下面兩種方法共同定性.
(1)將質(zhì)譜圖與NIST 08數(shù)據(jù)庫,Shimadzu Terpene and Terpenoid數(shù)據(jù)庫,以及Wiley 7數(shù)據(jù)庫進(jìn)行比對,要求相似度達(dá)90%以上.
(2)計(jì)算各香氣物質(zhì)的Kovats指數(shù)(KRI),與文獻(xiàn)對比后定性;碳鏈數(shù)小于7的化合物由質(zhì)譜圖定性.
KRI值計(jì)算公式如下:
(1)
其中:Tz 1.4 頂空固相微萃取 白酒用飽和氯化鈉溶液稀釋至酒精度5%v/v,將2.7mL稀釋后樣品加入5.0mL玻璃樣品瓶中,立即蓋緊,放入40℃水浴中平衡30min,之后將高溫活化(250℃活化1h)的PDMS萃取頭插入樣品瓶頂空,使其懸于液面上方1mm,萃取60min.之后立即將萃取頭插入氣相色譜進(jìn)樣口,熱解析3min,解吸同時(shí)氣相色譜開始運(yùn)行.熱解析完成后萃取頭繼續(xù)在進(jìn)樣口烘烤10min.每個(gè)樣品平行測定3次. 1.5 統(tǒng)計(jì)分析 實(shí)驗(yàn)結(jié)果使用JMP(John’sMacintoshProgram)軟件,采用了ANOVA,Tukey’sWtest以及pairedt-test三種統(tǒng)計(jì)方法進(jìn)行分析,所有統(tǒng)計(jì)方法的置信區(qū)間為α=0.05. 由GC-MS分離鑒定的香氣物質(zhì)總離子色譜圖TIC(扣除乙醇峰面積)和選定特征香氣物質(zhì)的峰面積,通過比較香氣物質(zhì)萃取的數(shù)量,香氣物質(zhì)總響應(yīng)值/峰面積,以及特征香氣物質(zhì)峰面積的變化,討論樣品離子濃度、萃取溫度和萃取時(shí)間對萃取結(jié)果的影響.此次共鑒定出67種香氣物質(zhì),古井貢酒的特征香氣己酸乙酯占總香氣物質(zhì)含量的77% (表1).然而,其濃度過高會(huì)導(dǎo)致分析偏差,且單一化合物不能代表其他結(jié)構(gòu)香氣物質(zhì)的變化,故選取除己酸乙酯外的其他化合物進(jìn)行萃取條件優(yōu)化分析. 2.1 離子濃度 圖1 離子濃度對萃取總量的影響Fig.1 Total detector’s responses of all volatiles under different sodium chloride concentrations 鹽類與水分子結(jié)合,降低揮發(fā)性化合物的溶解度,同時(shí)改變液-氣界面的性質(zhì),推動(dòng)香氣物質(zhì)離開液相進(jìn)入頂空[8, 14].本實(shí)驗(yàn)選擇氯化鈉增加樣品的離子濃度,基于其廣泛而廉價(jià)的來源,及不同溫度下溶解度的穩(wěn)定性. 小分子揮發(fā)性物質(zhì),尤其是醇類,在純水溶液中溶解度大,難以萃取.在純水稀釋組只萃取到了17種揮發(fā)性香氣,包括2種醛類和2種醇類.飽和氯化鈉組萃取到32種香氣物質(zhì),醇7種,醛3種,酮1種, 1種芳香族化合物,以及多種酯類.純水組的總萃取量是加鹽組的60.72%(圖1).同時(shí),半揮發(fā)性香氣的萃取量在加鹽后顯著上升,同種物質(zhì)峰面積增加,表明離子濃度升高促進(jìn)了香氣物質(zhì)的揮發(fā).因此,在頂空固相微萃取的樣品處理中應(yīng)使用飽和氯化鈉溶液進(jìn)行稀釋. 2.2 萃取溫度 萃取溫度決定揮發(fā)性物質(zhì)在萃取頭,頂空和溶液三相的濃度分布,直接影響萃取的效果[15].本實(shí)驗(yàn)選擇25,40,50℃三個(gè)溫度進(jìn)行測定[5,16,17].將白酒用飽和食鹽水稀釋至5%v/v后40℃水浴平衡30min,萃取60min后進(jìn)樣.通過比較不同溫度下萃取得到香氣物質(zhì)的數(shù)量、香氣物質(zhì)的總響應(yīng)值以及選定的特征香氣物質(zhì)的峰面積變化來討論最優(yōu)萃取溫度. 表1 最優(yōu)條件下萃取到的所有香氣物質(zhì) a實(shí)驗(yàn)萃取得到的所有香氣物質(zhì)根據(jù)其種類排列;b 實(shí)驗(yàn)測得香氣物質(zhì)KRI值;c 香氣物質(zhì)僅依靠GC-MS定性;d 香氣物質(zhì)平均峰面積的百分比;e 平均峰面積百分比的標(biāo)準(zhǔn)偏差 aCompounds were sorted by chemical functional groups and identified by comparing GC-MS database and Kovats Retention Index (KRI);bExperimental Kovats Retention Index was based on DB-5 MS capillary columncCompound was tentatively identified based on comparing mass spectrum with GC-MS database onlydAverage peak area percentage of each compound from triplicate experiment; eStandard deviation of average area% 在25℃時(shí)鑒定到55種香氣;40℃時(shí)萃取到67種香氣物質(zhì),其中酯類38種,醇類9種,醛4種;50℃共鑒定出香氣50種(表2).三組溫度下均存在的香氣47種.40℃時(shí)香氣萃取數(shù)量最多,酯和醇的數(shù)量也優(yōu)于其他兩個(gè)溫度. 除了香氣數(shù)量和總響應(yīng)值的分析,以十種特征性揮發(fā)性物質(zhì):乙酸乙酯,丁酸乙酯,戊酸乙酯,庚酸乙酯,辛酸乙酯,3-苯丙酸乙酯,1-己醇,2-壬酮,3-甲基丁醛和己酸酐作為代表,用于分析不同化學(xué)結(jié)構(gòu)的香氣物質(zhì)受萃取溫度的影響.其選取標(biāo)準(zhǔn)為香氣種類、數(shù)量和濃度在酒中的占比以及在色譜圖中的分布. 香氣總峰面積隨著溫度升高而增加(圖2).故高溫有利于香氣的揮發(fā)和萃取.溫度由25℃升至50℃時(shí),總峰面積顯著增加.相鄰兩溫度間的響應(yīng)值沒有明顯增長.在25℃時(shí)香氣總響應(yīng)值最低;低溫?zé)o法使多數(shù)揮發(fā)性物質(zhì)有效突破溶液-頂空的界限[18],導(dǎo)致?lián)]發(fā)性物質(zhì)如2-戊酮和2-戊醇無法檢出(表1).故此,25℃不適合香氣萃取.40℃的總峰面積不是最高,但與50℃的結(jié)果比沒有顯著差異.在47種共有香氣中,有32種香氣的響應(yīng)值在40℃達(dá)到最大.故40℃的條件能兼顧香氣萃取數(shù)量和萃取濃度.溫度的適當(dāng)升高促進(jìn)香氣物質(zhì)揮發(fā),同時(shí)避免溫度過高導(dǎo)致的再次解吸.50℃時(shí)香氣數(shù)量減少,總 表2 三種萃取溫度下鑒定得到的香氣物質(zhì)種類及數(shù)量 圖2 不同萃取溫度下萃取總量的變化Fig.2 Total detector’s responses of all volatiles under different SPME extraction temperatures 峰面積最大,47種香氣中有15種達(dá)到其最大響應(yīng)值.高溫加速了分子運(yùn)動(dòng)速率,在增加頂空中香氣物質(zhì)濃度的同時(shí)也降低了萃取頭對易揮發(fā)香氣的吸附力[19].Saison et al報(bào)道了高溫會(huì)降低揮發(fā)性物質(zhì)在萃取頭和頂空間的分布系數(shù),從而造成的高溫下多種揮發(fā)性物質(zhì)萃取量的降低[20].Pawliszyn and Lord在使用PDMS萃取甲基苯丙胺的時(shí)有類似結(jié)果[11]. 酯類化合物中,乙酸乙酯和辛酸乙酯在50℃萃取量最大,但其萃取量在40℃和50℃時(shí)沒有差異.其余四種酯類均在40℃有最大萃取量,之后隨溫度升高萃取量減少(圖3).Rodríguez-Bencomo et al報(bào)道了類似的香氣物質(zhì)在高溫狀態(tài)下萃取量降低的現(xiàn)象[17]. 非酯類物質(zhì)均呈現(xiàn)先升高后下降的趨勢(圖4),在40℃有最大萃取量,1-己醇和2-壬酮在50℃時(shí)萃取量顯著降低.綜上所述,酯類和其他香氣物質(zhì)在40℃時(shí)有最佳萃取量, 升高溫度結(jié)果沒有明顯優(yōu)化,反而會(huì)抑制萃取.故40℃為最佳萃取溫度. 圖3 萃取溫度對六種特征酯類化合物萃取效率的影響 *因3-苯丙酸乙酯實(shí)際萃取濃度過低,圖中3-苯丙酸乙酯顯示的萃取量放大了10倍用于比較 Fig.3 Influence of the extraction temperature on the extraction efficiency of selected ester compounds * Peak area of ethylphenyl propanpate was 10 times larger in the Fig. to match the scale of others 圖4 萃取溫度對四種非酯類化合物萃取效率的影響 Fig.4 Influence of the extraction temperature on the extraction efficiency of selected compounds 2.3 萃取時(shí)間 萃取時(shí)間是另一影響因素.長時(shí)間萃取耗時(shí),可以讓香氣物質(zhì)在三相間達(dá)到平衡;時(shí)間過短則無法有效 萃取半揮發(fā)性物質(zhì).選取四個(gè)萃取時(shí)間(10min,30min,60min和90min)進(jìn)行優(yōu)化.香氣物質(zhì)數(shù)量在60min組最多,有67種,90min組最少僅有56種(表3). 香氣總峰面積隨著萃取時(shí)間增加而顯著提高,長時(shí)間萃取使更多香氣揮發(fā)至頂空并在萃取頭上達(dá)到平衡(圖5).當(dāng)時(shí)間從30min增長到60min時(shí),總峰面積顯著增加,延長至90min時(shí)沒有顯著變化.60min組萃取到最多的香氣物質(zhì),有合適的總響應(yīng)值,因此60min是合適的萃取時(shí)間. 表3 不同萃取時(shí)間下香氣物質(zhì)數(shù)量變化 圖5 不同萃取時(shí)間下香氣物質(zhì)萃取總量的變化 Fig.5 Total detector’s responses of all volatiles under different SPME extraction times 圖6 不同萃取時(shí)間下酯類化合物萃取量的變化 *3-苯丙酸乙酯圖示濃度為實(shí)際濃度的10倍 Fig.6 Influence of the extraction time on the extraction efficiency of selected ester compounds *: Peak area of ethylphenyl propanpate was 10 times larger in the figure to match the scale of others 圖7 非酯類化合物在不同萃取時(shí)間下的萃取量變化Fig.7 Influence of the extraction time on the extraction efficiency of selected compounds 乙酸乙酯作為最短碳鏈的酯類,不同時(shí)長的萃取量沒有顯著差異,在60min時(shí)達(dá)到最大(圖6).其他的長鏈酯類的萃取量隨著萃取時(shí)間的增加而增大,在90min時(shí)達(dá)到最大.丁酸乙酯,戊酸乙酯和庚酸乙酯在萃取時(shí)間從30min增加到60min時(shí)萃取量顯著增長.3-苯丙酸乙酯是唯一隨著時(shí)間增加而萃取量顯著增加的酯類,其余酯類在60min和90min的萃取量沒有明顯差異.因其在白酒中的低濃度,大分子量和不易揮發(fā)的特性,需要更長的平衡時(shí)間. 非酯類化合物中, 小分子3-甲基丁醛的變化與乙酸乙酯類似,且在60min達(dá)到峰值.1-己醇在不同萃取時(shí)間下萃取量波動(dòng)較大,呈先降低后升高再降低的模式,同樣在60min有最大萃取量.己酸酐和2-壬酮的萃取量則隨著時(shí)間的延長而增加(圖7). 短鏈酯類在長時(shí)間的萃取過程中萃取量減少,而長鏈酯類的萃取量隨著時(shí)間的延長而增加[16,21].易揮發(fā)香氣可以短時(shí)間內(nèi)在不同介質(zhì)間達(dá)到平衡,故對萃取時(shí)間的變化不敏感;而揮發(fā)性弱的香氣物質(zhì)則需要較長時(shí)間達(dá)到平衡,從而在長時(shí)間的萃取后才有理想的結(jié)果[22].過長的萃取時(shí)間在降低效率的同時(shí)易造成部分香氣物質(zhì)的過量,進(jìn)而影響分離鑒定.白酒中香氣多為小分子易揮發(fā)物質(zhì),結(jié)合萃取總量以及單一物質(zhì)的最優(yōu)萃取時(shí)間,認(rèn)為60min的可以兼顧萃取濃度,時(shí)間效率和穩(wěn)定性,為最優(yōu)萃取時(shí)間. 通過對頂空固相微萃取的樣品離子濃度,萃取溫度,和萃取時(shí)間的討論,古井貢酒的香氣最佳萃取條件為:白酒樣品用飽和氯化鈉溶液稀釋至酒精度5%v/v,在40水浴下平衡30min后PDMS萃取頭萃取60min.此條件在兼顧了實(shí)驗(yàn)效率的情況下,可以萃取到67種香氣物質(zhì),數(shù)量和種類最多,保證香氣鑒定的完整性.其中32種香氣物質(zhì)有著最高響應(yīng)值,15種有次高響應(yīng)值,保證香氣鑒定分離的準(zhǔn)確性. [1] 張明霞,趙旭娜,楊天佑,等.頂空固相微萃取分析白酒香氣物質(zhì)的條件優(yōu)化.食品科學(xué)[J],2011,32(12):49-53. [2] XIAO Z, YU D, NIU Y, et al. Characterization of aroma compounds of Chinese famous liquors by gas chromatography-mass spectrometry and flash GC electronic-nose[J]. Journal of Chromatography B, 2014:945-946:92-100. [3] FAN W,QIAN M C. Characterization of aroma compounds of Chinese “wuliangye” and “jiannanchun” liquors by aroma extract dilution analysis[J]. Journal of Agricultural and Food Chemistry, 2006,54(7):2695-2704. [4] 尹禮國,馮學(xué)愚,張超,等.毛細(xì)管柱氣象色譜法分析五糧濃香型大曲酒尾及低質(zhì)基酒微量成分[J].釀酒科技,2013,4:95-98,119. [5] DEMYTTENAERE J C R, DAGHER C, SANDRA P, et al. Flavour analysis of greek white wine by solid-phase microextraction-capillary gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2003,985(1-2):233-246. [6] VAS G,V KEY K. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis[J]. Journal of Mass Spectrometry, 2004,39(3):233-254. [7] CMARA J S, ALVES M A, MARQUES J C. Development of headspace solid-phase microextraction-gas chromatography-mass spectrometry methodology for analysis of terpenoids in madeira wines[J]. Analytica Chimica Acta, 2006,555(2):191-200. [8] YANG X,PEPPARD T. Solid-phase microextraction for flavor analysis[J]. Journal of Agricultural and Food Chemistry,1994,42(9):1925-1930. [9] GMEZ-ARIZA J L, GARC A-BARRERA T, LORENZO F, et al. Use of multiple headspace solid-phase microextraction and pervaporation for the determination of off-flavours in wine[J]. Journal of Chromatography A, 2006,1112(1-2):133-140. [10] CASTRO R, NATERA R, DUR N E, et al. Application of solid phase extraction techniques to analyse volatile compounds in wines and other enological products[J]. Eur Food Res Technol, 2008,228(1):1-18. [11] LORD H,PAWLISZYN J. Evolution of solid-phase microextraction technology[J]. Journal of Chromatography A, 2000,885(1-2):153-193. [12] CURVERS J, RIJKS J, CRAMERS C, et al. Temperature programmed retention indices: calculation from isothermal data[J]. Part 1: Theory Journal of High Resolution Chromatography, 1985,8(9):607-610. [13] VAN DEN DOOL H,DEC KRATZ P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography[J]. Journal of Chromatography A, 1963,11:463-471. [14] BUTTERY R G, LING L, GUADAGNI D G. Food volatiles[J]. Volatilities of Aldehydes, Ketones, and Esters in Dilute Water Solution. Journal of Agricultural and Food Chemistry, 1969,17(2):385-389. [15] PERESTRELO R, BARROS A S, ROCHA S M, et al. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of vitis vinifera L. Grape Varieties[J]. Talanta, 2011,85(3):1483-1493. [16] FAN W,QIAN M C. Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese “yanghe daqu” liquors[J]. Journal of Agricultural and Food Chemistry, 2005,53(20):7931-7938. [17] RODR?GUEZ-BENCOMO J J, CONDE J E, RODR?GUEZ-DELGADO M A, et al. Determination of esters in dry and sweet white wines by headspace solid-phase microextraction and gas chromatography[J]. Journal of Chromatography A, 2002,963(1-2):213-223. [18] ZHANG Z, PAWLISZYN J. Headspace solid-phase microextraction[J]. Analytical Chemistry, 1993,65(14):1843-1852. [19] CMARA J S, MARQUES J C, PERESTRELO R M, et al. Comparative study of the whisky aroma profile based on headspace solid phase microextraction using different fibre coatings[J]. Journal of Chromatography A, 2007,1150(1-2):198-207. [20] SAISON D, DE SCHUTTER D P, DELVAUX F, et al. Optimisation of a complete method for the analysis of volatiles involved in the flavour stability of beer by solid-phase microextraction in combination with gas chromatography and mass spectrometry[J]. Journal of Chromatography A, 2008,1190(1):342-349. [21] ROCHA S, RAMALHEIRA V, BARROS A, et al. Headspace solid phase microextraction (SPME) analysis of flavor compounds in wines[J]. Effect of the Matrix Volatile Composition in the Relative Response Factors in a wine model. Journal of Agricultural and Food Chemistry, 2001,49(11):5142-5151. [22] RUIZ J, CAVA R, VENTANAS J, et al. Headspace solid phase microextraction for the analysis of volatiles in a meat product: dry-cured iberian ham[J]. Journal of Agricultural and Food Chemistry, 1998,46(11):4688-4694. Analyses of Volatile Compounds in Chinese Liquor-Gujing Under Optimized Headspace Solid-Phase Microextraction (HS-SPME) LIU Qing-chuan1, CHEN Feng2, LIU Fei3, LIN Pei-ching2, HUANG Xiang-qi2 (1. School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, China; 2. College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson 29634, United States of America; 3. College of Life Sciences, Huaibei Normal University, Huaibei 235000, China) This research was to find the optimized liquor volatile extraction condition by testing the extraction temperature, extraction time, and ion strength. Based on the total ion chromatogram and ten characteristic volatiles in Gujing liquor, it was found that the optimized extraction condition was diluted the liquor to 5% v/v alcohol content by saturated solution of sodium chloride, and then did a 60 minutes of extraction after 30 minutes equilibrium in 40℃ water bath. Total 67 volatile compounds were extracted under optimized method, including 38 esters, 9 alcohols, 4 aldehydes and some other compounds. Chinese liquor-Gujing; Flavor; SPME; GC-MS 10.14182/J.cnki.1001-2443.2016.06.010 2016-07-06 國家自然科學(xué)基金項(xiàng)目(41371444). 劉晴川(1990-),女,安徽碭山人,助理實(shí)驗(yàn)師,碩士. 劉晴川,陳峰,劉飛,等.頂空固相微萃取在古井貢酒香氣分析中的方法優(yōu)化[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,39(6):555-560. TS207.3;TS A 1001-2443(2016)06-0555-062 結(jié)果與分析
3 結(jié)論