国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

A Class of Singularly Perturbed Equations for Larger Parameter with Three Turning Points

2016-01-28 02:22:33-,
大學(xué)數(shù)學(xué) 2015年1期
關(guān)鍵詞:樹德歐陽學(xué)報(bào)

-, 

(1.Anhui Technical College of Mechanical and Electrical Engineering,Wuhu Anhui 241002,China;

2.Department of Mathematics, Anhui Normal University, Wuhu Anhui, 241000,China)

?

A Class of Singularly Perturbed Equations for Larger Parameter with Three Turning Points

SHIJuan-rong1,2,YOUYou1

(1.Anhui Technical College of Mechanical and Electrical Engineering,Wuhu Anhui 241002,China;

2.Department of Mathematics, Anhui Normal University, Wuhu Anhui, 241000,China)

Abstract:A class of singularly perturbed problem for larger parameter with three turning point is considered. Firstly, the outer solution in different areasis obtained using the Liouville-Green transform. Then, introducing stretching transform and using the Bessel function of 1/3 and -1/3 order the interior layer solution near thex=a1,x=a2andx=a3is constructed respectively. Finally, the arbitrary constants is selected for the outer solution and interior layer solution using the matching principle.

Key words:turning point; Liouville-Green transform; Bessel function

CLC Number:O175.14Document Code:AArticle ID:1672-1454(2015)01-0001-06

Received date:2014-08-20

Foundation item:Natural Science Foundation of China(11202106)

1Introduction

In recent years, turning point problem of singular perturbation problems become the hot focus. Many scholars have studied the turning point problem of different types using different methods[1-6]. Such as Mo Jiaqi, Ouyang Cheng and so on[7-8]using the Liouville-Green transform and matching principle is studied for a class of two turning points of singularly perturbed problems with large parameters. In this paper, on the basis of a class of three turning points of singularly perturbed equation with big parameters

y″+[λ2(x-a1)(x-a2)(x-a3)+f(x)]y=0,x∈,

(1)

whereλ?1isadimensionlessparameter,a1,a2anda3arearbitraryconstants,anda1

2Outer solution

For simplicity, first on the g(x)=(x-a1)(x-a2)(x-a3), then from Eq. (1), lead into Liouville-Green transform, i.e. let

z=φ(x),v(z)=ψ(x)y(x),

(2)

where functions φ(x) and ψ(x) determine by below. Substituting Eq.(2) into Eq. (1),we have

(3)

(4)

Let

(5)

thus Eq. (4) is expressed by

(6)

(7)

(8)

and Eq. (6) is

(9)

(10)

where c1,c2,d1and d2are arbitrary constants.

3Constructing interior layer solution near x=aj(j=1,2,3)

x=ξλ-ω+aj,

(12)

where ω>0,which is decided below.Substituting Eq. (17) into Eq, (1), we obtain

3.1 j=1

(13)

(14)

(15)

thus the general solution of Eq. (20) denotes by Bessel function of 1/3 and -1/3 order

then we can obtain interior layer solution of equation (1) near x=a1:

(16)

where f11and f12are arbitrary constants.

3.2 j=2

Similarly, we can obtain interior layer solution of equation (1) near x=a2:

(17)

where f21and f22are arbitrary constants,and

3.3 j=3

Similarly, we can obtain interior layer solution of equation (1) near x=a3:

(18)

4Matching the interior and outer solutions

4.1 Matching near x=a1

4.1.1a1

The principal term of outer asymptotic solution of Eq. (1) is

fixed v1,and let λ→+∞ ,we can obtain v1>0, thus

thus

(19)

where v1→+∞, using by the behavior of Bessel function, we can have

(20)

using by matching principle, and from Eqs. (19) and (20), we obtain

(21)

4.1.2x

The principal term of outer asymptotic solution of Eq. (1) is

thus

(22)

where v1→-∞, using by the behavior of Bessel function, we can have

(23)

using by matching principle, and from Eqs. (22) and (23), we obtain

(24)

4.2 Matching near x=a2

4.2.1a1

The principal term of outer asymptotic solution of Eq. (1) is

thus

(25)

wherev1→+∞, using by the behavior of Bessel function, we can have

(26)

using by matching principle, and from Eqs. (25) and (26), we obtain

(27)

4.2.2a2

The principal term of outer asymptotic solution of Eq. (1) is

thus

(28)

where v2→-∞,usingbythebehaviorofBesselfunction,wecanhave

(29)

usingbymatchingprinciple,andfromEqs. (28)and(29),weobtain

(30)

4.3 Matchingnearx=a3

4.3.1a2

TheprincipaltermofouterasymptoticsolutionofEq. (1)is

thus

(31)

wherev3→-∞, using by the behavior of Bessel function, we can have

(32)

using by matching principle, and from Eqs. (31) and (32), we obtain

(33)

4.3.2x>a3

TheprincipaltermofouterasymptoticsolutionofEq. (1)is

thus

(34)

wherev3→+∞, using by the behavior of Bessel function, we can have

(35)

using by matching principle, and from Eqs. (31) and (32), we obtain

(36)

5Themainresults

Fromtheabove,wehavethefollowingtheorem:

TheoremThelargeparametersingularlyperturbedequation(1)withthreeturningpointpossessesouterasymptoticsolution(11a)-(11d)andinteriorlayersolution(16)-(18).Andtheexternalsolutionandtheinnersolutionofarbitraryconstantssatisfythematchingconditions(21), (24), (27), (30) ,(33)and(36),wheref11,f12,f21,f22,f31andf32arearbitraryconstants.

Asimilarapproachcanbeused,solvingwithnturningpointproblem.

[References]

[1]NayfehAH.Introductiontoperturbationtechniques[M].NewYork:JohnWiley&Sons, 1981.

[2]MoJiaqi,WangHui.TheshocksolutionforquasilinearsingularlyperturbedRobinproblem[J].ProgressinNaturalScience, 2002, 12(12): 945-947.

[3]MoJiaqi,ZhuJiang,WangHui.Asymptoticbehavioroftheshocksolutionforaclassofnonlinearequations[J].ProgressinNaturalScience, 2003, 13(10): 768-770.

[4]劉樹德,魯世平,姚靜蓀,等. 奇攝動(dòng)邊界層和內(nèi)層理論[M]. 北京:科學(xué)出版社, 2013.

[5]莫嘉琪. 具有二階轉(zhuǎn)向點(diǎn)的大參數(shù)奇攝動(dòng)方程[J]. 廈門大學(xué)學(xué)報(bào), 2005, 44(6):753-755.

[6]歐陽成. 一個(gè)帶m階轉(zhuǎn)向點(diǎn)的奇攝動(dòng)特征值問題[J]. 工程數(shù)學(xué)學(xué)報(bào), 2005, 22(3): 559-562.

[7]莫嘉琪. 一類具有二個(gè)轉(zhuǎn)向點(diǎn)的大參數(shù)奇攝動(dòng)方程[J]. 系統(tǒng)科學(xué)與數(shù)學(xué),2007,27(5):684-690.

[8]歐陽成, 韓祥臨. 一具有兩個(gè)轉(zhuǎn)向點(diǎn)的大參數(shù)奇攝動(dòng)方程的漸近解[J]. 系統(tǒng)科學(xué)與數(shù)學(xué), 2011, 31(1): 41-47.

猜你喜歡
樹德歐陽學(xué)報(bào)
內(nèi)蒙古地區(qū)甜菜臨界氮濃度稀釋模型的構(gòu)建及應(yīng)用
樹德娃的太空之旅 學(xué)習(xí)設(shè)計(jì)
Positive unlabeled named entity recognition with multi-granularity linguistic information①
我家的健忘老媽
小小魚
致敬學(xué)報(bào)40年
依依送別歐陽鶴先生
中華詩詞(2019年9期)2019-05-21 03:05:18
歐陽麗作品
學(xué)報(bào)簡介
學(xué)報(bào)簡介
南投市| 延安市| 穆棱市| 东至县| 仙居县| 泰顺县| 大丰市| 晋宁县| 正蓝旗| 安阳县| 呼和浩特市| 东城区| 青州市| 清涧县| 关岭| 四子王旗| 灵山县| 康马县| 合江县| 洞口县| 沈丘县| 宜都市| 汝南县| 砀山县| 四平市| 观塘区| 岑溪市| 蓬莱市| 罗平县| 灵璧县| 个旧市| 垣曲县| 昌吉市| 广宁县| 淮安市| 桐梓县| 大余县| 剑川县| 乐至县| 中江县| 四会市|