張婧,陳夢詞,馬清,未麗,王鎖民
(蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院, 草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點實驗室, 甘肅 蘭州730020)
植物ABCG轉(zhuǎn)運蛋白研究進(jìn)展
張婧,陳夢詞,馬清,未麗,王鎖民*
(蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院, 草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點實驗室, 甘肅 蘭州730020)
摘要:ABCG轉(zhuǎn)運蛋白是ABC蛋白家族最龐大的亞族,廣泛存在于植物體內(nèi)。ABCG亞族主要由半分子轉(zhuǎn)運蛋白WBC(white-brown complex)和全分子轉(zhuǎn)運蛋白PDR(pleiotropic drug resistance)組成,其底物類型廣泛,包括抗生素、植物激素、木質(zhì)素單體、脂質(zhì)及次生代謝產(chǎn)物等,涉及植物生命周期中的多種代謝活動。本文綜述了植物ABCG轉(zhuǎn)運蛋白的分子特性、結(jié)構(gòu)及功能方面的研究進(jìn)展,并對今后有關(guān)該蛋白的主要研究方向做了展望。
關(guān)鍵詞:ABCG轉(zhuǎn)運蛋白;基因結(jié)構(gòu);功能
DOI:10.11686/cyxb2014415
Zhang J, Chen M C, Ma Q, Wei L, Wang S M. Review of advances in the study of plant ABCG transporters. Acta Prataculturae Sinica, 2015, 24(7): 180-188.
張婧, 陳夢詞, 馬清, 未麗, 王鎖民. 植物ABCG轉(zhuǎn)運蛋白研究進(jìn)展. 草業(yè)學(xué)報, 2015, 24(7): 180-188.
http://cyxb.lzu.edu.cn
收稿日期:2014-10-09;改回日期:2014-10-24
基金項目:國家自然科學(xué)基金項目(31470503),教育部博士點基金優(yōu)先發(fā)展領(lǐng)域項目(20130211130001)和蘭州大學(xué)中央高校基本科研業(yè)務(wù)費專項資金(lzujbky-2014-m01)資助。
作者簡介:張婧(1989-),女,山西原平人,碩士。E-mail: zhangjing12@lzu.edu.cn
通訊作者*Corresponding author. E-mail: smwang@lzu.edu.cn
Abstract:The ATP-binding cassette (ABC) transporters are members of a protein superfamily that constitutes one of the largest protein families known in plants. The ABC subfamily G (ABCG) consists of a single ABC cassette in the amino terminal. ABCG includes both the half-size molecular transporter white-brown complex (WBC) and the full-size molecular transporter pleiotropic drug resistance (PDR). ABCG is made up of a wide variety of substances (including antibiotics, phytohormones, lignin monolignols, lipids and secondary metabolites) that are involved in many kinds of metabolic processes during the plant life cycle. This paper reviews recent advances in studies of the molecular structure and function of ABCG transporters. Research hotspots and future directions are also considered.
Review of advances in the study of plant ABCG transporters
ZHANG Jing, CHEN Meng-Ci, MA Qing, WEI Li, WANG Suo-Min*
CollegeofPastoralAgricultureScienceandTechnology,StateKeyLaboratoryofGrasslandAgro-ecosystems,LanzhouUniversity,Lanzhou730020,China
Key words: ABCG transporters; gene structure; function
ABC (ATP-binding cassette,ABC)轉(zhuǎn)運蛋白家族是目前發(fā)現(xiàn)的最大的蛋白家族之一,由于其能夠借助水解ATP釋放的能量完成底物的跨膜運輸而得名。因為其豐富的底物選擇性,在生物體內(nèi)參與多種重要生理過程,對于植物生長發(fā)育至關(guān)重要,受到了國內(nèi)外研究者的廣泛關(guān)注。該家族包含13個亞家族,擬南芥(Arabidopsisthaliana)全基因組測序結(jié)果顯示其包含131個ABC轉(zhuǎn)運蛋白基因,其中ABCG是最大的亞族,共包含44個成員[1]。近年來,ABCG轉(zhuǎn)運蛋白在植物中得到了廣泛的研究,除模式植物擬南芥外,在水稻(Oryzasativa)、蒺藜苜蓿(Medicagotruncatula)、煙草(Nicotianatabacum)中也展開了大量研究。隨著研究的不斷深入,逐漸發(fā)現(xiàn)ABCG轉(zhuǎn)運蛋白在植物器官發(fā)育、表皮角質(zhì)層形成、激素運輸、次生代謝產(chǎn)物分泌、抵抗生物和非生物脅迫以及植物與微生物互作方面具有重要作用。
1ABCG轉(zhuǎn)運蛋白的結(jié)構(gòu)及分類
ABCG轉(zhuǎn)運蛋白包含核苷酸結(jié)合域NBD(nucleotide-binding domain,NBD)和跨膜結(jié)構(gòu)域TMD(transmembrane domain,TMD)。其中親水性的NBD結(jié)構(gòu)域包含高度保守的特征基序,即Walker A[GX4GK(ST)],ABC signature[(LIVMFY)S(SG)GX3(RKA)(LIVMYA)X(LIVFM)(AG)]和Walker B[(RK)X3GX3L(hydrophobic)3][2],能夠結(jié)合水解ATP,為跨膜運輸提供能量。而疏水的TMD結(jié)構(gòu)域由4~6個跨膜α螺旋構(gòu)成,形成跨膜通道,并能夠識別底物特異性。
依據(jù)NBD和TMD的組成,可將ABCG轉(zhuǎn)運蛋白家族分為兩類。一類是WBC (white-brown complex,WBC)型,其結(jié)構(gòu)為NBD-TMD,稱為半分子(half-size)轉(zhuǎn)運蛋白。在果蠅和哺乳動物的研究中已表明該類轉(zhuǎn)運蛋白需要與自身或另一個半分子轉(zhuǎn)運蛋白聚合,形成同二聚蛋白或異二聚蛋白,共同發(fā)揮轉(zhuǎn)運功能[3-4]。McFarlane等[5]運用雙分子熒光互補法首次證明了植物體中也存在類似現(xiàn)象,發(fā)現(xiàn)擬南芥植株內(nèi)存在AtABCG11與AtABCG12形成的異二聚體以及2個AtABCG11形成的同二聚體。另一類為PDR (pleiotropic drug resistance,PDR)型,結(jié)構(gòu)為NBD-TMD-NBD-TMD,稱為全分子(full-size)轉(zhuǎn)運蛋白,可以單獨發(fā)揮功能。擬南芥、水稻[6]、葡萄(Vitisvinifera)[7]及百脈根(Lotusjaponicus)[8]全基因組測序結(jié)果顯示其分別有44,51,63和36個ABCG轉(zhuǎn)運蛋白(表1)。此外,Jasinski等[9]在蒺藜苜蓿中確定了19個PDR型轉(zhuǎn)運蛋白,且組織特異性分析發(fā)現(xiàn)其大部分在根或花中表達(dá),極少數(shù)在葉中表達(dá);進(jìn)一步分析發(fā)現(xiàn)百脈根和蒺藜苜蓿PDR轉(zhuǎn)運蛋白編碼基因能夠受到不同根瘤菌接種的誘導(dǎo),表明其在根瘤菌互作過程中發(fā)揮重要作用。
根據(jù)對ABC轉(zhuǎn)運蛋白三維結(jié)構(gòu)的預(yù)測,推測其轉(zhuǎn)運過程為底物分子首先與一個跨膜結(jié)構(gòu)域TMD結(jié)合,促使ATP與NBD結(jié)構(gòu)域結(jié)合,隨后ATP水解導(dǎo)致NBD和TMD結(jié)構(gòu)域構(gòu)象改變,底物移位至膜另一側(cè),最終ADP與磷酸脫離,ABC轉(zhuǎn)運蛋白恢復(fù)初始構(gòu)象[6]。而ABC轉(zhuǎn)運蛋白如何轉(zhuǎn)運不同類型的底物,是許多研究者關(guān)注的問題,雖然Neyfakh[10]提出ABC轉(zhuǎn)運蛋白能夠借助其較大的疏水結(jié)構(gòu)域,與底物形成疏水效應(yīng)及靜電吸引,從而能夠轉(zhuǎn)運多種類型底物,但仍需最終確定ABC轉(zhuǎn)運蛋白的三維結(jié)構(gòu),才能揭開其奧秘。
表1 植物ABCG轉(zhuǎn)運蛋白家族成員比較
2ABCG轉(zhuǎn)運蛋白的功能
抵抗抗生素類基因常被作為基因工程中的篩選標(biāo)記基因,如抗卡那霉素的新霉素磷酸轉(zhuǎn)移酶基因nptⅡ。而這些抗性基因多源于土壤細(xì)菌。Mentewab和Stewart[11]首次發(fā)現(xiàn)在介質(zhì)中添加卡那霉素后,與對照相比,敲除AtWBC19基因的擬南芥突變體根系生長緩慢,而將AtWBC19或nptⅡ超表達(dá)至煙草中,兩種轉(zhuǎn)基因煙草植株對卡那霉素的抗性相似;進(jìn)一步研究發(fā)現(xiàn)AtWBC19能夠?qū)⒖敲顾貜募?xì)胞質(zhì)區(qū)域化至液泡中,從而減輕卡那霉素對植物細(xì)胞的損害。隨后Kang等[12]發(fā)現(xiàn)超表達(dá)AtWBC19的轉(zhuǎn)基因雜種山楊(Populustremuloides)植株葉片不僅能夠在含有150 mg/L卡那霉素的介質(zhì)中萌發(fā)再生枝,也能夠在含有200 mg/L新霉素,5 mg/L遺傳霉素或100 mg/L巴龍霉素中正常分化,且與超表達(dá)nptⅡ的植株抗性相似。研究者推測AtWBC19轉(zhuǎn)基因雜種山楊能夠體現(xiàn)對多種氨基糖苷類抗生素具有抗性,是由于AtWBC轉(zhuǎn)運蛋白與其他半分子轉(zhuǎn)運蛋白結(jié)合發(fā)揮作用,擴大了其底物選擇范圍[12]。這為轉(zhuǎn)基因工程中必需的選擇性標(biāo)記基因提供了新的基因來源,相比其他來源于細(xì)菌等的外源抗性基因,源于植物的內(nèi)源標(biāo)記基因WBC19可避免轉(zhuǎn)基因植物安全性方面的爭議。但目前尚未發(fā)現(xiàn)該ABCG亞族中的其他轉(zhuǎn)運蛋白具有類似功能。
土壤中存在的重金屬離子能夠破壞植物細(xì)胞的膜結(jié)構(gòu),加劇膜脂過氧化作用,進(jìn)而導(dǎo)致植株代謝活動受阻,甚至死亡[13-15]。其解毒機制之一是增加對重金屬離子的外排[16]。Lee等[17]發(fā)現(xiàn)Pd2+處理下,野生型植株地上部AtABCG40/AtPDR12表達(dá)量顯著上調(diào),且根部出現(xiàn)表達(dá);同時atpdr12突變體生長受抑,鮮重和根長顯著低于野生型,且植株地上部Pd含量約為野生型的1.4倍;而該基因超表達(dá)植株對Pd抗性增強,植株P(guān)d含量顯著低于野生型;由于谷胱甘肽是植物重金屬解毒的重要途徑之一,為排除其干擾,實驗中發(fā)現(xiàn)添加谷胱甘肽合成抑制劑后,AtPDR12的作用依然存在,進(jìn)而推測定位于質(zhì)膜的AtPDR12能夠?qū)d離子或化合物主動運出細(xì)胞外。隨后,Kim等[18]通過測定放射性109Cd排出速率,發(fā)現(xiàn)AtABCG36/AtPDR8基因超表達(dá)的擬南芥原生質(zhì)體排出速率遠(yuǎn)高于基因沉默植株,直接證明定位于表皮細(xì)胞質(zhì)膜的AtPDR8能夠介導(dǎo)Cd2+外排至細(xì)胞外??梢姡珹tPDR12與AtPDR8能夠依據(jù)其底物特異性,主動外排細(xì)胞內(nèi)的重金屬,降低植株體內(nèi)重金屬含量,從而提高植株對重金屬離子的抗性。
此外,Kim等[19]發(fā)現(xiàn)在正常生長條件下,超表達(dá)AtABCG36基因的擬南芥植株和atabcg36突變體植株均與野生型長勢相同;而在干旱脅迫下或80 mmol/L NaCl處理下,超表達(dá)植株長勢顯著優(yōu)于野生型,atabcg36突變體植株長勢最差。進(jìn)一步研究發(fā)現(xiàn)基因超表達(dá)植株體內(nèi)Na+含量顯著低于野生型,而其他離子如K+,Ca2+,Mg2+和P元素含量均無顯著差異,因而推測AtABCG36在表皮細(xì)胞中可能是通過直接外排Na+提高植株對鹽脅迫的耐受能力,或通過間接參與抗氧化脅迫分子的轉(zhuǎn)運,提高植物對干旱脅迫的抗性,其機制仍有待進(jìn)一步研究[19]。
2.3.1生長素類似物人工合成的生長素類似物2,4-D被廣泛運用于雙子葉雜草的防治,但植物對其吸收和運輸?shù)臋C制尚不明確。已有對ABC家族參與生長素運輸?shù)霓D(zhuǎn)運蛋白的研究多集中于ABCB亞族[20-21]。而Ito和Gray[22]發(fā)現(xiàn)擬南芥半顯性pdr9突變體對生長素類除草劑2,4-D耐受能力提高,是由于AtABCG37/AtPDR9能夠?qū)⑼庠葱?,4-D排出細(xì)胞外,降低其在細(xì)胞內(nèi)的濃度,而同時不影響內(nèi)源性生長素吲哚-3-乙酸(indole-3-acetic acid,IAA)的運輸。
AtPDR9除了參與生長素類似物2,4-D的運輸外,還與生長素IAA的前體物質(zhì)吲哚丁酸(indole-3-butyric acid, IBA)運輸有關(guān)。研究發(fā)現(xiàn)AtPDR9及與其同源性較高的AtABCG36/AtPDR8均在根尖表皮細(xì)胞大量分布,能夠?qū)BA外排至細(xì)胞外,限制其在植株內(nèi)的含量,從而維持植株體內(nèi)生長素含量的平衡,但這兩種轉(zhuǎn)運蛋白并不存在功能重疊,因為二者突變體缺陷仍存在差異[23-25]。
2.3.2細(xì)胞分裂素細(xì)胞分裂素在根部合成后,需運輸至地上部參與植株生長發(fā)育的調(diào)節(jié)。最新研究發(fā)現(xiàn)atabcg14突變體植株地上部生長緩慢,木質(zhì)部與韌皮部細(xì)胞數(shù)量減少,體積變小,而根部較長;且葉片噴施外源性細(xì)胞分裂素玉米素能使葉片長勢恢復(fù)[26]。定量測定發(fā)現(xiàn)atabcg14地上部玉米素含量顯著低于野生型,而根中含量顯著高于野生型;用放射性14C標(biāo)記的玉米素處理植株根部后,突變體地上部放射性強度顯著低于野生型;進(jìn)一步分析發(fā)現(xiàn)突變體木質(zhì)部汁液中玉米素含量下降約90%,而根中含量則顯著升高,表明定位于根部中柱細(xì)胞質(zhì)膜的AtABCG14能夠?qū)⒏考?xì)胞合成的細(xì)胞分裂素泵入木質(zhì)部,進(jìn)而長距離運輸至地上部[27]。由于AtABCG14為half-size型轉(zhuǎn)運蛋白,雖然Le Hir等[28]發(fā)現(xiàn)AtABCG14能夠與AtABCG11結(jié)合為異源二聚體發(fā)揮作用,但由于AtABCG11在根部表達(dá)量非常低,且在維管束薄壁細(xì)胞中不表達(dá),因而排除了二者形成的異源二聚體轉(zhuǎn)運細(xì)胞分裂素的可能性。
2.3.3脫落酸脫落酸(ABA)主要在植物維管束薄壁細(xì)胞中大量合成,因而需長距離運輸至各類植物細(xì)胞中,與ABA受體結(jié)合進(jìn)而發(fā)揮作用,如運輸至保衛(wèi)細(xì)胞調(diào)節(jié)氣孔關(guān)閉等[29]。而ABA跨膜運輸?shù)姆肿訖C制尚不清楚。雖然有研究表明ABA可通過自由擴散作用進(jìn)入細(xì)胞,但Kang等[30]發(fā)現(xiàn)在外源ABA處理下,突變體abcg40表現(xiàn)為受ABA誘導(dǎo)的基因表達(dá)量上調(diào)延遲,且氣孔關(guān)閉緩慢,耐旱能力降低。將原生質(zhì)體分離進(jìn)一步發(fā)現(xiàn)突變體細(xì)胞吸收ABA速率與野生型相比顯著下降,表明擬南芥AtABCG40/AtPDR12參與ABA跨膜運輸至細(xì)胞內(nèi)的過程[30]。同時Kuromori等[31]還發(fā)現(xiàn)擬南芥AtABCG25能夠?qū)BA跨膜運出細(xì)胞外,其編碼基因在維管束組織中大量表達(dá),超表達(dá)植株由于氣孔大量關(guān)閉而表現(xiàn)為葉片溫度升高,水分散失減少;而突變體由于不能外排多余的ABA,表現(xiàn)為對ABA高度敏感??梢夾BCG40與ABCG25分別參與植物細(xì)胞ABA的吸收與外排,對于植物迅速、有效地響應(yīng)逆境具有重要作用。
此外,雖然AtABCG40還與植物細(xì)胞外排重金屬Pb有關(guān),但是Pb與ABA不存在底物競爭性[30],因而推測突變體abcg40耐受Pb能力下降與其細(xì)胞ABA吸收能力受限也有關(guān),由于細(xì)胞不能有效吸收ABA,導(dǎo)致氣孔關(guān)閉遲緩,蒸騰拉力依舊能將體內(nèi)重金屬向地上部大量運輸,對植物的毒害作用增強。
2.3.4獨角金內(nèi)酯獨角金內(nèi)酯(strigolactones)最初被發(fā)現(xiàn)是由于其能夠誘導(dǎo)寄生在根部雜草的萌發(fā),隨后的研究表明它能夠通過抑制植物地上部腋芽生長,調(diào)節(jié)植株地上部形態(tài),因而被認(rèn)為是一種新型的植物激素;此外還發(fā)現(xiàn)根部分泌的獨角金內(nèi)酯能夠誘導(dǎo)叢枝菌根(arbuscular mycorrhizae,AM)真菌萌發(fā),對于植物吸收有益元素具有重要作用[32-35]。Kretzschmar等[36]在矮牽牛(Petuniahybrida)中首次發(fā)現(xiàn),PhPDR1在側(cè)根皮下通道細(xì)胞(hypodermal passage cells,HPCs)大量表達(dá),而該部位由于缺乏木栓質(zhì),因而是AM真菌菌絲侵入點[37];phpdr1突變體根部分泌物中獨角金內(nèi)酯含量降低,共生AM真菌減少;而超表達(dá)PhPDR1的擬南芥植株能夠耐受外源性高濃度的獨角金內(nèi)酯,且從根部上運的獨角金內(nèi)酯含量增加,表明定位于質(zhì)膜的PhPDR1能通過轉(zhuǎn)運獨角金內(nèi)酯進(jìn)而參與調(diào)節(jié)根部共生AM真菌的萌發(fā)。而在地上部,PhPDR1僅在莖維管組織及葉腋處大量表達(dá),phpdr1突變體腋芽生長迅速,枝條長度顯著大于野生型[36]。參照Brewer等[38]和Crawford等[39]提出的模型,其機制可能是獨角金內(nèi)酯能夠運輸至腋芽處,作為生長素信使或抑制生長素極性運輸,從而抑制腋芽生長。
由于除草劑百草枯能夠快速、無選擇性地除去雜草,被廣泛應(yīng)用于田間管理。Hart等[40]提出植物可能是將百草枯區(qū)域化至液泡中,或通過提高抗氧化酶活性抵抗百草枯毒害。Xi等[41]發(fā)現(xiàn)在2 μmol/L百草枯處理下,擬南芥缺失AtPDR11基因的純合子突變體存活率高達(dá)82%,而野生型存活率僅有2%;用10 μmol/L14C標(biāo)記的百草枯處理后,野生型與atpdr11體內(nèi)百草枯含量在2 h內(nèi)均顯著上升,但最終atpdr11植株體內(nèi)百草枯含量僅為野生型的33%,且百草枯轉(zhuǎn)運蛋白競爭性抑制劑丁二胺[42]的添加能夠降低植株體內(nèi)百草枯含量,因而推測AtPDR11能夠?qū)俨菘蒉D(zhuǎn)運至植株內(nèi)進(jìn)而產(chǎn)生毒害作用,且仍然存在其他轉(zhuǎn)運蛋白參與百草枯的吸收。
木質(zhì)素單體的合成途徑均在細(xì)胞質(zhì)內(nèi)完成,而其聚合的過程發(fā)生于質(zhì)外體,因而木質(zhì)素單體跨質(zhì)膜運輸?shù)倪^程至關(guān)重要[43]。Miao和Liu[44]證明ABC轉(zhuǎn)運蛋白參與木質(zhì)素單體的跨質(zhì)膜運輸,但未確定ABC轉(zhuǎn)運蛋白的種類。Alejandro等[45]研究發(fā)現(xiàn)AtABCG29/PDR1與參與木質(zhì)素單體合成的基因存在高度共表達(dá)現(xiàn)象,GUS報告基因顯示AtABCG29主要在根和莖的內(nèi)皮層及維管組織中表達(dá);異源表達(dá)AtABCG29能促使酵母外排香豆醇,從而提高酵母對香豆醇的抗性;在1.5 mmol/L 香豆醇處理下,atabcg29植株根長小于野生型,而用其他木質(zhì)素單體如芥子醇,松柏醇處理,突變體長勢與野生型無顯著差異,表明AtABCG29能夠特異性的轉(zhuǎn)運木質(zhì)素單體香豆醇。此外實驗中還發(fā)現(xiàn)atabcg29植株中木質(zhì)素單體組分羥苯基,愈創(chuàng)木基和紫丁香基含量均顯著低于野生型,可能是由于AtABCG29轉(zhuǎn)運蛋白功能的缺失影響了木質(zhì)素單體的合成及其他兩種單體的轉(zhuǎn)運[45]。
陸生植物進(jìn)化的典型特征是植株表皮覆蓋了疏水性角質(zhì)層,能夠起到防止非氣孔性水分散失、防止機械損傷,阻止器官融合及抵抗病蟲害侵襲等重要作用[46]。角質(zhì)層是由角質(zhì)(cutin)基質(zhì),嵌入及覆蓋在角質(zhì)基質(zhì)上的蠟質(zhì)(wax)組成的。角質(zhì)的主要成分是由羥基脂肪酸和環(huán)氧脂肪酸聚酯化形成的有機聚合物,而蠟質(zhì)主要由飽和超長鏈脂肪酸(very long chain fatty acids, VLCFAs)及其衍生物如烷烴、醛、醇類、酮類和酯類等組成,還包括萜類和其他微量的次級代謝物如固醇和類黃酮類物質(zhì)[47-48]。角質(zhì)層組分在表皮細(xì)胞內(nèi)質(zhì)體及內(nèi)質(zhì)網(wǎng)中合成后,需跨質(zhì)膜運輸至表皮細(xì)胞外[49]。Pighin等[50]首次報道了AtABCG12/AtWBC12/CER5參與莖表皮角質(zhì)層蠟質(zhì)的跨膜運輸,cer5由于蠟質(zhì)組分不能分泌至表皮細(xì)胞外,在表皮細(xì)胞質(zhì)內(nèi)堆積為片狀物;且cer5與野生型植株總蠟質(zhì)含量(包含表皮細(xì)胞內(nèi)蠟質(zhì))相似,但cer5表皮角質(zhì)層蠟質(zhì)含量顯著低于野生型,進(jìn)一步表明突變體蠟質(zhì)合成途徑正常,分泌過程受阻。隨后,關(guān)于角質(zhì)層脂質(zhì)(lipid)轉(zhuǎn)運蛋白的研究大量展開。
Bird等[51]發(fā)現(xiàn)擬南芥AtABCG11/AtWBC11同時參與角質(zhì)層角質(zhì)與蠟質(zhì)組分的跨膜運輸。AtABCG11基因T-DNA插入的突變體表現(xiàn)為表皮細(xì)胞內(nèi)出現(xiàn)薄片狀脂質(zhì)堆積物,同時表皮角質(zhì)與蠟質(zhì)組分含量下降,植株矮化,并且還出現(xiàn)葉與莖的器官融合[51]。此外,Panikashvilia等[52]發(fā)現(xiàn)AtWBC11基因沉默植株花瓣與角果形態(tài)改變,種子出現(xiàn)融合現(xiàn)象,花與角果表皮角質(zhì)單體含量改變,根木栓質(zhì)含量降低,表明AtABCG11還參與植株生殖器官角質(zhì)單體及根部木栓質(zhì)單體的轉(zhuǎn)運。表達(dá)模式分析表明,AtABCG11在表皮細(xì)胞特異性表達(dá),且屬于光照依賴型,可受到機械損傷、鹽脅迫、干旱脅迫以及植物激素ABA的誘導(dǎo)[53-54]。表明角質(zhì)層的形成與植株生長發(fā)育及抵抗逆境脅迫密切相關(guān)。此外,對AtABCG11基因沉默的植株表達(dá)譜分析發(fā)現(xiàn),AtABCG11基因表達(dá)受抑引起了其他與角質(zhì)層形成相關(guān)的16個基因表達(dá)量的顯著下降,表明AtABCG11介導(dǎo)的脂質(zhì)跨膜運輸是角質(zhì)層代謝的限速步驟[52]。由于AtABCG12與AtABCG11均屬于半分子轉(zhuǎn)運蛋白,因此研究者推測二者是否通過形成二聚體發(fā)揮功能。McFarlane等[5]首次證明擬南芥中AtABCG11與AtABCG12可形成異型二聚體,而2個AtABCG11也能夠形成同型二聚體。這體現(xiàn)了半分子轉(zhuǎn)運蛋白聚合的靈活性,其聚合方式的多樣使其能夠運輸多種類型的底物。我們課題組對荒漠旱生植物霸王(Zygophyllumxanthoxylum)響應(yīng)鹽處理和滲透脅迫的轉(zhuǎn)錄組和基因表達(dá)譜分析發(fā)現(xiàn),霸王體內(nèi)存在33個ABCG亞族編碼基因,其中有19個基因在鹽處理或滲透脅迫下的表達(dá)豐度顯著上調(diào),如滲透脅迫24 h時,根中細(xì)胞分裂素轉(zhuǎn)運蛋白編碼基因ZxABCG14表達(dá)量上調(diào)2倍,葉中ABA轉(zhuǎn)運蛋白編碼基因ZxABCG25表達(dá)量上調(diào)2.5倍,而尤以角質(zhì)層脂質(zhì)轉(zhuǎn)運蛋白編碼基因ZxABCG11表現(xiàn)最為突出;我們克隆了霸王ZxABCG11全長cDNA,表達(dá)模式分析發(fā)現(xiàn),ZxABCG11基因在幼嫩葉中表達(dá)量最高,老葉中表達(dá)量最低,僅為嫩葉中的1/2;在50 mmol/L NaCl、-0.5 MPa滲透脅迫或35℃高溫處理下,與對照相比,其表達(dá)豐度分別上調(diào)2,4和5倍,并且均在處理后6 h內(nèi)達(dá)到最大值,表明ZxABCG11基因在霸王適應(yīng)鹽、滲透脅迫及高溫過程中發(fā)揮著重要作用。
除了以上WBC型轉(zhuǎn)運蛋白參與角質(zhì)層形成外,在植物中還發(fā)現(xiàn)2個PDR型轉(zhuǎn)運蛋白,大麥(Hordeumvulgare) HvABCG31[55]及其在擬南芥中的同源蛋白AtABCG32[56],參與植株角質(zhì)單體分泌。HvABCG31功能缺失的大麥突變體角質(zhì)單體含量僅為野生型的50%,角質(zhì)層厚度為野生型的25%,且離體葉片失水率遠(yuǎn)大于野生型,進(jìn)一步證明角質(zhì)層對植物抗旱保水的意義重大[55]。而atabcg32還表現(xiàn)為花表皮角質(zhì)主要單體ω-羥基脂肪酸和二羥基棕櫚酸酯含量下降約為野生型的40%,表明AtABCG32在轉(zhuǎn)運角質(zhì)前體物質(zhì)方面發(fā)揮重要作用[56]。
以上研究多集中于植株營養(yǎng)器官表皮角質(zhì)層,而花表皮角質(zhì)層對于植物花器官建成及有性生殖也有重要作用。與以上研究中的突變體表型不同,AtABCG13基因敲除的突變體主要表現(xiàn)為花表皮角質(zhì)含量顯著下降,且出現(xiàn)花瓣扭曲及花器官融合現(xiàn)象,但角果及種子的發(fā)育并未受影響,表明AtABCG13參與花表皮角質(zhì)組分的分泌[57]。相比花瓣形態(tài),植物育性意義更為重要。由脂肪酸及酚類聚合而成的孢粉素是花粉外壁的主要組分,是花粉粒的重要保護(hù)層[58]。AtABCG26/AtWBC27能將孢粉素前體從絨氈層細(xì)胞運至花粉表皮,其基因缺失的突變體難以產(chǎn)生成熟花粉粒,由于花粉外壁存在缺陷因而育性下降,種子數(shù)量減少[59-60]。有研究還發(fā)現(xiàn)擬南芥AtABCG9和AtABCG31能參與花粉壁組分甾醇糖苷的轉(zhuǎn)運[61]。此外,水稻ABCG15除了具備上述功能外,還參與花藥表皮角質(zhì)層的形成[62]??梢夾BCG類轉(zhuǎn)運蛋白對雄性植株育性有重要影響,對于揭示雄性植株不育機制及指導(dǎo)作物生產(chǎn)具有重要理論及實踐意義。
具有抗菌作用的植物次生代謝產(chǎn)物如萜類、生物堿和酚類等,可以阻止病菌在表皮繁殖,是植物抵抗致病菌的第一道防線[63]。PDR型轉(zhuǎn)運蛋白可通過參與次生代謝產(chǎn)物的分泌,間接參與植物對病害侵襲的抵抗。白花丹葉煙草(Nicotianaplumbaginifolia)NpPDR1和擬南芥AtPDR12的底物均為具抗菌功能的二萜香紫蘇醇[64-65]。在致病菌侵染或抗病信號分子化合物(如茉莉酮酸甲酯、水楊酸等)誘導(dǎo)下,許多PDR型轉(zhuǎn)運蛋白編碼基因表達(dá)量顯著上調(diào),如擬南芥AtPDR12[17],AtPDR8[66-67],煙草(Nicotianatabacum)NtPDR1[68-69],白花丹葉煙草NpPDR1[70],大豆(Glycinemax)GmPDR1[71],水稻OsPDR9、OsPDR20[72]等。同時,這些基因沉默會導(dǎo)致植株對病菌侵染更加敏感,抗病能力顯著降低[9,73]。豆科植物的次生代謝產(chǎn)物異黃酮也具有抑菌作用,蒺藜苜蓿MtABCG10參與植株異黃酮前體物質(zhì)的轉(zhuǎn)運,根部基因沉默導(dǎo)致異黃酮苷元含量降低,使致病菌尖孢鐮刀菌擴繁速率升高[74]。PDR轉(zhuǎn)運蛋白除了與植物抵抗病原菌相關(guān)外,還參與植物抵抗草食動物采食。煙草NtPDR5基因的表達(dá)受到草食昆蟲煙草天蛾口器分泌物的誘導(dǎo),用NtPDR5基因沉默的植株飼喂煙草天蛾,昆蟲生長發(fā)育狀態(tài)顯著優(yōu)于飼喂野生型煙草的昆蟲,表明煙草NtPDR5參與植株分泌有毒化合物,進(jìn)而抑制草食昆蟲煙草天蛾的采食[75],但對其轉(zhuǎn)運的底物種類尚不清楚。
植物根系分泌的次生代謝產(chǎn)物還與誘導(dǎo)土壤有益真菌有關(guān)。對于豆科植物而言,根系分泌物中的類黃酮是與根瘤菌共生識別階段的重要信號分子。采用多種磷酸酶抑制劑抑制ABCG轉(zhuǎn)運蛋白活性時,PDR型轉(zhuǎn)運蛋白抑制劑的使用能顯著降低大豆根部金雀異黃酮和大豆黃酮的分泌,且EST數(shù)據(jù)庫分析發(fā)現(xiàn)PDR轉(zhuǎn)運蛋白編碼基因在根部大量表達(dá),因而推測PDR轉(zhuǎn)運蛋白是根部分泌類黃酮物質(zhì)的主要蛋白之一[76-77]。此外還發(fā)現(xiàn)屬于half-size型的ABCG轉(zhuǎn)運蛋白STR功能缺失能導(dǎo)致蒺藜苜蓿、水稻根系A(chǔ)M真菌菌絲分枝減少,植株與AM真菌共生失敗[78-79],其作用機制是STR與STR2形成異源二聚體,但其底物類型尚不清楚,但已排除其底物是獨腳金內(nèi)酯的可能性;此外,在已完成全基因組測序的維管植物中均發(fā)現(xiàn)了STR同源基因,但擬南芥中沒有發(fā)現(xiàn)。
3展望
由于ABCG轉(zhuǎn)運蛋白參與植物的多種生理代謝活動,受到了學(xué)術(shù)界的廣泛重視。隨著研究的不斷深入,除模式植物擬南芥外,也發(fā)現(xiàn)了許多作物及牧草中的ABCG轉(zhuǎn)運蛋白。但由于其家族的龐大,功能的復(fù)雜多樣,尚有很多ABCG轉(zhuǎn)運蛋白的功能未被發(fā)掘。因而,基于目前的研究現(xiàn)狀,今后對ABCG轉(zhuǎn)運蛋白的研究可從以下幾個方面展開:1)在擬南芥和水稻等模式植物中進(jìn)一步深入分析其他功能未知的ABCG轉(zhuǎn)運蛋白在植物生命活動中的功能和轉(zhuǎn)運機制。2)選擇具有代表性的植物類型為研究對象,采用分子生物學(xué)手段發(fā)掘其ABCG轉(zhuǎn)運蛋白編碼基因,結(jié)合RNA干擾等方法揭示其在不同生理代謝、抗逆性中的重要作用。3)采用蛋白質(zhì)組學(xué)等方法并結(jié)合已發(fā)現(xiàn)的ABCG轉(zhuǎn)運蛋白的功能,深入解析其跨膜運輸機制并進(jìn)一步確定其轉(zhuǎn)運的底物類型。4)采用基因工程方法,將已發(fā)掘的具有重要應(yīng)用價值的ABCG蛋白編碼基因轉(zhuǎn)入經(jīng)濟作物、糧食作物及飼料作物中,提高其產(chǎn)量、品質(zhì)及抗性,將理論結(jié)果運用于生產(chǎn)實踐。
References:
[1]Verrier P J, Bird D, Burla B,etal. Plant ABC proteins a unified nomenclature and updated inventory. Trends in Plant Science, 2008, 13: 151-159.
[2]Bairoch A. Prosite: a dictionary of sites and patterns in proteins. Nucleic Acids Research, 1992, 20: 2013-2018.
[3]Ewart G D, Cannell D, Cox G B,etal. Mutational analysis of the traffic ATPase (ABC) transporters involved in uptake of eye pigment precursors inDrosophilamelanogaster, implications for structure-function relationships. Journal of Biological Chemistry, 1994, 269: 10370-10377.
[4]Tarr P T, Tarling E J, Bojanic D D,etal. Emerging new paradigms for ABCG transporters. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2009, 1791: 584-593.
[5]McFarlane H E, Shin J J, Bird D A,etal.ArabidopsisABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. The Plant Cell, 2010, 22: 3066-3075.
[6]Jasinski M, Ducos E, Martinoia E,etal. The ATP-Binding cassette transporters: structure, function, and gene family comparison between rice andArabidopsis. Plant Physiology, 2003, 131: 1169-1177.
[7]?aklr B, Klll?kaya O. Whole-Genome survey of the putative ATP-binding cassette transporter family genes inVitisvinifera. PLOS One, 2013, 8: e78860.
[8]Sugiyama A, Shitan N, Sato S,etal. Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant,Lotusjaponicus: comparison withArabidopsisABC protein family. DNA Research, 2006, 13: 205-228.
[9]Jasinski M, Banasiak J, Radom M,etal. Full-size ABC transporters from the ABCG subfamily inMedicagotruncatula. Molecular Plant Microbe Interaction, 2009, 22: 921-931.
[10]Neyfakh A A. Mystery of multidrug transporters: the answer can be simple. Molecular Microbiology, 2002, 44: 1123-1130.
[11]Mentewab A, Stewart C N. Overexpression of anArabidopsisthalianaABC transporter confers kanamycin resistance to transgenic plants. Nature Biotechnology, 2005, 23: 1177-1180.
[12]Kang B G, Ye X, Osburn L D,etal. Transgenic hybrid aspen overexpressing theAtWBC19 gene encoding an ATP-binding cassette transporter confers resistance to four amino glycoside antibiotics. Plant Cell Reports, 2010, 29: 643-650.
[13]Chen W, Zhang M M, Song Y Y,etal. Impacts of heavy metals on the fluorescence characteristics and root morphology of 2 turfgrass species. Acta Prataculturae Sinica, 2014, 23(3): 333-342.
[14]Li X, Wu Y J, Sun L X. Growth and physiological responses of three warm-season turfgrasses to lead stress. Acta Prataculturae Sinica, 2014, 23(4): 171-180.
[15]Gao H N, Ma G T, Li C X,etal. Effects of a microorganism on grass seedling physiological and biochemical characteristics when grown in Cr(VI) polluted soil. Acta Prataculturae Sinica, 2014, 23(4): 189-194.
[16]Pourrut B, Shahid M, Dumat C,etal. Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology, 2011, 213: 113-136.
[17]Lee M, Lee K, Lee J,etal. AtPDR12 contributes to lead resistance inArabidopsis. Plant Physiology, 2005, 138: 827-836.
[18]Kim D Y, Bovet L, Maeshima M,etal. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. The Plant Journal, 2007, 50: 207-218.
[19]Kim D Y, Jin J Y, Alejandrob S,etal. Overexpression of AtABCG36 improves drought and salt stress resistance inArabidopsis. Physiologia Plantarum, 2010, 139: 170-180.
[20]Multani D S, Briggs S P, Chamberlin M A,etal. Loss of an MDR transporter in compact stalks of maizebr2 and sorghumdw3 mutants. Science, 2003, 302: 81-84.
[21]Geisler M, Murphy A S. The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Letters, 2006, 580: 1094-1102.
[22]Ito H, Gray W M. A gain-of-function mutation in theArabidopsispleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant Physiology, 2006, 142: 63-74.
[23]Strader L C, Monroe-Augustus M, Rogers K C,etal.Arabidopsisibaresponse5 (ibr5) suppressors separate responses to various hormones. Genetics, 2008, 180: 2019-2031.
[24]Strader L C, Bartel B. TheArabidopsisPLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-Butyric acid. The Plant Cell, 2009, 21: 1992-2007.
[26]Ko D, Kang J, Kiba T,etal.ArabidopsisABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences of USA, 2014, 111: 7150-7155.
[27]Zhang K W, Novak O, Wei Z Y,etal.ArabidopsisABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nature Communacation, 2014, doi:10.1038/ncomms4274.
[28]Le Hir R, Sorin C, Chakraborti D,etal. ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development inArabidopsis. Plant Journal, 2013, 76: 811-824.
[29]Kanno Y, Hanada A, Chiba Y,etal. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proceedings of the National Academy of Sciences of USA, 2012, 109: 9653-9658.
[30]Kang J, Hwang J U, Lee M,etal. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences of USA, 2010, 107: 2355-2360.
[31]Kuromori T, Miyaji T, Hikaru Y,etal. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences of USA, 2010, 107: 2361-2366.
[32]Umehara M, Hanada A, Yoshida S,etal. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195-200.
[33]Gomez-Roldan V, Fermas S, Brewer P B,etal. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189-194.
[34]Yang H X, Liu R J, Guo S X. Effects of arbuscular mycorrhizal fungusGlomusmosseaeon the growth characteristics ofFestucaarundinaceaunder salt stress conditions. Acta Prataculturae Sinica, 2014, 23(4): 195-203.
[35]Wu Q S, Yuan F Y, Fei Y J,etal. Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover. Acta Prataculturae Sinica, 2014, 23(1): 199-204.
[36]Kretzschmar T, Kohlen W, Sasse J,etal. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483: 341-346.
[37]Sharda J N, Koide R T. Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi. New Phytologist, 2008, 180: 696-701.
[38]Brewer P B, Dun E A, Ferguson B J,etal. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea andArabidopsis. Plant Physiology, 2009, 150: 482-493.
[39]Crawford S, Shinohara N, Sieberer T,etal. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 2010, 137: 2905-2913.
[40]Hart J J, Ditomaso J M, Linscott D L,etal. Transport interactions between paraquat and polyamines in roots of intact maize seedlings. Plant Physiology, 1992, 99: 1400-1405.
[41]Xi J, Xu P, Xiang C B. Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance inArabidopsisthaliana. The Plant Journal, 2012, 69: 782-791.
[42]Hart J J, DiTomaso J M, Kochian L V. Characterization of paraquat transport in protoplasts from maize (ZeamaysL.) suspension cells. Plant Physiology, 1993, 103: 963-969.
[43]Whetten R, Sederoff R. Lignin biosynthesis. Plant Cell, 1995, 7:1001-1013.
[44]Miao Y C, Liu C J. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proceedings of the National Academy of Sciences of USA, 2010, 107: 22728-22733.
[45]Alejandro S, Lee Y, Tohge T,etal. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Current Biology, 2012, 22: 1207-1212.
[46]Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 1997, 79: 667-677.
[47]Bernard A, Joubès J.Arabidopsiscuticular waxes: Advances in synthesis, export and regulation. Progress in Lipid Research, 2013, 52: 110-129.
[48]Li J J, Huang J H, Xie S C. Plant wax and its response to environmental conditions. Acta Ecologica Sinica, 2011, 31(2): 565-574.
[49]Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 2003, 42: 51-80.
[50]Pighin J A, Zheng H, Balakshin L J,etal. Plant cuticular lipid export requires an ABC transporter. Science, 2004, 306: 702-704.
[51]Bird D, Beisson F, Brigham A,etal. Characterization ofArabidopsisABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. The Plant Journal, 2007, 52: 485-498.
[52]Panikashvilia D, Shi J X, Samuel B. TheArabidopsisDSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Molecular Plant, 2010, 3: 563-575.
[53]Luo B, Xue X Y, Hu W L,etal. An ABC transporter gene ofArabidopsisthaliana,AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant & Cell Physiology, 2007, 48: 1790-1802.
[54]Panikashvili D, Sigal S G, Tali M,etal. TheArabidopsisDESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiology, 2007, 145: 1345-1360.
[55]Chen G X, Komatsuda T, Ma J F,etal. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proceedings of the National Academy of Sciences of USA, 2011, 108: 12354-12359.
[56]Bessire M, Borel S, Fabre G,etal. A member of the pleiotropic drug resistance family of ATP binding cassette transporters is required for the formation of a functional cuticle inArabidopsis. The Plant Cell, 2011, 23: 1958-1970.
[57]Panikashvili D, Shi J X, Schreiber L,etal. TheArabidopsisABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytologist, 2011, 190: 113-124.
[58]Huang L C, Jin L, Zhang S Z,etal. Pollen release mechanisms of papilionaceous plants(Faboideae). Acta Prataculturae Sinica, 2013, 22(6): 305-314.
[59]Quilichini T D, Friedmann M C, Samuels A L,etal. ATP-Binding cassette transporter G26 is required for male fertility and pollen exine formation inArabidopsis. Plant Physiology, 2010, 154: 678-690.
[60]Choi H, Jin J Y, Choi S,etal. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. The Plant Journal, 2011, 65: 181-193.
[61]Choi H, Ohyama K, Kim Y Y,etal. The role ofArabidopsisABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. The Plant Cell, 2014, 26: 310-324.
[62]Qin P, Tu B, Wang Y,etal.ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant & Cell Physiology, 2013, 54: 138-154.
[63]Weston L A, Ryan P R, Watt M. Mechanisms for cellular transport and release of allelochemicals from plant root into the rhizosphere. Journal of Experimental Botany, 2012, 63: 3445-3454.
[64]Campbell E J, Schenk P M, Kazan K,etal. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways inArabidopsis. Plant Physiology, 2003, 133: 1272-1284.
[65]Stukkens Y, Bultreys A, Grec S,etal. NpPDR1, a pleiotropic drug resistance-type ATP binding cassette transporter fromNicotianaplumbaginifolia, plays a major role in plant pathogen defense. Plant Physiology, 2005, 139: 341-352.
[66]Kobae Y, Sekino T, Yoshioka H,etal. Loss of AtPDR8, a plasma membrane ABC transporter ofArabidopsisthaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiology, 2006, 47: 309-318.
[67]Stein M, Dittgen J, Sanchez-Rodriguez C,etal.ArabidopsisPEN3/PDR8, an ATP binding cassette transporter, contributes to non-host resistance to inappropriate pathogens that enter by direct penetration. The Plant Cell, 2006, 18: 731-746.
[68]Sasabe M, Toyoda K, Shiraishi T,etal. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Letters, 2002, 518: 164-168.
[69]Crouzet J, Roland J, Peeters E,etal. NtPDR1, a plasma membrane ABC transporter fromNicotianatabacum, is involved in diterpene transport. Plant Molecular Biology, 2013, 82: 181-192.
[70]Bultreys A, Trombik T, Drozak A,etal.Nicotianaplumbaginifoliaplants silenced for the ATP-binding cassette transporter geneNpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens. Molecular Plant Pathology, 2009, 10: 651-663.
[71]Eichhorn H, Klinghammer M, Becht P,etal. Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. Journal of Experimental Botany, 2006, 57: 2193-2201.
[72]Moons A. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Planta, 2008, 229: 53-71.
[73]Krattinger S G, Lagudah E S, Spielmeyer W,etal. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360-1363.
[75]Bienert M D, Gerlitz S E, Drozak A,etal. A pleiotropic drug resistance transporter inNicotianatabacumis involved in defense against the herbivoreManducasexta. The Plant Journal, 2012, 72: 745-757.
[76]Sugiyama A, Shitan N, Yazaki K. Involvement of a soybean ATP binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-rhizobium symbiosis. Plant Physiology, 2007, 144: 2000-2008.
[77]Sugiyama A, Shitan N, Yazaki K. Signaling from soybean roots to rhizobium, an ATP-binding casstte-type transporter mediates genistein secretion. Plant Signaling & Behavior, 2008, 3: 38-40.
[78]Zhang Q, Blaylock L A, Harrison M J. TwoMedicagotruncatulahalf-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. The Plant Cell, 2010, 22: 1483-1497.
[79]Gutjahr C, Radovanovic D, Geoffroy J,etal. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. The Plant Journal, 2012, 69: 906-920.
參考文獻(xiàn):
[13]陳偉, 張苗苗, 宋陽陽, 等. 重金屬離子對2種草坪草熒光特性及根系形態(tài)的影響. 草業(yè)學(xué)報, 2014, 23(3): 333-342.
[14]李西, 吳亞嬌, 孫凌霞. 鉛脅迫對三種暖季型草坪草生長和生理特性的影響. 草業(yè)學(xué)報, 2014, 23(4): 171-180.
[15]高海寧, 馬國泰, 李彩霞, 等. 菌劑對鉻污染土壤中坪草幼苗生理生化的影響. 草業(yè)學(xué)報, 2014, 23(4): 189-194.
[34]楊海霞, 劉潤進(jìn), 郭紹霞. AM真菌摩西球囊霉對鹽脅迫條件下高羊茅生長特性的影響. 草業(yè)學(xué)報, 2014, 23(4): 195-203.
[35]吳強盛, 袁芳英, 費永俊, 等. 叢枝菌根真菌對白三葉根系構(gòu)型和糖含量的影響. 草業(yè)學(xué)報, 2014, 23(1): 199-204.
[48]李婧婧, 黃俊華, 謝樹成. 植物蠟質(zhì)及其與環(huán)境的關(guān)系. 生態(tài)學(xué)報, 2011, 31(2): 565-574.
[58]黃利春, 金樑, 張樹振, 等. 蝶形花亞科植物花粉釋放機制. 草業(yè)學(xué)報, 2013, 22(6): 305-314.