肖 峰,顧韻婕,陳智棟,唐 喆,邵景玲,韓粉女,許 琦,朱紅麗(.鹽城工學(xué)院化學(xué)與生物工程學(xué)院,江蘇鹽城 405; .常州大學(xué)石油化工學(xué)院,江蘇常州 364)
?
低溫SCR脫硝催化劑的制備及其催化性能*
肖峰1,2,顧韻婕2,陳智棟2,唐喆1,邵景玲1,韓粉女1,許琦1,朱紅麗1
(1.鹽城工學(xué)院化學(xué)與生物工程學(xué)院,江蘇鹽城224051; 2.常州大學(xué)石油化工學(xué)院,江蘇常州213164)
摘要:以硫酸亞鐵和氯化亞錫為原料,經(jīng)草酸鹽共沉淀法制備了一系列SnO2-Fe2O3催化劑(Cat-1~Cat-3),其結(jié)構(gòu)和性能經(jīng)FT-IR,XRD,SEM,TEM和N2-BET表征??疾炝四M煙氣條件下,Cat-1~Cat-3低溫催化脫除NO和抗SO2中毒的性能。結(jié)果表明:Cat-2[r=n(Sn)∶n(Fe)=1∶2]結(jié)晶度較高,粒徑3 μm~6 μm,熱穩(wěn)定性好,催化脫硝效率(α)較好[T=160℃,α=83.7%; T=180℃~360℃,α>85%]; Cat-2于240℃經(jīng)SO2毒化40 min,α降低至66.2%。
關(guān)鍵詞:共沉淀法;低溫脫硝催化劑;制備;催化性能;脫硝效率
圖1 催化性能測(cè)試裝置流程圖Figure 1 The flow chart of catalyst performance testing device
氮氧化物嚴(yán)重污染大氣環(huán)境[1],也對(duì)人類健康有極大危害[2]。NH3選擇性催化還原氮氧化物是目前應(yīng)用最為廣泛的脫硝技術(shù)[3-5],其關(guān)鍵在于催化劑的制備。為此,研究人員開展了大量研究并取得了諸多成果。如Kato等[6]制備的催化劑Fe2O3-TiO2可在350℃~450℃內(nèi)高效、高選擇性脫硝(>90%); Qi等[7]制備的催化劑Fe/ZSM-5進(jìn)一步拓寬了溫度適用范圍(350℃~500 ℃),脫硝效率較高(>90%); Liu等[8]制備的催化劑Fe/Beta-Zeolite催化脫硝活性遠(yuǎn)高于Fe/TiO2和Fe/Al2O3。由于上述催化劑均為鐵基分子篩,高溫下容易中毒失活。為提高催化劑性能,專家學(xué)者們開始致力于開發(fā)低溫脫硝催化劑。Apostolescu等[9]合成了三元催化劑1.4Fe7.0WZr,將鐵基催化劑激活溫度降低至300℃以下; Sultana等[10]發(fā)現(xiàn)添加少量銅可有效提高催化劑Cu-Fe/ZSM-5的低溫催化脫硝性能。此外,其它過渡金屬(如錳)和稀土金屬(如鈰)也可大幅度提高鐵基催化劑的低溫催化活性,如Mn-FeOx[11],F(xiàn)e-Mn/TiO2
[12],F(xiàn)e-Mn/USY[13],F(xiàn)e-Ce-Mn/ZSM-5[14]和Fe-Ce-Mn/Ti[15]等,適用溫度可降低至200℃。
SnO2是另一種常用的高溫型脫硝催化劑,如SnO2/Al2O3[16-19],其研究熱點(diǎn)也在于低溫下的應(yīng)用。如SnO2-MnOx-CeO2[20]和Sn-Ce-Ox[21]不僅具有較好的低溫脫硝性能,而且可有效抗SO2和H2O中毒。
1.1儀器與試劑
Nicolet 460 FT-IR 8400S型紅外光譜儀(KBr壓片); D/MAX-2200 PC型X-衍射儀; FEI QUANTA200型掃描電鏡; JEOL JEM-2100型透射電鏡; Micrometritics ASAP 2010型氮?dú)馕絻x; RD-100型不銹鋼晶化釜。
所用試劑均為分析純或化學(xué)純,使用前按標(biāo)準(zhǔn)方法處理。
1.2 Cat-1~Cat-3的制備
在反應(yīng)瓶中依次加入水60 mL,一水草酸銨5.12 g(36 mmol)和多庫(kù)酯鈉(AOT)1.34 g(3 mmol),于40℃攪拌使其溶解;同時(shí)滴加SnCl2· 2H2O 2.26 g的乙醇(50 mL)溶液和FeSO4· 7H2O 5.56 g的水(50 mL)溶液,滴畢,攪拌0.5 h;用氨水調(diào)至pH 7~8,冰浴中靜置8 h。過濾,濾餅用蒸餾水洗滌,干燥后升溫煅燒(升溫速率1 ℃·min-1),于400℃煅燒4 h得紅褐色固體催化劑Cat-2[r=n(Sn)∶n(Fe)=1∶2]。
僅改變r(jià)=1∶4和r=3∶4,用類似的方法制得Cat-1和Cat-3。
1.3催化性能
圖1為催化性能測(cè)試裝置流程圖。將Cat 0.5 g置于固定床反應(yīng)器的石英管中,模擬煙氣[O23%,NO 0.06%,NH30.072%,SO2(毒化實(shí)驗(yàn))0.03%,N2為載氣,總流量800 mL·min-1,空速3 600 h-1]于120℃~360℃加熱后流入反應(yīng)器,充分反應(yīng),經(jīng)濃磷酸吸收剩余NH3后用煙氣分析儀檢測(cè)氣體濃度,尾氣凈化后排空。用公式計(jì)算NO脫除效率(α){α/%=[NOin]-[NOout]/[NOin]×100%,[NOin]表示進(jìn)口處NO濃度,[NOout]表示出口處NO濃度}。
1986年,我到文化館工作,經(jīng)常到市屬各區(qū)(相當(dāng)于鄉(xiāng)鎮(zhèn))的文化站做輔導(dǎo)培訓(xùn)工作。我從法者116道班徒步到新田公社,我看到許多山頭都被砍伐得光禿禿的。
2.1表征
(1)FT-IR
圖2為SnO2,F(xiàn)e2O3和Cat-2前驅(qū)體的FT-IR譜圖。由圖2可見,1 600 cm-1處特征峰為C=O伸縮振動(dòng)吸收峰; 1 360 cm-1處特征峰為C-C伸縮振動(dòng)吸收峰; 1 300 cm-1附近的特征峰為OC=O伸縮振動(dòng)吸收峰; 809 cm-1處特征峰為O-C=O在O-Fe處的彎曲振動(dòng)吸收峰[22-23]; 785 cm-1處特征峰為O-C=O在O-Sn處的彎曲振動(dòng)吸收峰[24]。
對(duì)比SnO2,F(xiàn)e2O3和Cat-2的FT-IR譜圖可見,SnO2和Fe2O3特征吸收峰更接近草酸鐵,但均發(fā)生了不同程度的紅移。該紅移現(xiàn)象歸結(jié)于表面原子的弛豫效應(yīng),即雙金屬相互作用導(dǎo)致粒徑減小,表面原子間距增大[25-26]。
圖2 SnO2,F(xiàn)e2O3和Cat-2前驅(qū)體的FT-IR譜圖Figure 2 FT-IR spectra of SnO2,F(xiàn)e2O3and Cat-2 percursors
(2)XRD
圖3為SnO2,F(xiàn)e2O3和Cat的XRD譜圖。由圖3可見,SnO2(No.51-144 5)和Fe2O3(No.33-066 4)均有很強(qiáng)的特征吸收峰; Cat-2的特征吸收峰明顯減弱甚至幾乎消失,其原因在于Sn和Fe之間產(chǎn)生了協(xié)同作用,抑制了晶體生長(zhǎng)。
(3)SEM
圖4為SnO2,F(xiàn)e2O3,Cat-2的SEM圖和Cat-2的TEM圖。由圖4可見,SnO2為六棱柱,粒徑最大(10 μm~15 μm),表面粗糙且有細(xì)小的無規(guī)則顆粒黏附; Fe2O3為正方體,粒徑4 μm~5 μm,表面光滑; Cat-2為長(zhǎng)方體,粒徑3 μm~6 μm,表面有很多裂縫和少量塊狀顆粒。因此,Cat-2具有更大的比表面積。
由圖4還可見,Cat-2為不規(guī)則排列,且有許多孔道,是一種無序介孔材料。因此,Cat-2的結(jié)構(gòu)有利于反應(yīng)過程中氣體分子的吸附,促進(jìn)了催化反應(yīng)的進(jìn)行。
圖3 SnO2,F(xiàn)e2O3和Cat的XRD譜圖Figure 3 XRD spectra of SnO2,F(xiàn)e2O3and Cat
圖4 SnO2,F(xiàn)e2O3,Cat-2的SEM圖和Cat-2的TEM圖Figure 4 SEM images of SnO2,F(xiàn)e2O3,Cat-2 and TEM images of Cat-2
(4)N2-BET
表1為Cat的介孔參數(shù)。由表1可見,Cat-1~Cat-3的比表面積明顯大于SnO2和Fe2O3,且隨r增大而增加。
表1 SnO2,F(xiàn)e2O3和Cat的介孔參數(shù)Table 1 Mesoporous parameters of SnO2,F(xiàn)e2O3and Cat
圖5 SnO2,F(xiàn)e2O3和Cat的孔徑分布圖Figure 5 Pore size distribution of SnO2,F(xiàn)e2O3and Cat
圖6 Cat-1~Cat-3的催化性能Figure 6 Catalytic activities of Cat-1~Cat-3
圖5為SnO2,F(xiàn)e2O3和Cat的孔徑分布圖。由圖5可見,SnO2為孔徑均勻的介孔材料,孔徑主要分布于2.73 nm處; Fe2O3孔徑不均一,故無特征峰出現(xiàn); Cat-1~Cat-3在11 nm附近出現(xiàn)高而寬的孔徑分布峰,在2.4 nm和22 nm處出現(xiàn)兩個(gè)肩峰,說明Cat-1~Cat-3為多孔分布的介孔材料,且11 nm的孔道占絕大多數(shù)。由圖5還可見,隨著r增大,主峰位置向大孔徑分布轉(zhuǎn)移,即2.4 nm處孔徑減少而22 nm處孔徑增多。
2.2脫硝性能
圖6為Cat-1~Cat-3的催化脫硝性能。由圖6可見,當(dāng)測(cè)試溫度為240℃時(shí),Cat-2的催化活性最強(qiáng),NO脫除效率(α)為90.4%。由圖6還可見,Cat-2在較寬的溫度范圍(160℃~360℃)內(nèi)有較高的α(>83%),說明Cat-2的熱穩(wěn)定性較好。
圖7 Cat-2抗SO2中毒性能Figure 7 Anti-SO2performance of Cat-2
圖7為Cat-2經(jīng)SO2毒化后的催化活性。由圖7可見,通SO2僅20 min,α即降低22%;通SO240 min后,α降低至66.2%。關(guān)閉SO2,α緩慢提高,100 min后維持在74.2%。綜上可見,Cat-2抗SO2毒性較差。
制備了一系列SnO2-Fe2O3催化劑Cat-1~Cat-3??疾炝四M煙氣條件下,Cat-1~Cat-3低溫催化脫除NO和抗SO2中毒的性能。結(jié)果表明:Cat-2結(jié)晶度較高,粒徑3 μm~6 μm,熱穩(wěn)定性好,催化脫硝效率(α)較好[T=160℃,α=83.7%; T=180℃~360℃,α>85%]; Cat-2于240℃經(jīng)SO2毒化40 min,α降低至66.2%。
參考文獻(xiàn)
[1]Zhang T,Liu J,Wang D,et al.Selective catalytic reduction of NO with NH3over HZSM-5-supported Fe-Cunanocomposite catalysts:The Fe-Cu bimetallic effect [J].Applied Catalysis B:Environmental,2014,148-149:520-531.
[2]郝吉明,程真,王書肖.我國(guó)大氣環(huán)境污染現(xiàn)狀及防治措施研究[J].環(huán)境保護(hù),2012,40(09):17-20.
[3]Zhang R,Zhong Q,Zhao W,et al.Promotional effect of fluorine on the selective catalytic reduction of NO with NH3over CeO2-TiO2catalyst at low temperature [J].Applied Surface Science,2014,289:237-244.
[4]Yu T,F(xiàn)an D,Hao T,et al.The effect of various templates on the NH3-SCR activities over Cu/SAPO-34 catalysts[J].Chemical Engineering Journal,2014,243:159-168.
[5]Xu H,Wang Y,Cao Y,et al.Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOxwith NH3[J].Chemical Engineering Journal,2014,240:62-73.
[6]Kato A,Matsuda S,Kamo T,et al.Reaction between nitrogen oxide(NOx)and ammonia on iron oxide-titanium oxide catalyst[J].The Journal of Physical Chemistry,1981,85(26):4099-4102.
[7]Qi G,Wang Y,Yang R.Selective catalytic reduction of nitric oxide with ammonia over ZSM-5 based catalysts for diesel engine applications[J].Catalysis Letters,2008,121(1-2):111-117.
[8]Ma L,Chang H,Yang S,et al.Relations between iron sites and performance of Fe/HBEA catalysts prepared by two different methods for NH3-SCR[J].Chemical Engineering Journal,2012,209:652-660.
[9]Liu Z,Millington P J,Bailie J E,et al.A comparative study of the role of the support on the behaviour of iron based ammonia SCR catalysts[J].Microporous and Mesoporous Materials,2007,104(1-3):159-170.
[10]Sultana A,Sasaki M,Suzuki K,et al.Tuning the NOxconversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR [J].Catalysis Communications,2013,41:21-25.
[11]Yang S,Wang C,Li J,et al.Low temperature selective catalytic reduction of NO with NH3over Mn-Fe spinel:Performance,mechanism and kinetic study [J].Applied Catalysis B:Environmental,2011,110:71-80.
[12]Wu Z,Jiang B,Liu Y.Effect of transition metals addition on the catalyst of manganese/titania for lowtemperature selective catalytic reduction of nitric oxide with ammonia[J].Applied Catalysis B:Environmental,2008,79(4):347-355.
[13]Lin Q,Li J,Ma L,et al.Selective catalytic reduction of NO with NH3over Mn-Fe/USY under lean burn conditions[J].Catalysis Today,2010,151(3-4):251-256.
[14]Zhou G,Zhong B,Wang W,et al.In situ DRIFTS study of NO reduction by NH3over Fe-Ce-Mn/ZSM-5 catalysts[J].Catalysis Today,2011,175(1):157-163.
[15]Shen B,Liu T,Zhao N,et al.Iron-doped Mn-Ce/TiO2catalyst for low temperature selective catalytic reduction of NO with NH3[J].Journal of Environmental Sciences,2010,22(9):1447-1454.
[16]Kung M C,Park P W,Kim D W,et al.Lean NOxcatalysis over Sn/Al2O3catalysts[J].Journal of Catalysis,1998,181(1):1-5.
[17]Park P W,Kung H H,Kim D W,et al.Characterization of SnO2-Al2O3lean NOxcatalysts[J].Journal of Catalysis,1999,184(1):440-454.
[18]Liu Z,Hao J,F(xiàn)u L,et al.Promoting effect of sol-gel method and pre-treatment on the activity of SnO2-Al2O3catalyst for NO reduction by propene[J].Reaction Kinetics and Catalysis Letters,2003,80(1):45-52.
[19]Shen B,Liu T,Zhao N,et al.Iron-doped Mn-Ce/TiO2catalyst for low temperature selective catalytic reduction of NO with NH3[J].Journal of Environmental Sciences,2010,22(9):1447-1454.
[20]Chang H,Li J,Chen X,et al.Effect of Sn on MnOx-CeO2catalyst for SCR of NOxby ammonia:Enhancement of activity and remarkable resistance to SO2[J].Catalysis Communications,2012,27(1):54-57.
[21]李莉娟,孫鳳久.紅外光譜法在金屬氧化物納米材料研究中的應(yīng)用[J].材料導(dǎo)報(bào),2006,20(1):92-94.
[22]齊海萍,萬軍喜,曹海琳,等.共沉淀-連續(xù)微反應(yīng)法制備Fe3O4納米粒子[J].合成化學(xué),2014,22(1):114-116.
[23]Gabal M A.Non-isothermal decomposition of NiC2O4-FeC2O4mixture aiming at the production of NiFe2O4[J].Journal of Physics and Chemistry of Solids,2003,64(8):1375-1385.
[24]Zhou W,Tang K,Zeng S,et al.Room temperature synthesis of rod-like FeC2O2·2H2O and its transition to maghemite,magnetite and hematite nanorods through controlled thermal decomposition[J].Nanotechnology,2008,19(6):065602.
[25]Wladimirsky A,Palacios D,D Antonio M C,et al.Vibrational spectra of tin(II)oxalate[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,77(1):334-335.
[26]唐萬軍,陳棟華,伍明.草酸亞錫熱分解反應(yīng)動(dòng)力學(xué)[J].中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,26(1):16-19.
·研究論文·
Preparation and Catalytic Activities of
Low Temperature SCR Denitration Catalysts
XIAO Feng1,2,GU Yun-jie2,CHEN Zhi-dong2,TANG Zhe1,SHAO Jing-ling1,HAN Fen-nv1,XU Qi1,ZHU Hong-li1
(1.College of Chemical and Biological Engineering,Yancheng Institute of Technology,Yancheng 224051,China; 2.School of Petrochemical Engineering,Changzhou University,Changzhou 213164,China)
Abstract:A series of low temperature denitration catalysts(Cat-1~Cat-3)were prepared by oxalate co-precipitation method,using FeSO4and SnCl2as materials.The structures and performances were characterized by FT-IR,XRD,SEM,TEM and N2-BET.The catalytic activities of low temperature denitration and anti-SO2performances of Cat-1~Cat-3 were investigated by simulated flue gas experiments.The results showed that Cat-2[r=n(Sn)∶n(Fe)=1∶2]indicated high crystallinity and well thermostability with particle size of 3 μm~6 μm.Cat-2 also exhibited better catalytic denitration activity(α)[T=160℃,α=83.7%; T=180℃~360℃,α>85%].α of Cat-2 was declined to 66.2% after poisoned by SO2for 40 min at 240℃.
Keywords:co-precipitation method; low temperature denitration catalyst; preparation; catalytic activity; denitration rate
通訊作者:許琦,教授,E-mail:xqsteve@ ycit.cn
作者簡(jiǎn)介:肖峰(1988-),男,漢族,江蘇徐州人,碩士研究生,主要從事煙氣脫硝治理的研究。E-mail:xiaofeng884422@163.com
基金項(xiàng)目:江蘇省產(chǎn)學(xué)研聯(lián)合創(chuàng)新項(xiàng)目(BY2012152);江蘇省環(huán)境保護(hù)開放基金資助項(xiàng)目(2012019)
收稿日期:2014-08-25;
修訂日期:2015-04-24
DOI:10.15952/j.cnki.cjsc.1005-1511.2015.06.0485 *
文獻(xiàn)標(biāo)識(shí)碼:A
中圖分類號(hào):O614.43; O643.36