聶文喜
題目(2015年高考陜西卷文21(1))設(shè)fn(x)=x+x2+…+xn-1,x≥0,n∈N,n≥2,求fn′(2).
分析1fn′(x)=1+2x+…+nxn-1,fn′(2)=1+2×2+3×22+…+n·2n-1.
令an=n,bn=2n-1,則數(shù)列{n·2n-1}是由等差數(shù)列{an}與等比數(shù)列{bn}的乘積構(gòu)成的新數(shù)列{anbn}的求和問題,我們不妨把這類數(shù)列稱為“差比型”數(shù)列,求“差比型”數(shù)列的常規(guī)解法是錯(cuò)位相減法.
解法1(錯(cuò)位相減法):
fn′(2)=1+2×2+3×22+…+(n-1)·2n-2+n·2n-1 ①
則2fn′(2)=2+2×22+…+(n-1)·2n-1+n·2n ②
①- ②得,
-fn′(2)=1+2+22+…+2n-1-n·2n=1-2n1-2-n·2n=(1-n)2n-1
所以fn′(2)=(n-1)2n+1.
拓展1若數(shù)列{an}是等差數(shù)列,公差為d≠0,數(shù)列{bn}是等比數(shù)列,公比q≠1,則數(shù)列{anbn}前n項(xiàng)和Sn可用錯(cuò)位相減法求解:令Sn=a1b1+a2b2+a3b3+…+anbn,則qSn=a1b2+a2b3+a3b4+…+anbn+1,
∴(1-q)Sn=a1b1+(db2+db3+…+dbn)-anbn+1=a1b1+db2(1-qn-1)1-q-anbn+1,
∴Sn=a1b1-anbn+11-q+db2(1-qn-1)(1-q)2
分析2用“錯(cuò)位相減法”求“差比型”數(shù)列的前n項(xiàng)和雖有固定的求解模式,但運(yùn)算量大,極易出現(xiàn)計(jì)算錯(cuò)誤,如果聯(lián)想到2n-1=2n-2n-1,則可用裂項(xiàng)法求和.
解法2(裂項(xiàng)求和法): n·2n-1=n(2n-2n-1)=n·2n-n·2n-1=[n·2n-(n-1)·2n-1]-2n-1,
∴fn′(2)=n·2n-1-2n1-2=(n-1)·2n+1.
拓展2若數(shù)列{an}是等差數(shù)列,公差為d,數(shù)列{bn}是等比數(shù)列,公比為q≠1,則anbn=an(bn+1-bn)q-1=1q-1[(an+1-d)bn+1-anbn]=1q-1(an+1bn+1-anbn)-dbn+1q-1,從而將數(shù)列{anbn}轉(zhuǎn)化為一個(gè)可以裂項(xiàng)求和的數(shù)列{1q-1(an+1bn+1-anbn)}與一個(gè)等比數(shù)列{dbn+1q-1}之差,故{anbn}的前n項(xiàng)和為Tn=an+1bn+1-a1b1q-1-db2q-1·1-qn1-q.
分析3由n·2n-1=2n-1+2n-1+…+2n-1,可考慮用分拆法求和.
解法3(分拆法): fn′(2)=1+(2+2)+…+(2n-1+2n-1+…+2n-1)
=(1+2+22+…+2n-1)+(2+22+…+2n-1)+…+2n-1
=1-2n1-2+2-2n1-2+…+2n-1-2n1-2=-(1+2+22+…+2n-1)+n·2n
=-1-2n1-2+n·2n=(n-1)·2n+1.
分析4由n·2n-1可聯(lián)想到冪函數(shù)求導(dǎo)公式(xn)′=nxn-1,則可用導(dǎo)數(shù)法或積分法求和.
解法4(導(dǎo)數(shù)法):當(dāng)x≠1時(shí),x+x2+…+xn=x-xn+11-x,
兩邊同時(shí)求導(dǎo)得1+2x+3x2+…+nxn-1=1-(n+1)xn+nxn+1(1-x)2.
由x=2,得fn′(2)=1+2·2+3·22+…+n·2n-1=(n-1)·2n+1.
解法5(積分法):當(dāng)x≠1時(shí),fn′(x)=1+2x+3x2+…+nxn-1,則∫(1+2x+3x2+…+nxn-1)dx=c+x+x2+…+xn=c+x-xn+11-x(其中c為任意常數(shù)),
∴fn′(x)=[∫(1+2x+3x2+…+nxn-1)dx]′=(c+x-xn+11-x)′,
∴fn′(x)=1+2x+3x2+…+nxn-1=1-(n+1)xn+nxn+1(1-x)2.
由x=2,得fn′(2)=1+2·2+3·22+…+n·2n-1=(n-1)·2n+1.
分析5由fn+1′(2)=fn′(2)+(n+1)·2n聯(lián)想到遞推數(shù)列an+1=pan+(an+b)qn的通項(xiàng)公式求法,則可用待定系數(shù)法求解.
解法6(待系數(shù)法):fn+1′(2)=fn′(2)+(n+1)·2n,
設(shè)fn+1′(2)+[x(n+1)+y]2n+1=fn′(2)+(xn+y)2n,
則fn+1′(2)=fn′(2)+(-xn-2x-y)2n,
∴-x=1,-2x-y=1,x=-1,y=1,∴{fn′(2)+(-n+1)·2n}是常數(shù)列,
∴fn′(2)+(-n+1)·2n=f1′(2)+(-1+1)·2=1,∴fn′(2)=(n-1)·2n+1.
解法7(待定系數(shù)法):∵fn+1′(2)=fn′(2)+(n+1)·2n,
∴fn+1′(2)2n+1=12·fn′(2)2n+n+12,
令bn=fn′(2)2n,則bn+1=12·bn+n+12,
設(shè)bn+1+x(n+1)+y=12(bn+xn+y),則bn+1=12·bn-xn2-x-y2,
∴-x2=12,-x-y2=12,∴x=-1,y=1,∴數(shù)列{bn-n+1}是等比數(shù)列,
∴bn-n+1=12(12)n-1,
∴bn=n-1+(12)n,
∴fn′(2)=(n-1)·2n+1.
解法8(待定系數(shù)法):
∵fn+1′(2)=fn′(2)+(n+1)·2n,
∴fn+1′(2)2n+1=12·fn′(2)2n+n+12,
令bn=fn′(2)2n,
則bn+1=12·bn+n+12, bn=12·bn-1+n2
∴bn+1-bn=12(bn-bn-1)+12,令bn+1-bn=cn,則cn=12·cn-1+12,
設(shè)cn+λ=12(cn-1+λ),則cn=12·cn-1-λ2,
令-λ2=12,則λ=-1,
∴數(shù)列{cn-1}是等比數(shù)列,
∴cn-1=-14(12)n-1,cn=1-(12)n+1,∴bn+1-bn=1-(12)n+1,
∴bn=b1+(b2-b1)+…+(bn-bn-1)
=12+(n-1)-14(1-(12)n-1)1-12
=n-1+(12)n
∴fn′(2)=(n-1)·2n+1.
點(diǎn)評(píng)解法6、解法7、解法8將求和問題轉(zhuǎn)化為遞推數(shù)列求通項(xiàng)問題,雖然不是最簡(jiǎn)方法,但它別出心裁,另辟新經(jīng),將知識(shí)融會(huì)貫通.
分析6由拓展1得
Sn=a1b1-anbn+11-q+db2(1-qn-1)(1-q)2
=a1b1-(a1+(n-1)d)b1qn1-q+db2(1-qn-1)(1-q)2
=[a1b1q-a1b1-db1q+b1d(q-1)n]qn-(a1b1q-a1b1-db1q)(1-q)2.
令x=a1b1q-a1b1-db1q(1-q)2,y=b1d(q-1)(1-q)2,則Sn=(x+yn)qn-x,這說明“差比型”數(shù)列前n項(xiàng)和的形式為Sn=(x+yn)qn+z或Sn=(x+yn)qn-x.
解法9(待定系數(shù)法):設(shè)
fn′(2)=(x+yn)2n+z,
f1′(2)=2(x+y)+z=1f2′(2)=4(x+2y)+z=5,f3′(2)=8(x+3y)+z=17,
解得x=-1,y=1,z=1,
∴fn′(2)=(n-1)·2n+1.
解法10(待定系數(shù)法):設(shè)fn′(2)=(x+yn)2n-x,
f1′(2)=2(x+y)-x=1f2′(2)=4(x+2y)-x=5,解得x=-1,y=1,∴fn′(2)=(n-1)·2n+1 .
點(diǎn)評(píng)解法9、解法10充分利用“差比型”數(shù)列前n項(xiàng)和的特征,設(shè)出Sn的表達(dá)式,利用方程思想使問題順利獲解,該解法過程簡(jiǎn)潔、運(yùn)算量小,不會(huì)出現(xiàn)計(jì)算錯(cuò)誤,是求“差比型”數(shù)列前n項(xiàng)和的最佳選擇.
分析7我們知道矩形的面積公式為S=ab,因而,由兩個(gè)正數(shù)積的形式便可直覺聯(lián)想它就是矩形的面積的數(shù)值.于是,a1b1+a2b2+…+anbn只不過表示n個(gè)矩形面積的和,從而有:
解法11(幾何法):如圖1,用分割法將圖1中n個(gè)矩形轉(zhuǎn)化為圖2中n個(gè)矩形,就是從兩個(gè)不同視角看同一個(gè)面積,于是有