劉 彬,孫紅霞,王 燕(綜述),韓 榮(審校)
(1.新疆醫(yī)科大學(xué)中醫(yī)學(xué)院,烏魯木齊 830000; 2.哈密地區(qū)中心醫(yī)院內(nèi)分泌科,新疆 哈密 839000; 3.新疆醫(yī)科大學(xué)第四附屬醫(yī)院肝病科,烏魯木齊 830000; 4.新疆醫(yī)科大學(xué)第六附屬醫(yī)院院長(zhǎng)辦公室,烏魯木齊 830000)
?
代謝綜合征與Th17/Treg細(xì)胞及其相關(guān)細(xì)胞因子研究概述
劉 彬1△,孫紅霞2,王 燕3(綜述),韓 榮4※(審校)
(1.新疆醫(yī)科大學(xué)中醫(yī)學(xué)院,烏魯木齊 830000; 2.哈密地區(qū)中心醫(yī)院內(nèi)分泌科,新疆 哈密 839000; 3.新疆醫(yī)科大學(xué)第四附屬醫(yī)院肝病科,烏魯木齊 830000; 4.新疆醫(yī)科大學(xué)第六附屬醫(yī)院院長(zhǎng)辦公室,烏魯木齊 830000)
代謝綜合征的發(fā)生是復(fù)雜的遺傳與環(huán)境因素相互作用的結(jié)果。其發(fā)病機(jī)制尚未完全明確,近年研究發(fā)現(xiàn)適應(yīng)性免疫及固有性免疫介導(dǎo)的炎癥反應(yīng)機(jī)制在代謝綜合征的發(fā)生、發(fā)展中起一定的作用,不同亞群的淋巴細(xì)胞及其細(xì)胞因子參與代謝綜合征組分的發(fā)生與發(fā)展,其中Th17細(xì)胞及調(diào)節(jié)性T細(xì)胞與代謝綜合征的關(guān)系已受到關(guān)注,并取得了一定的研究成果,開辟了代謝綜合征的免疫治療這個(gè)全新的領(lǐng)域。
代謝綜合征;Th17細(xì)胞;調(diào)節(jié)性T細(xì)胞;免疫炎癥反應(yīng)
代謝綜合征是指肥胖、高血壓、血脂紊亂、糖代謝異常等多種心血管危險(xiǎn)因素在同一個(gè)體聚集的現(xiàn)象,是目前公認(rèn)的促進(jìn)心血管疾病流行的首要原因[1]。代謝綜合征的發(fā)病率正逐年增高,但其發(fā)病機(jī)制尚未完全闡明,近年研究發(fā)現(xiàn)效應(yīng)性T細(xì)胞、調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg細(xì)胞)及其細(xì)胞因子與代謝綜合征的發(fā)生、發(fā)展相關(guān)。隨著對(duì)Th17細(xì)胞的認(rèn)識(shí)和研究越來(lái)越深入,Th17細(xì)胞參與了多種自身免疫性疾病,如多發(fā)性硬化癥、類風(fēng)濕關(guān)節(jié)炎等,而Treg細(xì)胞的免疫抑制作用在對(duì)抗炎癥反應(yīng)、保護(hù)機(jī)體的自身耐受性中發(fā)揮重要作用,兩者的動(dòng)態(tài)平衡可能與機(jī)體發(fā)生適當(dāng)強(qiáng)度的免疫應(yīng)答密切相關(guān)?,F(xiàn)就Th17/Treg細(xì)胞及其相關(guān)細(xì)胞因子與代謝綜合征的研究進(jìn)展予以綜述。
1.1 Th17細(xì)胞的分化及特點(diǎn) Th17細(xì)胞是由CD4+T細(xì)胞被激活后所分化的一個(gè)亞群,Th前體在白細(xì)胞介素6受體(interleukin 6 receptor, IL-6R)和轉(zhuǎn)化生長(zhǎng)因子β受體(transforming growth factor receptor, TGF-βR)與配體作用并傳遞信號(hào)的條件下,信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子(signal transduction and activator of transcription,STAT)3及亞群專一性轉(zhuǎn)錄因子維甲酸相關(guān)孤核受體γt (retinoid-related orphan nuclear receptor, RORγt)相繼激活,先是啟動(dòng)IL-12基因的轉(zhuǎn)錄,并使IL-4和IFNG兩種基因處于失活狀態(tài)。分泌細(xì)胞因子IL-12,再以自分泌的形式使Th17的活化進(jìn)一步放大。同時(shí)通過(guò)IL-23發(fā)揮作用,最終完成并穩(wěn)定Th17細(xì)胞的分化。在Th17細(xì)胞的分化過(guò)程中,IL-6和TGF-β通過(guò)啟動(dòng)STAT3途徑誘導(dǎo)維甲酸受體相關(guān)的孤獨(dú)受體RORA的表達(dá)促進(jìn)Th17細(xì)胞的分化[2]。 IL-2是Th17細(xì)胞分化的抑制因素,IL-2優(yōu)先活化STAT5,STAT5可能通過(guò)抑制RORγt的活性而抑制Th17細(xì)胞的分化[3]。Th17細(xì)胞主要分泌IL-17A、IL-17F、IL-23以及促炎性細(xì)胞因子IL-1、IL-6、IL-18、腫瘤壞死因子α (tumor necrosis factor α,TNF-α)并通過(guò)這些效應(yīng)因子發(fā)揮其功能。IL-17是一種促炎細(xì)胞因子,具有強(qiáng)大的招募中性粒細(xì)胞、促進(jìn)多種細(xì)胞釋放炎性因子、促進(jìn)細(xì)胞增殖及抑制腫瘤生長(zhǎng)等多種生物學(xué)作用,可導(dǎo)致炎癥反應(yīng)(防御胞外病原菌的感染)、自身免疫性疾病、腫瘤和移植排斥等的發(fā)生和發(fā)展。
1.2 Th17細(xì)胞與糖尿病 近期研究表明IL-17與2型糖尿病[4]、1型糖尿病[5]、妊娠糖尿病[6]、高血壓[7]、非酒精性脂肪肝[8]及代謝綜合征[9]均有一定相關(guān)性。Vukkadapu等[10]研究發(fā)現(xiàn),在非肥胖型糖尿病(non-obese diabetic,NOD)小鼠病變的胰島中發(fā)現(xiàn)高水平的IL-17轉(zhuǎn)錄物,血清IL-17水平與T細(xì)胞受體轉(zhuǎn)基因NOD小鼠的糖尿病發(fā)展相關(guān)聯(lián),并且隨著血清IL-17水平升高,病情逐漸惡化,但給予外源性的IL-17抗體可阻止糖尿病的發(fā)展,其機(jī)制為IL-17抗體減少了胰島周圍T細(xì)胞的浸潤(rùn),并降低了谷氨酸脫羧酶自身抗體的水平[11],而谷氨酸脫羧酶作為胰腺反應(yīng)性T細(xì)胞的靶標(biāo),其反應(yīng)細(xì)胞可直接損傷胰腺[12-13]。此外,IL-21的產(chǎn)生及信號(hào)失調(diào)在NOD小鼠當(dāng)中被發(fā)現(xiàn),IL-21在胰腺的β細(xì)胞超表達(dá)引起胰腺炎性細(xì)胞因子和趨化因子的產(chǎn)生,包括IL-17A、IL-17F、IFN-γ、單核細(xì)胞趨化蛋白1、單核細(xì)胞趨化蛋白2、干擾素誘導(dǎo)蛋白10,隨后白細(xì)胞在胰島浸潤(rùn)導(dǎo)致了β細(xì)胞的破壞及1型糖尿病的發(fā)生[14]。人類研究顯示,肥胖和2型糖尿病患者的白細(xì)胞計(jì)數(shù)、纖維蛋白原和纖溶酶原激活物抑制劑1、C反應(yīng)蛋白、血清淀粉樣蛋白和促炎細(xì)胞因子(TNF-α、IL-1β和IL-6)的水平增高,而這些促炎細(xì)胞因子均可促進(jìn)IL-17分泌,并且以自分泌和旁分泌的方式通過(guò)激活c-JunN端激酶和核因子κB途徑干預(yù)周邊組織中的胰島素信號(hào)促進(jìn)胰島素抵抗[15-17]。
1.3 Th17細(xì)胞與非酒精性脂肪肝的關(guān)系 目前普遍認(rèn)為非酒精性脂肪肝是代謝綜合征和胰島素抵抗的一種肝臟表現(xiàn),而近期研究顯示,IL-17在非酒精性脂肪肝的發(fā)病過(guò)程中起一定的作用。Tang等[8]研究發(fā)現(xiàn),高脂肪飲食的小鼠肝臟CD3+或CD4+Th17的頻率較正常飲食組顯著增高,給予8周的高脂肪飲食后,肝臟Th17細(xì)胞數(shù)量是正常飲食小鼠的2倍,而兩者的脾臟Th17細(xì)胞數(shù)量相似。為了證實(shí)IL-17是否參與肝損傷,給予外源性IL-17抗體靜脈注入,結(jié)果發(fā)現(xiàn)脂多糖引起的肝損傷減輕,體現(xiàn)在血清丙氨酸轉(zhuǎn)氨酶水平降低及肝臟炎性細(xì)胞浸潤(rùn)減少。其作用機(jī)制為IL-17的中和作用通過(guò)c-Jun氨基端激酶-核因子κB信號(hào)途徑減弱了脂多糖引起的肝臟炎性發(fā)應(yīng)。在體外實(shí)驗(yàn)中,IL-17加重了人肝癌細(xì)胞脂肪變性,并且在人肝癌細(xì)胞,IL-17聯(lián)合非酯化脂肪酸能夠誘導(dǎo)IL-6產(chǎn)生,聯(lián)合轉(zhuǎn)化生長(zhǎng)因子可擴(kuò)増Th17細(xì)胞數(shù)量。非酒精性脂肪肝患者的肝臟有相對(duì)高水平IL-17+細(xì)胞浸潤(rùn)。與健康對(duì)照組相比,Th17細(xì)胞相關(guān)基因在非酒精性脂肪肝患者肝臟中的表達(dá)(RORγt、IL-17、IL-21和IL-23)顯著增加。這些均提示Th17細(xì)胞和IL-17與肝脂肪變性和非酒精性脂肪肝促炎反應(yīng)有關(guān),并且促進(jìn)了從簡(jiǎn)單的脂肪變性到脂肪肝的過(guò)渡。
1.4 Th17細(xì)胞與高血壓 研究表明,固有性免疫和適應(yīng)性免疫均參與了血管功能障礙及高血壓發(fā)生、發(fā)展的病理過(guò)程[18-19]。血管緊張素Ⅱ是高血壓發(fā)生、發(fā)展過(guò)程中最重要的血管活性肽,同時(shí)也是促炎性因子,可促進(jìn)T細(xì)胞增殖和樹突狀細(xì)胞遷移。Madhur等[20]研究顯示,通過(guò)慢性灌注血管緊張素Ⅱ可引起外周Th17細(xì)胞數(shù)量增加。為了證實(shí)IL-17對(duì)于血壓的影響,同時(shí)給予C57BL/6J鼠和IL-17-/-鼠灌注血管緊張素Ⅱ,最初兩者由血管經(jīng)張素Ⅱ引起的高血壓反應(yīng)相似,但隨著灌注時(shí)間的延長(zhǎng),IL-17-/-鼠的血壓與C57BL/6J鼠相比是降低的,并且C57BL/6J鼠和IL-17-/-鼠的胸主動(dòng)脈的IL-17水平相比后者顯著降低。IL-17還參與血管緊張素Ⅱ引起的血管功能障礙,C57BL/6J鼠的大動(dòng)脈有超量的過(guò)氧化物產(chǎn)生和T細(xì)胞浸潤(rùn),而IL-17-/-鼠則沒(méi)有?;蛐酒治鼋沂荆琁L-17聯(lián)合TNF-α可調(diào)節(jié)人大動(dòng)脈平滑肌細(xì)胞中炎性基因的表達(dá)。人類研究也顯示IL-17水平與高血壓之間呈強(qiáng)相關(guān)。這些數(shù)據(jù)揭示了IL-17促進(jìn)了血管的炎癥反應(yīng),IL-17是血管緊張素Ⅱ誘導(dǎo)的高血壓和血管功能障礙的一個(gè)關(guān)鍵媒介。
2.1 Treg細(xì)胞的分化及特點(diǎn) Treg細(xì)胞起源于胸腺的前體細(xì)胞,主要分為天然產(chǎn)生的自然調(diào)節(jié)T細(xì)胞(CD4+CD25+Foxp3+nTreg)和誘導(dǎo)產(chǎn)生的適應(yīng)性調(diào)節(jié)T細(xì)胞(iTreg)。適應(yīng)性調(diào)節(jié)細(xì)胞分為CD4+CD25+Foxp3+iTreg和CD4+CD25+Foxp3-iTreg細(xì)胞。CD4+CD25+Foxp3+Treg高表達(dá)IL-2受體CD25分子,以及細(xì)胞毒T細(xì)胞相關(guān)抗原4、腫瘤壞死因子超家族成員(GITR)、淋巴細(xì)胞激活基因(LAG3)和神經(jīng)纖維網(wǎng)蛋白(Nrp1)等分子。適應(yīng)性調(diào)節(jié)T細(xì)胞在TGF-β1和IL-2誘導(dǎo)下自nTreg或Foxp3-T產(chǎn)生,分泌TGF-β家族和IL-10家族。Treg細(xì)胞誘導(dǎo)免疫抑制的機(jī)制主要通過(guò)對(duì)效應(yīng)性T細(xì)胞活性的阻抑和產(chǎn)生抑制性細(xì)胞因子發(fā)揮作用。Treg細(xì)胞與效應(yīng)性T細(xì)胞靠近后,Treg細(xì)胞表面高表達(dá)的細(xì)胞毒T細(xì)胞相關(guān)抗原4與微環(huán)境中的CD28的配體B7分子競(jìng)爭(zhēng)性結(jié)合,引發(fā)效應(yīng)性T細(xì)胞CD28配體缺血活化信號(hào)轉(zhuǎn)導(dǎo)受阻,只有第一信號(hào)而沒(méi)有第二信號(hào)的T細(xì)胞立即進(jìn)入失能狀態(tài)。Treg細(xì)胞還可在與效應(yīng)性T細(xì)胞相互接觸的胞間間隙中分泌顆粒酶A、顆粒酶B和穿孔素,誘致效應(yīng)性T細(xì)胞裂解和發(fā)生凋亡。Treg細(xì)胞產(chǎn)生的環(huán)腺苷酸等成分,也可進(jìn)一步干擾效應(yīng)T細(xì)胞的代謝,降低其活性。此外,nTreg表達(dá)高水平CD25,CD25為IL-2R的α鏈,CD25與IL-2R的β及γ鏈結(jié)合后形成高親和力IL-2受體。微環(huán)境中IL-2分子與此受體大量結(jié)合,效應(yīng)T細(xì)胞表達(dá)的IL-2受體缺少配體,時(shí)間一長(zhǎng),誘導(dǎo)線粒體和胱天蛋白酶參與的死亡信號(hào)轉(zhuǎn)導(dǎo),引發(fā)細(xì)胞凋亡。iTreg細(xì)胞借助分泌IL-10、TGF-β和IL-35抑制性細(xì)胞因子,在阻抑炎癥反應(yīng)和Th1/Th17介導(dǎo)的免疫應(yīng)答中作用突出。天然產(chǎn)生的nTreg和外周產(chǎn)生的誘導(dǎo)型Treg細(xì)胞(tTreg)均表達(dá)轉(zhuǎn)錄因子Foxp3,F(xiàn)oxp3在調(diào)控CD4+CD25+Treg細(xì)胞的發(fā)育和功能起著至關(guān)重要的作用。Foxp3功能缺陷在人類可導(dǎo)致嚴(yán)重的全身免疫紊亂,稱之為X染色體連鎖-自身免疫-變態(tài)反應(yīng)失調(diào)綜合征,表現(xiàn)為多種自身免疫性內(nèi)分泌疾病、腸炎、自身免疫性貧血、1型糖尿病,同時(shí)伴有嚴(yán)重的變態(tài)反應(yīng)性炎癥,包括濕疹、食物變態(tài)反應(yīng)[21]。
2.2 Treg細(xì)胞與肥胖的關(guān)系 研究顯示,在肥胖小鼠和人類的脂肪組織中的抗感染調(diào)節(jié)性T淋巴細(xì)胞數(shù)量減少[22-24],這一現(xiàn)象在代謝綜合征的肥胖患者甚至更突出[25]。調(diào)節(jié)性T淋巴細(xì)胞表達(dá)大量的抗感染細(xì)胞因子IL-10,抑制巨噬細(xì)胞遷移和轉(zhuǎn)化[22,26]。在肥胖小鼠中這些增加的抗感染細(xì)胞因子可以改善胰島素敏感性,減少巨噬細(xì)胞在脂肪組織浸潤(rùn)[23],這表明,調(diào)節(jié)性T細(xì)胞可以抑制脂肪組織炎癥反應(yīng),并對(duì)肥胖相關(guān)的胰島素抵抗誘發(fā)的炎癥反應(yīng)有一定的保護(hù)作用[22,25]。Esposito等[27]在早期研究肥胖患者代謝綜合征發(fā)病率及血清IL-10水平時(shí)顯示,肥胖組代謝綜合征的患病率是52%,對(duì)照組患病率是16%,血清IL-6、IL-10、C反應(yīng)蛋白水平均高于對(duì)照組,但代謝綜合征患者血清IL-10水平低于非代謝綜合征患者。當(dāng)生活方式發(fā)生改變后,IL-10水平在肥胖無(wú)代謝綜合征婦女中下降,這說(shuō)明高水平血清IL-10與肥胖相關(guān),而低水平血清IL-10與代謝綜合征有相關(guān)性。
2.3 Treg細(xì)胞與高血壓 研究發(fā)現(xiàn),Treg細(xì)胞與高血壓及血管損害損傷有關(guān)[28-30]。Kvakan等[31]研究顯示,Treg細(xì)胞對(duì)血管緊張素Ⅱ引起的心肌損傷有保護(hù)作用。Leibowitz等[32]研究顯示,高果糖飲食誘發(fā)的代謝綜合征與活性氧的產(chǎn)生增加有關(guān),與對(duì)照組正常飲食小鼠相比,在高果糖飲食誘發(fā)的代謝綜合征小鼠當(dāng)中,二氫乙錠熒光反應(yīng)在小鼠主動(dòng)脈和血管周圍組織増加了2.8倍,激活的還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶在主動(dòng)脈增加了1.9倍,心臟增加了2.5倍,血清氮氧化合物水平增加了6.4倍;黏附分子、血管細(xì)胞黏附分子1及血小板內(nèi)皮細(xì)胞黏附分子1的表達(dá)在主動(dòng)脈分別增加了2.3~2.5倍,調(diào)節(jié)性T細(xì)胞分泌的IL-10少了62%,并且主動(dòng)脈周圍的脂肪組織發(fā)生單核細(xì)胞/巨噬細(xì)胞浸潤(rùn)的現(xiàn)象。這提示高果糖飲食誘發(fā)代謝綜合征和與之相關(guān)的血管氧化應(yīng)激及炎癥反應(yīng)發(fā)生同時(shí)伴隨著Treg細(xì)胞功能減退,說(shuō)明Treg細(xì)胞在代謝綜合征的心血管損傷進(jìn)程中起著一定作用。
2.4 Treg細(xì)胞與非酒精性脂肪肝 在肝臟的免疫調(diào)節(jié)當(dāng)中,Treg細(xì)胞起著關(guān)鍵的作用[33]。S?derberg 等[34]研究顯示,在非酒精性脂肪肝患者的肝組織,小泡性脂肪變性的肝細(xì)胞表達(dá)更多的炎性標(biāo)志物,CD68細(xì)胞和Treg細(xì)胞數(shù)量增加,而CD3陽(yáng)性細(xì)胞數(shù)量減少,這提示適應(yīng)性免疫及固有性免疫均涉及其中,調(diào)節(jié)性T細(xì)胞可能在肝損傷的發(fā)展過(guò)程中起一定的作用。
3.1 Th17/Treg細(xì)胞間的關(guān)系 多項(xiàng)研究發(fā)現(xiàn),Treg細(xì)胞和Th17細(xì)胞之間平衡打破后,可引起機(jī)體的多種疾病的發(fā)生。Th17和Treg細(xì)胞在自身免疫性疾病及炎性疾病的發(fā)展中有相反的作用。Th17細(xì)胞通過(guò)分泌促炎因子IL-17等促進(jìn)了炎癥反應(yīng)及自身免疫性疾病發(fā)生,而Treg細(xì)胞則通過(guò)分泌 IL-10 等維持自我耐受和控制擴(kuò)增及激活CD4+T效應(yīng)細(xì)胞發(fā)揮重要作用,因此Th17/Treg細(xì)胞之間的平衡顯得很重要。Treg細(xì)胞與Th17細(xì)胞之間的關(guān)系密切,體現(xiàn)在它們分化方面,IL-6與TGF-β協(xié)同抑制適應(yīng)性Treg細(xì)胞的產(chǎn)生,并且誘導(dǎo)Th17細(xì)胞的分化[35-37]。正常情況下TGF-β誘導(dǎo)CD4+T初始細(xì)胞分化為Treg細(xì)胞,當(dāng)伴有感染或炎癥反應(yīng)時(shí),IL-6和TGF-β共同啟動(dòng)初始CD4+T細(xì)胞向Th17分化,從而誘導(dǎo)以Th17為主的慢性炎性應(yīng)答。
3.2 Th17/Treg細(xì)胞與糖尿病、高血壓之間的關(guān)系 近期累積研究數(shù)據(jù)顯示代謝綜合征組分存在著Th17/Treg細(xì)胞之間失衡現(xiàn)象。Zeng等[38]研究顯示,2型糖尿病患者外周血IL-17+CD4+增高,CD4+CD25hiFoxp3+Tregs和CD4+CD25hiCD127-Tregs減少,CD4+CD25hiCD127-Tregs/IL-17+CD4+細(xì)胞之間比率減少。CD4+CD25hiCD127-Tregs的百分比與血清 IL-6 水平呈正相關(guān)。這說(shuō)明CD4+CD25hiTregs通過(guò)下調(diào)固有性及適應(yīng)性免疫細(xì)胞的功能在自我耐受性和抵抗自身免疫性疾病方面起著關(guān)鍵的作用。Shi等[39]研究顯示,NOD小鼠給予冬蟲夏草治療后可增加脾臟和胰腺淋巴結(jié)的Treg與Th17細(xì)胞比率,并且延遲糖尿病發(fā)生,顯著降低糖尿病的總發(fā)病率。Xie等[40]研究顯示Th17/Treg細(xì)胞之間的失衡在動(dòng)脈粥樣硬化的形成與進(jìn)展中可能起了一定的作用。Liu 等[41]研究發(fā)現(xiàn),高血壓合并頸動(dòng)脈粥樣硬化患者中存在Th17/Treg細(xì)胞失衡現(xiàn)象,當(dāng)給予替米沙坦聯(lián)合瑞舒伐他汀片治療時(shí),可使Th17細(xì)胞頻率、Th17/Treg細(xì)胞比率及Th17細(xì)胞分泌相關(guān)促炎因子IL-17、IL-6、IL-23和TNF-α水平降低,并且增加了Treg細(xì)胞的頻率及Treg細(xì)胞分泌抑制炎性細(xì)胞因子IL-10、TGF-β1水平,同時(shí)RORγt mRNA的表達(dá)降低,F(xiàn)oxp3 mRNA的表達(dá)增加。最終降低了頸動(dòng)脈內(nèi)膜厚度及血壓。此外,Treg細(xì)胞可阻止血管緊張素Ⅱ引起的內(nèi)皮功能紊亂、氧化應(yīng)激及炎癥反應(yīng)的發(fā)生,而IL-17是血管緊張素Ⅱ誘導(dǎo)高血壓發(fā)生的一個(gè)關(guān)鍵媒介[20,28]。
Th17細(xì)胞作為一種新發(fā)現(xiàn)的CD4+T細(xì)胞亞群,與炎癥反應(yīng)及自身免疫性疾病的關(guān)系密切,而Th17/Treg細(xì)胞亞群之間比例和功能的失衡是自身免疫性疾病發(fā)病機(jī)制中的重要環(huán)節(jié)。目前關(guān)于Th17和Treg細(xì)胞在代謝綜合征中的作用機(jī)制尚未完全明確,隨著代謝綜合征發(fā)病率的不斷增加,因此探討Th17和Treg細(xì)胞在代謝綜合征發(fā)病中的作用,以及Th17和Treg細(xì)胞亞群比例和功能的失衡對(duì)代謝綜合征的影響,擴(kuò)展對(duì)代謝綜合征發(fā)病機(jī)制研究,增加治療方法有重要意義。
[1] Mottillo S,Filion KB,Genest J,etal.The metabolic syndrome and cardiovasular risk a systematic review and meta-analysis[J].J Am Coil Cardiol,2010,56(14):1113-1132.
[2] Yang XO, Pappu BP, Nurieva R,etal.T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma[J].Immunity.2008,28(1):29-39.
[3] Laurence A,Tato CM,Davidson TS,etal.Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation[J].Immunity,2007,26(3):371-381.
[4] Zhang C,Xiao C,Wang P,etal.The alteration of Th1/Th2/Th17/Treg paradigm in patients with type 2 diabetes mellitus:relationship with diabetic nephropathy[J].Hum Immunol,2014,75(4):289-96.
[5] 趙崴,徐曉瑩,史艷華,等.Th17細(xì)胞在NOD小鼠糖尿病發(fā)病過(guò)程中的作用機(jī)制的研究[J].國(guó)際免疫學(xué)雜志,2013,36(2):158-161.
[6] 宋靜,劉寧,彭素芳,等.妊娠糖尿病患者Th17/Treg細(xì)胞相關(guān)因子的檢測(cè)及臨床意義[J].國(guó)際檢驗(yàn)醫(yī)學(xué)雜志,2012,33(17):2069-2070.
[7] Nguyen H,Chiasson VL,Chatterjee P,etal.Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension[J].Cardiovasc Res,2013,97(4):696-704.
[8] Tang Y,Bian Z,Zhao L,etal.Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease[J].Clin Exp Immunol,2011,166(2):281-290.
[9] 劉振東,董元麗,路方紅,等.老年代謝綜合征患者趾臂指數(shù)與Th17細(xì)胞及相關(guān)細(xì)胞因子的相關(guān)性[J].中國(guó)老年學(xué)雜志,2011,31(22):4295-4297.
[10] Vukkadapu SS,Belli JM,Ishii K,etal.Dynamic interaction between T cell-mediated β-cell damage andβ-cell repair in the run up to autoimmune diabetes of the NOD mouse[J].Physiol Genomics,2005,21(2):201-211.
[11] Emamaullee JA,Davis J,Merani S,etal.Inhibition of Th17 Cells Regulates Autoimmune Diabetes in NOD Mice[J].Diabetes,2009,58(6):1302-1311.
[12] Kaufman DL,Clare-Salzler M,Tian J,etal.Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes[J].Nature,1993,366(6450):69-72.
[13] Zekzer D,Wong FS,Ayalon O,etal.GAD-reactive CD4+Th1 cells induce diabetes in NOD/SCID mice[J].J Clin Invest,1998,101(1):68-73.
[14] Sutherland AP,Van Belle T,Wurster AL,etal.Interleukin-21 is required for the development of type 1 diabetes in NOD mice[J].Diabetes,2009,58(5):1144-1155.
[15] Pickup JC,Mattock MB,Chusney GD,etal.NIDDM as a disease of the innate immune system:association of acute- phase reactants and interleukin-6 with metabolic syndrome X[J].Diabetologia,1997,40(11):1286-1292.
[16] Yudkin JS,Stehouwer CD,Emeis JJ,etal.C-reactive protein in healthy subjects:associations with obesity,insulin resistance,and endothelial dysfunction:a potential role for cytokines originating from adipose tissue[J].Arterioscler Thromb Vasc Biol,1999,19(4):972-978.
[17] Bastard JP,Jardel C,Bruckert E,etal.Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss[J].J Clin Endocrinol Metab,2000,85(9):3338-3342.
[18] Harrison DG,Vinh A,Lob H,etal.Role of the adaptive immune system in hypertension[J].Curr Opin Pharmacol,2010,10(2):203-207.
[19] erlohren S,Muller DN,Luft FC,etal.Immunology in hypertension,preeclampsia,and target-organ damage[J].Hypertension,2009,54(3):439-443.
[20] Madhur MS,Lob HE,McCann LA,etal.Interleukin 17 Promotes Angiotensin Ⅱ-Induced Hypertension and Vascular Dysfunction[J].Hypertension,2010,55(2):500-507.
[21] Bennett CL,Christie J,Ramsdell F,etal.The immune dysregulation,polyendocrinopathy,enteropathy,X-linked syndrome (IPEX) is caused by mutations of FOXP3[J].Nat Genet,2001,27(1):20-21.
[22] Feuerer M,Herrero L,Cipolletta D,etal.Lean,but not obese,fat is enriched for a unique population of regulatory T cells that affect metabolic parameters[J].Nat Med,2009,15(8):930-939.
[23] Winer S,Chan Y,Paltser G,etal.Normalization of obesity-associated insulin resistance through immunotherap[J].Nat Med,2009,15(8):921-929.
[24] Deiuliis J,Shah Z,Shah N,etal.Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers[J].PLoS One,2011,6(1):e16376.
[25] Esser N,L′homme L,De Roover A,etal.Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue[J].Diabetologia,2013,56(11):2487-
2497.
[26] Fujisaka S,Usui I,Bukhari A,etal.Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice[J].Diabetes,2009,58(11):2574-2582.
[27] Esposito K,Pontillo A,Giugliano F,etal.Association of low interleukin-10 levels with the metabolic syndrome in obese women[J].J Clin Endocrinol Metab,2003,88(3):1055-1058.
[28] Barhoumi T,Kasal DA,Li MW,etal.T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury[J].Hypertension,2011,57(3):469-476.
[29] Kasal DA,Barhoumi T,Li MW,etal.T regulatory lymphocytes prevent aldosterone-induced vascular injury[J].Hypertension,2012,59(2):324-330.
[30] Viel EC,Lemarié CA,Benkirane K,etal.Immune regulation and vascular inflammation in genetic hypertension[J].Am J Physiol Heart Circ Physiol,2010,298(3):H938-944.
[31] Kvakan H,Kleinewietfeld M,Qadri F,etal.Regulatory T cells ameliorate angiotensin II-induced cardiac damage [J].Circulation,2009,119(22):2904-2912.
[32] Leibowitz A,Rehman A,Paradis P,etal.Role of T regulatory lymphocytes in the pathogenesis of high-fructose diet-induced metabolic syndrome[J].Hypertension,2013,61(6):1316-1321.
[33] Chang KM.Regulatory T cells and the liver:a new piece of the puzzle[J].Hepatology,2005,41(4):700-702.
[34] S?derberg C,Marmur J,Eckes K,etal.Microvesicular fat,inter cellular adhesion molecule-1and regulatory T-lymphocytes are of importance for the inflammatory process in livers with non-alcoholic steatohepatitis[J].APMIS,2011,119(7):412-420.
[35] Bettelli E,Carrier Y,Gao W,etal.Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells[J].Nature,2006,441(7090):235-238.
[36] Veldhoen M,Hocking RJ,Atkins CJ,etal.TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells[J].Immunity,2006,24(2):179-189.
[37] Ando DG,Clayton J,Kono D,etal.Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype[J].Cell Immunol,1989,124(1):132-143.
[38] Zeng C,Shi X,Zhang B,etal.The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes:relationship with metabolic factors and complications[J].J Mol Med (Berl),2012,90(2):175-186.
[39] Shi B,Wang Z,Jin H,etal.Immunoregulatory Cordyceps sinensis increases regulatory T cells to Th17 cell ratio and delays diabetes in NOD mice[J].Int Immunopharmacol,2009,9(5):582-586.
[40] Xie JJ,Wang J,Tang TT,etal.The Th17/Treg functional imbalance during atherogenesis in ApoE-/-mice[J].Cytokine,2010,49(2):185-193.
[41] Liu Z,Zhao Y,Wei F,etal.Treatment with telmisartan/rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis[J].Atherosclerosis,2014,233(1):291-299.
Research and Related Summary of Metabolic Syndrome and Th17/Treg Cell Cytokine
LIUBin1,SUNHong-xia2,WANGYan3,HANRong4.
(1.TraditionalChineseMedicineCollege,XinjiangMedicalUniversity,Urumqi830000,China; 2.DepartmentofEndocrinology,XinjiangHamiDistrictCentralHospital,Hami839000,China; 3.DepartmentofLiverDiseases,theFourthAffiliatedHospitalofXinjiangMedicalUniversity,Urumqi830000,China; 4.PresidentOffice,theSixthAffiliatedHospital,XinjiangMedicalUniversity,Urumqi830000,China)
The metabolic syndrome is the result of a complex interaction of genetic and environmental factors.Its pathogenesis remains poorly understood,recent studies have found that adaptive immunity and innate immune-mediated inflammatory mechanisms played a certain role in the development of the metabolic syndrome.Different subsets of lymphocytes and cytokines,different subsets of lymphocytes and cytokines especially Th17 cells and regulatory T cells,are involved in the origin and development of the components of the metabolic syndrome,which opened up a new field of immune treatment of metabolic syndrome.
Metabolic syndrome; Th17 cells; Regulatory T cells; Immune and inflammatory
新疆維吾爾自治區(qū)自然科學(xué)基金(2012211A096)
R544.1
A
1006-2084(2015)12-2223-04
10.3969/j.issn.1006-2084.2015.12.041
2014-10-27
2015-01-31 編輯:薛惠文