張東曉,楊婷云
(1.北京大學(xué)工學(xué)院能源與資源工程系;2.北京大學(xué)頁(yè)巖油氣研究所)
美國(guó)頁(yè)巖氣水力壓裂開發(fā)對(duì)環(huán)境的影響
張東曉1,2,楊婷云1,2
(1.北京大學(xué)工學(xué)院能源與資源工程系;2.北京大學(xué)頁(yè)巖油氣研究所)
通過(guò)調(diào)研美國(guó)頁(yè)巖氣開發(fā)所面臨的環(huán)境問(wèn)題及研究進(jìn)展,總結(jié)頁(yè)巖氣水力壓裂開發(fā)對(duì)環(huán)境的影響,并探索對(duì)中國(guó)頁(yè)巖氣開發(fā)的參考意義。美國(guó)頁(yè)巖氣大規(guī)模商業(yè)性開發(fā)的環(huán)境風(fēng)險(xiǎn)主要包括水資源消耗與污染、引發(fā)地震及大氣污染等。水資源消耗方面,通過(guò)評(píng)估能源生產(chǎn)耗水密度,可知與常規(guī)油氣和其他能源生產(chǎn)方式相比,頁(yè)巖氣開發(fā)并非“高耗水”行業(yè),其總用水量占地區(qū)總量比例較低,不會(huì)顯著增加用水壓力。水資源污染方面,由于水力壓裂誘發(fā)連通儲(chǔ)集層和地下水的裂縫而直接造成污染的可能性很低,且已知的淺層地下水污染案例可能與完井缺陷有關(guān),提高井身完整性是防止污染的關(guān)鍵;頁(yè)巖氣規(guī)模開發(fā)階段返排水總量大、污染物種類多、成分復(fù)雜,處理不當(dāng)會(huì)造成污染,需要監(jiān)測(cè)和評(píng)估其污染風(fēng)險(xiǎn)?,F(xiàn)有證據(jù)表明頁(yè)巖氣開發(fā)不會(huì)引發(fā)破壞性地震。對(duì)頁(yè)巖氣井全生命周期的溫室氣體排放估計(jì)結(jié)論不一,在生產(chǎn)中應(yīng)當(dāng)采取更為有效的措施減少泄漏。頁(yè)巖氣開發(fā)環(huán)境影響方面的研究重點(diǎn)包括地表水和地下水污染監(jiān)測(cè)方案與指標(biāo)體系的建立、注入壓裂液和儲(chǔ)集層流體運(yùn)移規(guī)律的分析、開發(fā)活動(dòng)對(duì)高礦化度地層水及地下水層中天然甲烷運(yùn)移的影響分析、頁(yè)巖氣開發(fā)返排水再利用和處理技術(shù)的應(yīng)用。圖2參62
頁(yè)巖氣;水力壓裂;環(huán)境風(fēng)險(xiǎn);水資源消耗;水資源污染;地震風(fēng)險(xiǎn);大氣污染
水平井大規(guī)模水力壓裂技術(shù)是頁(yè)巖氣開發(fā)過(guò)程中的關(guān)鍵技術(shù),由于頁(yè)巖儲(chǔ)集層滲透率極低,一般需要進(jìn)行壓裂改造,通過(guò)高壓泵將大量水、化學(xué)添加劑和支撐劑混合物注入地層,形成復(fù)雜的裂縫網(wǎng)絡(luò),來(lái)提高滲透率[1]。隨著水力壓裂技術(shù)的推廣應(yīng)用,其可能導(dǎo)致的環(huán)境問(wèn)題也引發(fā)了諸多爭(zhēng)議,主要包括:消耗淡水資源、增加水供給壓力[2-3]、導(dǎo)致地表水和地下水污染[4-7]、引發(fā)地震[8-9]、造成大氣污染[10]等。頁(yè)巖氣開發(fā)
的反對(duì)者認(rèn)為[11],利用水力壓裂技術(shù)開采頁(yè)巖氣的環(huán)境風(fēng)險(xiǎn)和代價(jià)太高,雖然用天然氣代替煤炭和石油可以減少CO2的排放,但其益處不足以抵消頁(yè)巖氣開發(fā)過(guò)程中可能引起的甲烷泄漏以及水資源污染等風(fēng)險(xiǎn),現(xiàn)階段應(yīng)當(dāng)暫緩開發(fā)等待進(jìn)一步研究;支持者認(rèn)為,目前的擔(dān)憂超出了現(xiàn)有研究和事實(shí)證據(jù)所表明的風(fēng)險(xiǎn),水力壓裂技術(shù)的環(huán)境風(fēng)險(xiǎn)可以通過(guò)技術(shù)和法規(guī)進(jìn)行風(fēng)險(xiǎn)管理和控制。
截至2014年7月底,中國(guó)已鉆頁(yè)巖氣井400余口,整體而言仍處于起步階段[12]。頁(yè)巖氣開發(fā)在四川盆地率先取得重要突破,進(jìn)入規(guī)?;_發(fā)初期[12]。應(yīng)用水力壓裂技術(shù)進(jìn)行頁(yè)巖氣開發(fā)的環(huán)境風(fēng)險(xiǎn)的評(píng)估、環(huán)境問(wèn)題影響因素的研究、污染監(jiān)測(cè)、水資源污染機(jī)理和污染物運(yùn)移規(guī)律等相關(guān)問(wèn)題的分析在這一時(shí)期十分重要。國(guó)內(nèi)研究人員總結(jié)了水力壓裂技術(shù)應(yīng)用所面臨的環(huán)境問(wèn)題和國(guó)外監(jiān)管經(jīng)驗(yàn)[13-16],但缺少對(duì)科學(xué)研究的系統(tǒng)論述。本文總結(jié)分析了近年美國(guó)頁(yè)巖氣開發(fā)環(huán)境問(wèn)題的研究進(jìn)展,在案例和機(jī)理研究的基礎(chǔ)上分析了水力壓裂技術(shù)的環(huán)境風(fēng)險(xiǎn),為中國(guó)頁(yè)巖氣開發(fā)提供參考。
1.1 水力壓裂用水量及水源
頁(yè)巖氣開發(fā)多采用水平井多段壓裂,一般壓裂用水量占鉆完井階段用水量80%以上。從單井用水量來(lái)看,頁(yè)巖氣水平井遠(yuǎn)高于常規(guī)天然氣直井[17],一般在8 000~100 000 m3,平均約為15 000 m3[18]。單位長(zhǎng)度生產(chǎn)段用水量相對(duì)集中,2010年Barnett、Haynesville和Eagle Ford頁(yè)巖氣井生產(chǎn)段用水量為9.5~14.0 m3/m[19]。壓裂用水量影響因素包括井深、水平井段長(zhǎng)、壓裂段數(shù)、地質(zhì)特征以及壓裂液等[17]。
綜合分析,應(yīng)當(dāng)從單位能源用水密度、是否增加地區(qū)供水壓力兩方面來(lái)評(píng)估頁(yè)巖氣開發(fā)水資源消耗影響。就能源生產(chǎn)用水密度而言,頁(yè)巖氣高于常規(guī)天然氣[17]、低于常規(guī)石油、遠(yuǎn)低于常規(guī)油氣EOR(提高石油采收率)[20](見圖1),頁(yè)巖氣用于發(fā)電耗水密度遠(yuǎn)小于地?zé)崮?、核能和太?yáng)能[21]。由此可見,與常規(guī)油氣和其他能源生產(chǎn)方式相比,頁(yè)巖氣開發(fā)并非“高耗水”行業(yè),但頁(yè)巖氣井用水幾乎全部集中于初期完井階段(不考慮重復(fù)壓裂),氣井生命周期可達(dá)30年,基于現(xiàn)有生產(chǎn)數(shù)據(jù)估計(jì)用水密度存在較大不確定性[17,22]。從地區(qū)供水角度,美國(guó)頁(yè)巖氣開發(fā)中用水量占整個(gè)州用水總量比例小于1%[23],遠(yuǎn)小于灌溉、公共用水等,不會(huì)造成顯著的額外供水壓力[24]。但由于生產(chǎn)活動(dòng)和壓裂取水通常集中于某一區(qū)域,占當(dāng)?shù)赜盟壤赡茌^高,且開發(fā)作業(yè)時(shí)需要在較短時(shí)間內(nèi)獲取鉆井壓裂所需用水,在干旱季節(jié)或缺水地區(qū)仍會(huì)存在供水壓力[2,19],會(huì)對(duì)流域產(chǎn)生累積影響。中國(guó)頁(yè)巖氣開發(fā)處于起步階段,尚無(wú)公開的單井用水量及來(lái)源數(shù)據(jù),若進(jìn)行規(guī)模開發(fā),需要收集分析此類數(shù)據(jù),以監(jiān)測(cè)頁(yè)巖氣開發(fā)對(duì)于水資源的影響。
圖1 不同能源類型用水密度估計(jì)(由參考文獻(xiàn)[20]數(shù)據(jù)折算得到)
1.2 降低頁(yè)巖氣開發(fā)水資源消耗研究方向
①進(jìn)行頁(yè)巖氣開發(fā)用水監(jiān)測(cè)、制定綜合用水規(guī)劃。頁(yè)巖氣開發(fā)過(guò)程中產(chǎn)生的水資源消耗對(duì)區(qū)域環(huán)境的影響與該地區(qū)的水資源可利用量和其他競(jìng)爭(zhēng)用水需求有關(guān)。2014年世界資源研究所(WRI)發(fā)布了首個(gè)全球頁(yè)巖氣資源與可利用水資源量分布的評(píng)估報(bào)告[25],指出中國(guó)超
過(guò)60%的頁(yè)巖區(qū)塊分布在干旱或基線水資源壓力較高的地區(qū)。目前頁(yè)巖氣開發(fā)較為活躍的四川盆地面臨水資源分布不均、人口密度高等問(wèn)題,可能成為頁(yè)巖氣發(fā)展的制約因素[25]。為避免影響當(dāng)?shù)厮Y源供給和生態(tài)環(huán)境,應(yīng)收集頁(yè)巖氣開發(fā)用水量、用水來(lái)源數(shù)據(jù),并結(jié)合鉆采計(jì)劃,制定綜合用水方案,同時(shí)監(jiān)測(cè)水資源變化。
②減少頁(yè)巖氣水力壓裂過(guò)程中的淡水消耗量。研究重點(diǎn)及方向包括:返排水處理和再利用,采用咸水、污水、酸性礦排水[26-27]等不能用作飲用水的“邊際”水資源進(jìn)行壓裂,從而減少淡水消耗量。對(duì)于中國(guó)水資源匱乏的地區(qū),應(yīng)提高循環(huán)用水比例,發(fā)展咸水壓裂及無(wú)水壓裂技術(shù)。
水資源污染是頁(yè)巖氣開發(fā)中后果最嚴(yán)重也最具爭(zhēng)議的問(wèn)題(見圖2)。美國(guó)2001—2011年間完鉆頁(yè)巖氣井?dāng)?shù)超過(guò)20 000口,多數(shù)環(huán)境評(píng)估良好[24],但也有研究[4-5,7]指出頁(yè)巖氣開采可能造成水資源污染。
圖2 頁(yè)巖氣開發(fā)相關(guān)的水資源風(fēng)險(xiǎn)示意圖(由文獻(xiàn)[18]修改)
2.1 淺層流體泄漏和運(yùn)移
套管和固井缺陷會(huì)造成淺層流體泄漏,導(dǎo)致地下水污染,常規(guī)油氣井出現(xiàn)這一問(wèn)題的比例約為1%~3%[28],非常規(guī)油氣井出現(xiàn)此類問(wèn)題的比例可能會(huì)高于常規(guī)油氣井[29]。淺層流體泄漏和運(yùn)移的原因包括:套管損傷導(dǎo)致流體泄漏[4-5];固井不完善,使套管和儲(chǔ)集層間存在流體流動(dòng)空間[5]。
Osborn等和Jackson等的研究顯示距離Marcellus頁(yè)巖氣井1 km范圍以內(nèi)的地下水中含有較高濃度的甲烷[4-5]。Osborn等分析68口淺層飲用水井發(fā)現(xiàn),距離頁(yè)巖氣井1 km范圍以內(nèi)的地下水中甲烷平均濃度為19.2 mg/L,是距離頁(yè)巖氣井1 km范圍以外地下水(1.1 mg/L)的17倍。地球化學(xué)分析表明距離頁(yè)巖氣井1 km范圍內(nèi)地下水中的天然氣主要來(lái)源于深層熱成因天然氣,與頁(yè)巖氣井產(chǎn)出氣一致,但水樣中并未檢測(cè)到壓裂液或深層咸水成分[4]。Jackson等分析144口淺層飲用水井發(fā)現(xiàn),距離頁(yè)巖氣井1 km范圍以內(nèi)地下水中甲烷平均濃度是距離頁(yè)巖氣井1 km范圍以外地下水的6倍,而前者乙烷濃度是后者的23倍,僅在距離頁(yè)巖氣井1 km范圍以內(nèi)的10口水井中檢測(cè)到丙烷[5]。采用相同方法對(duì)Fayetteville頁(yè)巖氣井附近127口井進(jìn)行分析,結(jié)果顯示其并未被天然氣污染[30]。有學(xué)者[31-32]認(rèn)為Osborn的研究樣本容量過(guò)小且非隨機(jī)取樣,缺少與鉆井前基線數(shù)據(jù)的比較。同時(shí)該地區(qū)地下水中普遍存在熱成因甲烷,且在頁(yè)巖氣開發(fā)前有其他固井問(wèn)題導(dǎo)致的甲烷泄漏事件,不能表明是由于頁(yè)巖氣開發(fā)造成了地下水中甲烷濃度高。目前僅有較少研究采集頁(yè)巖開發(fā)后的水樣數(shù)據(jù)并和開發(fā)前的基線數(shù)據(jù)進(jìn)行了對(duì)比[33-34],結(jié)果顯示鉆井前后地下水中的甲烷濃度沒(méi)有統(tǒng)計(jì)差異,甲烷濃度與采集水樣水井至頁(yè)巖氣井距離也沒(méi)有
統(tǒng)計(jì)相關(guān)性。地下水中天然氣的成因和來(lái)源分析是判別頁(yè)巖氣開發(fā)是否導(dǎo)致了高甲烷濃度的關(guān)鍵,其指標(biāo)主要包括烴類濃度、長(zhǎng)短鏈烴比例(C2/C1、C3/C1)、天然氣同位素組成(δ13C1、δ13C2、δ2HCH4)[5,35]和惰性氣體同位素特征(4He,20Ne,36Ar)[36]。
Fontenot等分析距離Barnett頁(yè)巖氣井3 km附近的飲用水井,發(fā)現(xiàn)部分水樣中As、Se的溶解性固體(TDS)總量超標(biāo),3 km之外的飲用水井也存在TDS超標(biāo)情況,但近井區(qū)域濃度更高。產(chǎn)生這一現(xiàn)象可能的原因包括該地區(qū)水位下降、頁(yè)巖氣開發(fā)影響地下水運(yùn)移和平衡、套管或固井缺陷[37]。但該研究中近井和遠(yuǎn)井樣本數(shù)量差別較大[38],且僅檢測(cè)了As、Se、甲醇等物質(zhì)的濃度[37],難以判斷污染的來(lái)源和成因。鉆井和壓裂活動(dòng)如何影響地層中天然存在的有害物質(zhì)運(yùn)移還需要進(jìn)一步研究。美國(guó)相關(guān)研究存在爭(zhēng)議的主要原因在于已經(jīng)大規(guī)模開發(fā)的頁(yè)巖區(qū)塊缺少基線數(shù)據(jù)。中國(guó)的頁(yè)巖氣開發(fā)還處于起步階段,在開發(fā)前設(shè)計(jì)污染監(jiān)測(cè)方案和監(jiān)測(cè)指標(biāo)體系、采集水樣的基線數(shù)據(jù),才能有效判斷頁(yè)巖氣開發(fā)中淺層天然氣和其他污染物的來(lái)源,評(píng)估頁(yè)巖氣開發(fā)是否造成污染。
2.2 地下深層流體運(yùn)移
頁(yè)巖氣開發(fā)過(guò)程中,注入的壓裂液和儲(chǔ)集層高礦化度地層水是否會(huì)向上運(yùn)移,直接污染地下水,是水力壓裂技術(shù)爭(zhēng)議的另一焦點(diǎn)。此問(wèn)題的關(guān)鍵在于頁(yè)巖儲(chǔ)集層和地下水的連通性,以及向上運(yùn)移的驅(qū)動(dòng)力。就連通性而言,目前學(xué)術(shù)界較為普遍的共識(shí)是水力壓裂不會(huì)產(chǎn)生連通地表的裂縫。最直接的證據(jù)是微地震成像顯示水力壓裂產(chǎn)生裂縫的頂端距離地下水仍有上千米,一般頁(yè)巖壓裂作業(yè)層的深度在1 000 m以上,地下水深度不超過(guò)300 m[39],裂縫的發(fā)展會(huì)受到儲(chǔ)集層上下方不滲透巖層和壓裂液濾失的限制[40],頁(yè)巖氣井附近檢測(cè)到高甲烷濃度的水樣中也并未監(jiān)測(cè)到壓裂液的成分[4]。從運(yùn)移驅(qū)動(dòng)力來(lái)看,當(dāng)壓裂結(jié)束后,隨著壓裂液返排,儲(chǔ)集層壓力下降,即使存在運(yùn)移通道,受毛細(xì)管力限制,流體也會(huì)傾向于被束縛、封存在儲(chǔ)集層中,缺少足夠向上運(yùn)移的動(dòng)力[41]。
但是理論上并不能排除天然裂縫成為運(yùn)移通道的可能性。Warner等研究顯示,賓夕法尼亞州東北部淺層地下水的地球化學(xué)特征與深層高礦化度地層水一致,二者之間可能存在運(yùn)移通道[42]。雖然此類通道與頁(yè)巖氣鉆完井活動(dòng)無(wú)關(guān),但其存在可能會(huì)成為深層流體運(yùn)移的路徑,需要進(jìn)一步研究高礦化度地層水的運(yùn)移路徑以及水力壓裂對(duì)其影響。Myers認(rèn)為注入壓裂液會(huì)增強(qiáng)儲(chǔ)集層中原有流體的流動(dòng),數(shù)值模擬結(jié)果顯示壓裂后污染物從儲(chǔ)集層運(yùn)移至淺層地下水的時(shí)間可能從上百年縮短至不到10 a[6]。也有學(xué)者[43-44]認(rèn)為上述研究的水文地質(zhì)模型和儲(chǔ)集層流體運(yùn)移模型過(guò)度簡(jiǎn)化、存在明顯錯(cuò)誤,其結(jié)論不具參考價(jià)值。
美國(guó)勞倫斯伯克利國(guó)家實(shí)驗(yàn)室在《水力壓裂對(duì)水資源影響報(bào)告》[45]中提出了3種深層流體運(yùn)移機(jī)理假設(shè):①儲(chǔ)集層流體通過(guò)壓裂裂縫進(jìn)入封隔不當(dāng)?shù)奶骄驈U棄井;②壓裂裂縫穿過(guò)整個(gè)上覆巖層,連通地下水;③休眠的斷層和天然裂縫被激活,連通儲(chǔ)集層和地下水。雖然理論上不能排除后兩類污染機(jī)理的可能性,但目前沒(méi)有證據(jù)表明存在這樣的裂縫或斷層。
目前美國(guó)已知1例在淺層地下水中檢測(cè)到壓裂液成分的事故,發(fā)生在位于懷俄明州的致密砂巖氣藏[46]。該地區(qū)居民水井的深度為6~240 m,儲(chǔ)集層深度約1 000 m,最淺的水力裂縫深度約370 m??赡艿男孤┰虬ǎ簝?chǔ)水池(至少33個(gè))泄漏;天然氣井完井、固井不完善;壓裂施工層位和最深的居民水井水源層之間缺乏足夠的垂向封隔。這一案例中致密砂巖壓裂作業(yè)深度和地下水深度接近,而頁(yè)巖儲(chǔ)集層和地下水間隔上千米,之間發(fā)育不滲透巖層,壓裂作業(yè)不會(huì)產(chǎn)生連通地表的裂縫。盡管如此,壓裂施工的整個(gè)過(guò)程仍需要可靠的設(shè)計(jì)和監(jiān)測(cè)來(lái)保證作業(yè)的安全性。
2.3 返排水和產(chǎn)出水處理
不同頁(yè)巖儲(chǔ)集層的返排比例差別較大,如Haynesville頁(yè)巖返排比例約5%,Barnett和Marcellus頁(yè)巖返排比例約50%[40],四川盆地頁(yè)巖氣井返排比例為15%~80%[47]。除了壓裂液之外,返排水和產(chǎn)出水(后文統(tǒng)稱返排水)的成分主要取決于地層水,不同儲(chǔ)集層有所差異[48]。返排水含有高濃度的TDS、大量鹽類(如Cl、Br),還可能含有低濃度的金屬元素(如Ba、Sr)、有毒的非金屬元素(如As、Se)和放射性元素(如Ra),一般有毒成分的濃度和礦化度正相關(guān)[18,40],由于礦化度高、污染物種類多、成分復(fù)雜,其處理難度大、成本高。規(guī)模開發(fā)階段井?dāng)?shù)多、返排量大,如何處理這些廢水是保護(hù)水資源的關(guān)鍵。
美國(guó)頁(yè)巖氣開發(fā)中返排水的處理方式包括處理后再利用、處理后排放,或注入二類注入井封存。處理工藝包括膜蒸餾、反滲透、蒸發(fā)結(jié)晶、離子交換和電容去離子化[49-50]等,現(xiàn)有的處理設(shè)施和技術(shù)難以經(jīng)濟(jì)、有效地處理污染成分復(fù)雜、含有高TDS的返排水。返排水循環(huán)利用需要考慮如何在高礦化度環(huán)境下保持添加劑的活性和穩(wěn)定性,同時(shí)防止沉淀[49]。用注入封存法處理返排水受到地質(zhì)條件制約,如科羅拉多州和德克薩斯州的地質(zhì)條件適合建設(shè)注入井,而賓夕法尼亞州只有5口用于廢水處理的二類注入井[51]。
返排水處理過(guò)程中可能的污染途徑包括:①操作過(guò)程中的地表泄漏,如蓄水池隔離層滲漏、運(yùn)輸途中溢漏;②返排水未經(jīng)處理直接排放;③返排水處理不達(dá)標(biāo)排放,一般的污水處理設(shè)施不能有效去除如鹵素、重金屬和放射性元素等污染物[18]。由于返排水的礦化度遠(yuǎn)高于地表水,即使很小的污染量也會(huì)惡化水質(zhì)。Marcellus頁(yè)巖的返排水處理后雖然去除了90%的Ba和Ra,但排放點(diǎn)和下游的Cl、Br濃度顯著高于上游[7,52],226Ra的放射性強(qiáng)度是上游的200倍,超出了安全標(biāo)準(zhǔn)[7]。
頁(yè)巖氣井產(chǎn)量一般遞減較快,需要不斷完鉆新井。在規(guī)模開發(fā)階段,生產(chǎn)活動(dòng)密度增加,出現(xiàn)返排水地表污染事故的概率也有所增加[18]。為監(jiān)測(cè)和追蹤返排水污染,需要研究返排水的地球化學(xué)特征,并確定監(jiān)測(cè)指標(biāo)體系和監(jiān)測(cè)方案。不同頁(yè)巖返排水的組成受區(qū)域地質(zhì)和水質(zhì)影響差異較大,監(jiān)測(cè)指標(biāo)也有所不同,如用于區(qū)分Marcellus頁(yè)巖返排水和其他污水的指標(biāo)包括226Ra/225Ra、87Sr/86Sr和Sr/Cl等[28]。返排水污染主要與生產(chǎn)操作和管理有關(guān),可以通過(guò)研究控制返排比例、研發(fā)改進(jìn)污水處理工藝、有效監(jiān)測(cè)污染、識(shí)別污染診斷、加強(qiáng)返排水處理規(guī)劃和管理來(lái)降低風(fēng)險(xiǎn)。
2.4 降低水資源污染研究方向
①缺少基線數(shù)據(jù)是美國(guó)頁(yè)巖氣開發(fā)對(duì)水質(zhì)影響相關(guān)研究存在爭(zhēng)議的重要原因[18,32,51,53]。美國(guó)國(guó)家能源技術(shù)實(shí)驗(yàn)室[54]和地質(zhì)勘探局[55-57]均已開展研究項(xiàng)目,采集尚未規(guī)模開發(fā)頁(yè)巖區(qū)塊的基線數(shù)據(jù)并進(jìn)行持續(xù)監(jiān)測(cè)。對(duì)于中國(guó)尚未規(guī)模開發(fā)的頁(yè)巖區(qū)塊,設(shè)計(jì)監(jiān)測(cè)方案和監(jiān)測(cè)指標(biāo)體系、開發(fā)前采集地表水和地下水的基線數(shù)據(jù),是今后開展此類研究的必要基礎(chǔ)。
②套管損傷和固井缺陷會(huì)導(dǎo)致天然氣泄漏運(yùn)移進(jìn)入淺層地下水[4],可以通過(guò)優(yōu)化工程實(shí)踐、加強(qiáng)檢測(cè)和監(jiān)管降低這一風(fēng)險(xiǎn)[11,40]。壓裂不會(huì)誘發(fā)直接連通淺層地下水的裂縫[39],受濾失、不滲透巖層和毛細(xì)管力的限制,流體從頁(yè)巖儲(chǔ)集層直接運(yùn)移至淺層地下水造成污染的可能性很低[41]。但現(xiàn)有技術(shù)手段仍然無(wú)法準(zhǔn)確預(yù)測(cè)裂縫發(fā)展,壓裂前需要盡可能了解地下構(gòu)造和斷層、裂縫分布,壓裂中需要實(shí)時(shí)監(jiān)測(cè),壓后監(jiān)測(cè)、評(píng)估水文地質(zhì)學(xué)的變化情況。
③注入的壓裂液和儲(chǔ)集層流體的運(yùn)移規(guī)律及影響因素需要進(jìn)一步研究,包括注入的壓裂液對(duì)儲(chǔ)集層流體運(yùn)移的影響[45]、壓裂液與儲(chǔ)集層發(fā)生的反應(yīng)和作用[45]、壓裂液最終去向及其影響因素[41]、天然高礦化度地層水運(yùn)移通道對(duì)壓裂液運(yùn)移的影響[42]、伴隨地下水循環(huán)更長(zhǎng)期的運(yùn)移和泄漏風(fēng)險(xiǎn)[6]等問(wèn)題。
④返排水污染物種類多、成分復(fù)雜,處理不當(dāng)會(huì)造成污染[18,48]。未來(lái)研究方向包括:改進(jìn)壓裂液配方提高廢水的兼容性,以提高返排水再利用比例;研發(fā)適用于頁(yè)巖氣返排水的處理技術(shù),處理高礦化度、高放射性的返排水;研究用于返排水監(jiān)測(cè)和污染來(lái)源識(shí)別的技術(shù)和指標(biāo)體系。
⑤中國(guó)目前沒(méi)有針對(duì)頁(yè)巖氣廢水處理的具體規(guī)定,現(xiàn)階段依照常規(guī)油氣的辦法管理。頁(yè)巖氣規(guī)模開發(fā)階段具有返排水量大、污染物成分復(fù)雜、地表波及區(qū)域廣的特點(diǎn),需要綜合管理、監(jiān)管和規(guī)劃,應(yīng)加快完善頁(yè)巖氣開發(fā)的環(huán)境監(jiān)管制度和相關(guān)法規(guī)。
水力壓裂釋放的能量一般會(huì)引發(fā)2級(jí)以下的微地震,大多數(shù)在1級(jí)以下,不具有破壞性。英國(guó)[8]和加拿大[9]水力壓裂引發(fā)3級(jí)以上地震的案例,可能與壓裂前未探測(cè)到的斷層有關(guān)[58]。美國(guó)頁(yè)巖氣開發(fā)中檢測(cè)到該地區(qū)地震活動(dòng)增加,其震中位置和震源深度與高礦化度注入井接近,大于頁(yè)巖壓裂作業(yè)深度[40,59-60]?,F(xiàn)有證據(jù)顯示水力壓裂不會(huì)引發(fā)破壞性地震[58],但壓裂作業(yè)前儲(chǔ)集層描述存在很多不確定性,現(xiàn)有技術(shù)難以準(zhǔn)確預(yù)測(cè)裂縫發(fā)展,需要進(jìn)一步研究裂縫起裂和擴(kuò)展的機(jī)理、注入壓裂液和處理水對(duì)地應(yīng)力分布和地震活動(dòng)的影響。
大氣污染的來(lái)源包括作業(yè)用柴油機(jī)排放的污染物、開采運(yùn)輸中的天然氣泄漏、地面蓄水池的有機(jī)物揮發(fā)等。相比于煤炭和石油,天然氣更加清潔,其燃燒產(chǎn)生的污染物、顆粒物和汞排放顯著減少[51],用于發(fā)電時(shí)排放的溫室氣體和其他污染也更少[61]。但Howarth等[10]認(rèn)為由于壓裂液返排等過(guò)程,頁(yè)巖氣開采中甲烷散失比例更高,估計(jì)為單井總產(chǎn)量的3.6%~7.9%,而常規(guī)天然氣為1.7%~6.0%,基于這一假設(shè)估計(jì)頁(yè)巖氣開采20 a的溫室氣體排放量大于常規(guī)油氣和煤炭。King[40]認(rèn)為這一研究高估了散失量,實(shí)際應(yīng)該小于1%,Burnham等的研究[62]估計(jì)頁(yè)巖氣從井場(chǎng)建設(shè)到終端消費(fèi)全周期溫室氣體排放比常規(guī)天然氣低6%,比汽油低23%,比煤炭低33%。頁(yè)巖氣井的壓裂液返排比例、單井預(yù)期采收率變動(dòng)很大,據(jù)此估計(jì)甲烷排放量存在非常大的不確定性。在生產(chǎn)中應(yīng)當(dāng)采取更為有效的措施減少泄漏、測(cè)定排放量、提高利用率。
本文從水資源消耗、水資源污染、地震風(fēng)險(xiǎn)和大氣污染4個(gè)方面總結(jié)分析了應(yīng)用水力壓裂技術(shù)開發(fā)頁(yè)
巖氣可能導(dǎo)致的環(huán)境問(wèn)題。雖然頁(yè)巖氣開發(fā)過(guò)程中單井用水量較高,但能源生產(chǎn)用水密度低于常規(guī)石油和EOR。美國(guó)頁(yè)巖氣開發(fā)用水不會(huì)顯著增加該州的供水壓力。頁(yè)巖氣井的用水需求集中在初期完井階段,應(yīng)收集頁(yè)巖氣開發(fā)的用水來(lái)源、用水量數(shù)據(jù),綜合規(guī)劃、合理利用,在不破壞當(dāng)?shù)氐乃Y源平衡的前提下,短時(shí)間內(nèi)獲取開發(fā)用水。
雖然美國(guó)頁(yè)巖氣開發(fā)中有案例顯示頁(yè)巖氣井附近淺層飲用水甲烷濃度較高,但由于缺少基線數(shù)據(jù),水力壓裂是否導(dǎo)致甲烷泄漏或運(yùn)移尚無(wú)定論。為準(zhǔn)確評(píng)估開發(fā)活動(dòng)的影響,需要采集開發(fā)前的基線數(shù)據(jù)、開展持續(xù)監(jiān)測(cè),并通過(guò)地球化學(xué)指標(biāo)和同位素特征判別污染物來(lái)源。微地震數(shù)據(jù)顯示水力壓裂縫延伸范圍有限,不會(huì)產(chǎn)生直接連通儲(chǔ)集層和地下水的裂縫,即使存在運(yùn)移通道,受細(xì)毛管力限制,壓裂液會(huì)傾向于被束縛、封存在儲(chǔ)集層中。但壓裂液的運(yùn)移規(guī)律、影響因素以及最終去向仍需要進(jìn)一步研究。相比于地下泄漏和運(yùn)移,壓裂后返排水和生產(chǎn)水的處理及影響更需要進(jìn)一步研究和評(píng)估,包括研究返排水的地球化學(xué)特征、建立監(jiān)測(cè)指標(biāo)體系和設(shè)計(jì)監(jiān)測(cè)方案。
現(xiàn)有研究表明水力壓裂不會(huì)引發(fā)破壞性地震,水力壓裂引發(fā)3級(jí)以上地震的案例與未探測(cè)到的斷層有關(guān),由于儲(chǔ)集層描述的不確定性和裂縫預(yù)測(cè)技術(shù)的局限,需要進(jìn)一步研究裂縫起裂和擴(kuò)展機(jī)理、注入壓裂液和處理水對(duì)地應(yīng)力分布和地震活動(dòng)的影響。受頁(yè)巖氣井的壓裂液返排比例、單井預(yù)期采收量影響,現(xiàn)有研究對(duì)頁(yè)巖氣井全生命周期的溫室氣體排放估計(jì)結(jié)論不一,在生產(chǎn)中應(yīng)當(dāng)采取更為有效的措施減少泄漏、測(cè)定排放量、提高利用率。
[1] Ground Water Protection Council and All Consulting.Modern shale gas development in the United States: A primer[R].Oklahoma City: Department of Energy and National Energy Technology Laboratory,2009.
[2] Arthur J D,Bohm B K,Cornue D.Environmental considerations of modern shale gas development[R].SPE 122931,2009.
[3] Freyman M.Hydraulic fracturing &water stress: Water demand by the numbers[R].Boston: Ceres,2014.
[4] Osborn S G,Vengosh A,Warner N R,et al.Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing[J].Proceedings of the National Academy of Sciences,2011,108(20): 8172-8176.
[5] Jackson R B,Vengosh A,Darrah T H,et al.Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction[J].Proceedings of the National Academy of Sciences,2013,110(28): 11250-11255.
[6] Myers T.Potential contaminant pathways from hydraulically fractured shale to aquifers[J].Groundwater,2012,50(6): 872-882.
[7] Warner N R,Christie C A,Jackson R B,et al.Impacts of shale gas wastewater disposal on water quality in western Pennsylvania[J].Environmental Science &Technology,2013,47(20): 11849-11857.
[8] Green C A,Styles P,Baptie B J.Preese Hall shale gas fracturing review and recommendations for induced seismic mitigation[R].London: Department of Energy and Climate Change,2012.
[9] BC Oil and Gas Commission.Investigation of observed seismicity in the Horn River Basin[R].British Columbia: BC Oil and Gas Commission,2012.
[10] Howarth R W,Santoro R,Ingraffea A.Methane and the greenhouse-gas footprint of natural gas from shale formations[J].Climatic Change,2011,106(4): 679-690.
[11] Howarth R W,Ingraffea A,Engelder T.Natural gas: Should fracking stop[J].Nature,2011,477(7364): 271-275.
[12] 中國(guó)國(guó)土資源部.頁(yè)巖氣開發(fā)成果新聞發(fā)布會(huì)召開[EB/OL].(2014-09-19)[2015-01-05].http://www.mlr.gov.cn/tdzt/dzgz/dzzk/yw/ 201409/t20140919_ 1330342.htm.The Ministry of Land and Resources of China.The press conference of shale gas development results in China [EB/OL].(2014-09-19) [2015-01-05].http://www.mlr.gov.cn/tdzt/dzgz/dzzk/yw/201409/t20140919_ 1330342.htm.
[13] 童莉,張希柱,田春秀,等.我國(guó)頁(yè)巖氣開發(fā)亟需完善環(huán)境監(jiān)管[J].環(huán)境影響評(píng)價(jià),2013(5): 29-31.Tong Li,Zhang Xizhu,Tian Chunxiu,et al.Environmental regulation and supervision is required for shale gas development in China[J].Environmental Impact Assessment,2013(5): 29-31.
[14] 田磊,劉小麗,楊光,等.美國(guó)頁(yè)巖氣開發(fā)環(huán)境風(fēng)險(xiǎn)控制措施及其啟示[J].天然氣工業(yè),2013,33(5): 115-119.Tian Lei,Liu Xiaoli,Yang Guang,et al.Enlightenment from environmental risk control measures in the U.S.shale gas development[J].Natural Gas Industry,2013,33(5): 115-119.
[15] 丁貞玉,劉偉江,周穎,等.美國(guó)頁(yè)巖氣開采的水環(huán)境監(jiān)管經(jīng)驗(yàn)研究[J].油氣田環(huán)境保護(hù),2013,23(4): 4-8.Ding Zhenyu,Liu Weijiang,Zhou Ying,et al.Research on the supervision experience of water environment in shale gas development in United States[J].Environmental Protection of Oil &Gas Fields,2013,23(4): 4-8.
[16] 竹濤,陸玲,張珊珊,等.頁(yè)巖氣勘探開發(fā)環(huán)境風(fēng)險(xiǎn)探究[J].環(huán)境工程,2013,31(6): 74-77.Zhu Tao,Lu Ling,Zhang Shanshan,et al.Discussion on potential environmental risk from exploration and development of shale gas[J].Environmental Engineering,2013,31(6): 74-77.
[17] Clark C E,Horner R M,Harto C B.Life cycle water consumption for shale gas and conventional natural gas[J].Environmental Science &Technology,2013,47(20): 11829-11836.
[18] Vengosh A,Jackson R B,Warner N,et al.A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J].Environmental Science &Technology,2014,48(15): 8334-8348.
[19] Nicot J-P,Scanlon B R.Water use for shale-gas production in Texas,US[J].Environmental Science &Technology,2012,46(6): 3580-3586.
[20] Kuwayama Y,Olmstead S,Krupnick A.Water resources and unconventional fossil fuel development: Linking physical impacts to social costs[R].Washington D C: Resources for the Future,2013.
[21] Goodwin S,Douglas C,Carlson K,et al.Lifecycle analysis of water use and intensity of noble energy oil and gas recovery in the Wattenberg field of northern Colorado[R].Fort Collins: Colorado State University,2012.
[22] Laurenzi I J,Jersey G R.Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas[J].Environmental Science &Technology,2013,47(9): 4896-4903.
[23] Nicot J-P,Scanlon B R,Reedy R C,et al.Source and fate of hydraulic fracturing water in the Barnett Shale: A historical perspective[J].Environmental Science &Technology,2014,48(4): 2464-2471.
[24] Moniz E J,Jacoby H D,Meggs A,et al.The future of natural gas[R].Cambridge: Massachusetts Institute of Technology,2011.
[25] Reig P,Luo T,Proctor J N.Global shale gas development: Water availability &business risks[R].Washington D C: World Resources Institute,2014.
[26] Hallock J K,Roell R L,Eichelberger P B,et al.Innovative friction reducer provides improved performance and greater flexibility in recycling highly mineralized produced brines[R].SPE 164535,2013.
[27] Kondash A J,Warner N R,Lahav O,et al.Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage[J].Environmental Science &Technology,2013,48(2): 1334-1342.
[28] Rahm B G,Riha S J.Evolving shale gas management: Water resource risks,impacts,and lessons learned[J].Environmental Science: Processes &Impacts,2014,16(6): 1400-1412.
[29] Ingraffea A R,Wells M T,Santoro R L,et al.Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania,2000–2012[J].Proceedings of the National Academy of Sciences,2014,111(30): 10955-10960.
[30] Warner N R,Kresse T M,Hays P D,et al.Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development,north-central Arkansas[J].Applied Geochemistry,2013(35): 207-220.
[31] Saba T,Orzechowski M.Lack of data to support a relationship between methane contamination of drinking water wells and hydraulic fracturing[J].Proceedings of the National Academy of Sciences,2011,108(37): E663.
[32] Davies R J.Methane contamination of drinking water caused by hydraulic fracturing remains unproven[J].Proceedings of the National Academy of Sciences,2011,108(43): E871.
[33] Boyer E W,Swistock B R,Clark J,et al.The impact of Marcellus gas drilling on rural drinking water supplies[R].Harrisburg: Pennsylvania State University,2012.
[34] Molofsky L J,Connor J A,Farhat S K,et al.Methane in Pennsylvania water wells unrelated to Marcellus shale fracturing[J].Oil &Gas Journal,2011,109(19): 54-67.
[35] Osborn S G,McIntosh J C.Chemical and isotopic tracers of the contribution of microbial gas in Devonian organic-rich shales and reservoir sandstones,northern Appalachian Basin[J].Applied Geochemistry,2010,25(3): 456-471.
[36] Darrah T H,Vengosh A,Jackson R B,et al.Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales[J].Proceedings of the National Academy of Sciences,2014,111(39): 14076-14081.
[37] Fontenot B E,Hunt L R,Hildenbrand Z L,et al.An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale Formation[J].Environmental Science &Technology,2013,47(17): 10032-10040.
[38] McHugh T,Molofsky L,Daus A,et al.Comment on “an evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett shale formation”[J].Environmental Science &Technology,2014,48(6): 3595-3596.
[39] Fisher K,Warpinski N.Hydraulic-fracture-height growth: Real data[J].SPE Production &Operations,2012,27(1): 8-19.
[40] King G E.Hydraulic fracturing 101: What every representative,environmentalist,regulator,reporter,investor,university researcher,neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells[R].SPE 152596,2012.
[41] Engelder T,Cathles L M,Bryndzia L T.The fate of residual treatment water in gas shale[J].Journal of Unconventional Oil and Gas Resources,2014(7): 33-48.
[42] Warner N R,Jackson R B,Darrah T H,et al.Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania[J].Proceedings of the National Academy of Sciences,2012,109(30): 11961-11966.
[43] Saiers J E,Barth E.Discussion on potential contaminant pathways from hydraulically fractured shale to aquifers[J].Groundwater,2012,50(6): 826-828.
[44] Cohen H A,Parratt T,Andrews C B.Discussion on potential contaminant pathways from hydraulically fractured shale to aquifers[J].Groundwater,2013,51(3): 317-319.
[45] U.S.Environmental Protection Agency.Study of the potential impacts of hydraulic fracturing on drinking water resources[R].Washington D C: U.S.Environmental Protection Agency,2012.
[46] Folger P,Tiemann M,Bearden D.The EPA draft report of groundwater contamination near Pavillion,Wyoming: Main findings and stakeholder responses[R].Washington D C: Congressional Research Service,2012.
[47] 梁睿,童莉,向啟貴,等.中國(guó)頁(yè)巖氣開發(fā)的環(huán)評(píng)管理及建議[J].天然氣工業(yè),2014,34(06): 135-140.Liang Rui,Tong Li,Xiang Qigui,et al.Management of and proposals on environmental impact assessment (EIA) for shale gas development in China[J].Natural Gas Industry,2014,34(06): 135-140.
[48] Horner P,Halldorson B,Slutz J A.Shale gas water treatment value chain: A review of technologies including case studies[R].SPE 147264,2011.
[49] Gregory K B,Vidic R D,Dzombak D A.Water management challenges associated with the production of shale gas by hydraulic fracturing[J].Elements,2011,7(3): 181-186.
[50] Shaffer D L,Arias Chavez L H,Ben-Sasson M,et al.Desalination and reuse of high-salinity shale gas produced water: Drivers,technologies,and future directions[J].Environmental Science &Technology,2013,47(17): 9569-9583.
[51] Vidic R,Brantley S,Vandenbossche J,et al.Impact of shale gas development on regional water quality[J].Science,2013,340: 1235009-1- 1235009-9.
[52] Olmstead S M,Muehlenbachs L A,Shih J-S,et al.Shale gas development impacts on surface water quality in Pennsylvania[J].Proceedings of the National Academy of Sciences,2013,110(13): 4962-4967.
[53] Schon S C.Hydraulic fracturing not responsible for methane migration[J].Proceedings of the National Academy of Sciences,2011,108(37): E664.
[54] NETL.Monitoring of air,land,and water resources during shale gas production[EB/OL].[2015-01-05].https://edx.netl.doe.gov/dataset/ netl-factsheets/resource/99b09d91-5b93-4d28-9c7e-b88edce8a095.
[55] U.S.Geological Survey.Summary of selected studies related to possible effects of energy development on water quantity,water quality and ecosystems conducted by USGS Water Science Centers[R].Reston: U.S.Geological Survey,2014.
[56] Sloto R A.Baseline groundwater quality from 20 domestic wells in Sullivan County,Pennsylvania,2012[R].Reston: U.S.Geological Survey,2013.
[57] Sloto R A.Baseline groundwater quality from 34 Wells in Wayne County,Pennsylvania,2011 and 2013[R].Reston: U.S.Geological Survey,2014.
[58] Ellsworth W L.Injection-induced earthquakes[J].Science,2013,341: 1225942-1-1225942-7.
[59] Frohlich C,Potter E,Hayward C,et al.Dallas-Fort Worth earthquakes coincident with activity associated with natural gas production[J].The Leading Edge,2010,29(3): 270-275.
[60] Frohlich C,Hayward C,Stump B,et al.The Dallas-Fort Worth earthquake sequence: October 2008 through May 2009[J].Bulletin of the Seismological Society of America,2011,101(1): 327-340.
[61] Jaramillo P,Griffin W M,Matthews H S.Comparative life-cycle air emissions of coal,domestic natural gas,LNG,and SNG for electricity generation[J].Environmental Science &Technology,2007,41(17): 6290-6296.
[62] Burnham A,Han J,Clark C E,et al.Life-cycle greenhouse gas emissions of shale gas,natural gas,coal,and petroleum[J].Environmental Science &Technology,2011,46(2): 619-627.
(編輯 魏瑋 王大銳)
Environmental impacts of hydraulic fracturing in shale gas development in the United States
Zhang Dongxiao1,2,Yang Tingyun1,2
(1.Department of Energy and Resources Engineering,College of Engineering,Peking University,Beijing 100871,China;2.Shale Oil and Gas Research Institute,Peking University,Beijing 100871,China)
Through comprehensive investigation of the environmental issues in shale gas development in the US,the environmental impacts of hydraulic fracturing in shale gas development are summarized to provide reference for the shale gas development and management in China.The environmental risks of large-scale commercial shale gas development in the United States include water consumption,water contamination,seismic inducement and air pollution.Compared to conventional oil and gas production and other energy producing industries,shale gas development is not exactly “high-water-consuming” in terms of water consuming intensity.Its water consumption,accounting for a small proportion of the total regional water consumption,will not add much more stress on water supply.In terms of water pollution,hydraulic fracturing is unlikely to cause fractures to directly connect reservoir to the shallow aquifer,the known contamination cases are most likely related to faulty well completion,therefore well integrity is the key to the prevention of contamination;the flow-back fluids in large scale shale gas development have the characteristics of large quantity,many kinds of pollutants and complex composition,thus improper treatment would lead to serious contamination,and continuous monitoring and assessment of the pollutants are necessary.Existing evidence shows that hydraulic fracturing is unlikely to trigger destructive earthquakes.Greenhouse gas emissions in the life cycle of shale gas wells were estimated differently,but no doubt more effective measures should be taken to minimize leakage.The research priorities include contamination monitoring program design,detection indicators,moving pattern of hydraulic fracturing fluid and formation fluid,the effects of shale gas development on high salinity formation water and methane migration,and treatment and re-use of flow-back fluid.
shale gas;hydraulic fracturing;environmental risks;water consumption;water contamination;earthquake risk;air pollution
國(guó)家自然科學(xué)基金項(xiàng)目(U1262204)
TE991
A
1000-0747(2015)06-0801-07
10.11698/PED.2015.06.14
張東曉(1967-),男,江西九江人,博士,北京大學(xué)工學(xué)院教授,主要從事油氣藏?cái)?shù)值模擬、非常規(guī)油氣開采機(jī)理、二氧化碳地質(zhì)埋藏等方面研究工作。地址:北京市海淀區(qū)頤和園路5號(hào),北京大學(xué)工學(xué)院,郵政編碼:100871。E-mail:dxz@pku.edu.cn
2015-01-12
2015-07-06