王冠民 李明鵬
摘 要:目前,中國辮狀河三角洲油氣儲(chǔ)層的開發(fā)很多已經(jīng)進(jìn)入高含水期,但對辮狀河三角洲儲(chǔ)層構(gòu)型的研究并不多,影響了該類儲(chǔ)層剩余油的挖潛。以勝利油田永8斷塊沙二段辮狀河三角洲厚層砂體為研究對象,充分利用巖芯、測井、地震和開發(fā)資料,通過隔夾層劃分,將主力層段劃分為5級界面限制的三角洲前緣復(fù)合沉積體和4級界面限制的單一三角洲前緣沉積體。單一三角洲前緣沉積體包括水下分流河道、河道周緣溢岸砂體、河口壩主體、河口壩周緣、分流間灣等構(gòu)型單元。通過綜合利用曲線形態(tài)差異、砂體側(cè)向厚度變化、砂體間泥質(zhì)沉積、隔夾層數(shù)目差異等進(jìn)行砂體邊界與疊置關(guān)系的劃分,確定了辮狀河三角洲前緣單一沉積體的平面和剖面構(gòu)型樣式,揭示了單一沉積體各構(gòu)型單元逐層進(jìn)積的基本過程,明確了該區(qū)辮狀河三角洲具有河窄壩寬、河薄壩厚、河順壩橫的特點(diǎn)。研究區(qū)沙二段辮狀河三角洲河口壩寬度為分流河道寬度的2.23~8.95倍,河口壩厚度為分流河道厚度的1.25~2.50倍。
關(guān)鍵詞:辮狀河三角洲;儲(chǔ)層;構(gòu)型;進(jìn)積體;分流河道;河口壩;勝利油田;東營凹陷
中圖分類號:P618.13;TE122.2+1 文獻(xiàn)標(biāo)志碼:A
Reservoir Architecture Characteristics of Braided River Delta
Front in the Second Member of Shahejie Formation,
Yong8 Fault Block, Shengli Oilfield
WANG Guan-min1, LI Ming-peng1,2
(1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China;
2. Langfang Branch of PetroChina Research Institute of Petroleum Exploration and
Development, Langfang 065007, Hebei, China)
Abstract: Lots of petroleum exploration for braided river delta reservoirs has entered high water cut stage in China, but the study on reservoir architecture of braided river delta is few, so that it affects the potential of digging residual oil for this kind of reservoir. Taking the thick sandbody in the second member of Shahejie Formation of Yong8 fault block, Shengli oilfield as a research object, according to the cores, well logging, seismic and development data, the main interval was divided into compound sedimentary body of delta front with the limitation of the fifth surface and single sedimentary body of delta front with the limitation of the fourth surface by interbed. The single sedimentary body of delta front includes architecture elements such as underwater distributary channel, overbank sandbody of channel periphery, main mouth bar, periphery of mouth bar and interdistributary bay, etc. The boundary of sandbody and superimposed relationship were divided according to the difference of well logging curve, lateral change of sandbody thickness, argillaceous sediment between sandbodies, and the number difference of interbeds; the architecture style of single sedimentary body of braided river delta front both in plane and profile was confirmed; the basic process of layer-by-layer progradation for each architecture unit of single sedimentary body was explained; the characteristics of braided river delta in this block were discussed, including the channel being narrow, thin and straight, and the mouth bar being wide, thick and lateral. The width of mouth bar for braided river delta in the second member of Shahejie Formation of the block is 2.23-8.95 times of that of distributary channel, and the thickness is 1.25-2.50 times of that of the distributary channel.
Key words: braided river delta; reservoir; architecture; prograding body; distributary channel; mouth bar; Shengli oilfield; Dongying sag
0 引 言
目前,中國東部勘探程度較高的老油田大都進(jìn)入開發(fā)中后期,存在含水飽和度上升、水淹嚴(yán)重、剩余油分散、產(chǎn)量下降、采收率低等問題[1-13]。據(jù)統(tǒng)計(jì),經(jīng)過一次、二次采油后,目前僅能采出地下總儲(chǔ)量的30%左右[1-2];在全世界范圍內(nèi),大約有20%的可動(dòng)石油儲(chǔ)量因儲(chǔ)層的垂向和平面非均質(zhì)性而滯留地下無法采出[3]。三角洲前緣砂體是最重要的油氣藏賦存部位[14-17],中國三角洲相儲(chǔ)層剩余油約占碎屑巖儲(chǔ)層剩余油的27.6%[1]。通過儲(chǔ)層構(gòu)型研究能夠精細(xì)刻畫儲(chǔ)層內(nèi)部優(yōu)勢滲流通道、隔夾層分布,是研究三角洲砂體剩余油分布、預(yù)測及水淹規(guī)律,提高油氣采收率的有效方法。
筆者對勝利油田永8斷塊沙二下亞段辮狀河三角洲儲(chǔ)層逐級進(jìn)行構(gòu)型界面和構(gòu)型單元?jiǎng)澐?。在各級?gòu)型界面測井響應(yīng)特征及構(gòu)型單元內(nèi)部砂體展布特征分析基礎(chǔ)上,明確各構(gòu)型單元剖面、平面邊界劃分方法及組合方式,并進(jìn)一步統(tǒng)計(jì)各構(gòu)型單元的規(guī)模參數(shù),分析其定量關(guān)系。
1 研究區(qū)概況
永8斷塊地處勝利油田下屬的新立村油田南部,構(gòu)造位置在東營凹陷中央隆起帶東端,東為青坨子凸起南端,南鄰廣利油田,西為辛鎮(zhèn)構(gòu)造。該斷塊為一受南、北邊界斷層控制,并被一組SN向斷層切割的復(fù)雜斷塊油氣藏。永8斷塊北高南低,地層傾角在6°~10°,構(gòu)造落差約100 m,主要含油層系為沙二段第5~8砂層組,油層埋深1 840~2 100 m,含油面積1.2 km2,探明地質(zhì)儲(chǔ)量1 214×104 t。該斷塊是勝利油田儲(chǔ)量豐度最高的斷塊之一[18-21]。
永8斷塊自1998年投入試采至今,經(jīng)歷多個(gè)開發(fā)階段,多次進(jìn)行層系細(xì)分及開發(fā)方案調(diào)整,目前綜合含水率(體積比)為89.2%,但采出程度僅為13.5%。在開發(fā)中主要存在層系適用性差、層間干擾嚴(yán)重、儲(chǔ)層非均質(zhì)性強(qiáng)、剩余油采出程度低、油水關(guān)系復(fù)雜、含水率高及水淹嚴(yán)重等問題。通過對研究區(qū)儲(chǔ)層構(gòu)型單元的特征、類型、空間分布等進(jìn)行研究,可以明確各小層的空間聯(lián)通性及剩余油分布,對提高驅(qū)油效率具有重要意義。
2 構(gòu)型界面分級
鑒于測井資料精度、井網(wǎng)密度和實(shí)際生產(chǎn)的可操作性,本次研究參考Miall河流相構(gòu)型界面分級方法,在高分辨率層序地層學(xué)理論及沉積旋回控制下,對應(yīng)開發(fā)層系[22-25],確定研究區(qū)第5~7砂層組的構(gòu)型界面劃分方案(表1):第6級為多期三角洲前緣疊置體界面;第5級為單期三角洲前緣復(fù)合沉積體界面;第4級為單一三角洲前緣沉積體界面。3級構(gòu)型單元限于井網(wǎng)密度,難以進(jìn)一步刻畫,且對辮狀河三角洲厚油層的開發(fā)方案調(diào)整意義不大,故此次未作進(jìn)一步研究。
3 構(gòu)型界面劃分對比
勝利油田永8斷塊沙二下亞段為淺水條件沉積,影響沉積旋回的主要因素為基準(zhǔn)面的周期性升降?;鶞?zhǔn)面下降,碎屑物質(zhì)進(jìn)積,三角洲前緣砂體發(fā)育;基準(zhǔn)面上升,三角洲大面積被淺水覆蓋,主要發(fā)育湖相泥質(zhì)沉積。因此,三角洲的沉積旋回性比較清楚,表現(xiàn)為明顯的砂泥巖互層(圖1)。
對于6級和5級構(gòu)型界面,標(biāo)志層非常清楚,主要為穩(wěn)定分布的泥巖,測井曲線明顯回返,自然電位
表1 沙二段辮狀河三角洲前緣構(gòu)型層次分級
Tab.1 Architecture Hierarchy Classification of Braided River Delta Front in the Second Member of Shahejie Formation
γGR為自然伽馬;VSP為自然電位;RRLML為微梯度電阻率;RRNML為微電位電阻率;ΔtAC為聲波時(shí)差;測井對象為XLA8-7井
圖1 第5~7砂層組構(gòu)型單元綜合分析
Fig.1 Synthetical Analysis of Architecture Elements in the Fifth to Seventh Sand Layers
曲線接近泥巖基線,自然伽馬值高,微電極曲線無幅度差,一般為穩(wěn)定的隔層,較容易劃分對比。而4級界面主要表現(xiàn)為泥質(zhì)夾層,局部為鈣質(zhì)夾層,其中泥質(zhì)夾層一般局部發(fā)育,在測井曲線表現(xiàn)出回返,但不如5級、6級構(gòu)型界面明顯,聲波時(shí)差升高。此外,鈣質(zhì)夾層主要由鈣質(zhì)砂巖組成,橫向?qū)Ρ刃圆睿湫蜏y井識別標(biāo)志為尖峰狀微電極曲線和低聲波時(shí)差,微電極曲線表現(xiàn)為值高且幅度差小,聲波時(shí)差曲線主要分布于200~250 μs·m-1。
單一三角洲前緣沉積體是由洪水?dāng)y帶的粗碎屑物質(zhì)在水動(dòng)力減弱條件下發(fā)生卸載而沉積的,因此,在測井曲線上比較光滑。而在平水期,則主要沉積細(xì)粒物質(zhì),越靠近湖泊中央,沉積物粒度越細(xì),物性越差,在測井曲線上表現(xiàn)為越靠近湖泊中心,回返越嚴(yán)重。在6級和5級構(gòu)型界面劃分的基礎(chǔ)上,根據(jù)層次劃分理論[26-30],通過精細(xì)井間對比,開展4級構(gòu)型界面劃分,在小層內(nèi)揭示出一系列單一三角洲前緣沉積體(圖2)。
圖2 第5砂層組2小層構(gòu)型單元?jiǎng)澐?/p>
Fig.2 Division of Architecture Elements in the Second Sublayer of the Fifth Sand Layer
這些單一三角洲前緣沉積體在空間上呈現(xiàn)逐層進(jìn)積的特征(圖3),早期厚層砂體分布于研究區(qū)東北部,中期分布于中部和西南部,晚期主要分布于西南部,砂巖等厚變化反映了三角洲前緣從東北部向西南部漸次推進(jìn)的過程。
4 構(gòu)型單元特征
根據(jù)巖芯、測井曲線,在研究區(qū)各單一三角洲前緣沉積體中可識別出水下分流河道、河道周緣溢岸砂體、河口壩主體、河口壩周緣、分流間灣等構(gòu)型單元。
水下分流河道主要沉積中、細(xì)砂巖,以細(xì)砂巖為主,整體為向上變細(xì)的正粒序。粒度概率曲線為兩段式,以跳躍組分和懸浮組分為主,河道底部可見沖刷面,局部具有礫石沉積。測井曲線以大幅箱形、鐘形、梯形為主,微電極曲線向上幅度差降低(表2)。
河道周緣溢岸砂體巖性主要為細(xì)砂巖、粉砂巖、泥質(zhì)粉砂巖。該砂體粒度細(xì),厚度較薄,物性相對分流河道和河口壩砂體較差。其測井曲線形態(tài)為扁鐘形、齒化鐘形、光滑梭形、齒化梭形(表2)。
河口壩主體巖性以細(xì)砂巖為主,少量中砂巖、粉砂巖,正粒序、均勻粒序、反粒序均可見,受砂體沉積部位影響,靠近分流河道末端部位為正粒序,靠近前三角洲部位為反粒序。該砂體粒度概率曲線為三段式,在河口壩底部可見螺等生物碎屑,平行層理、斜層理、交錯(cuò)層理發(fā)育。其測井曲線形態(tài)為鐘形、箱形、漏斗-箱形、梯形(表2)。
河口壩周緣是河口壩主體邊緣粒度較細(xì)且厚度較薄的部分,巖性為細(xì)砂巖、粉砂巖,發(fā)育有平行層理、波狀層理。其測井曲線為漏斗形、齒化漏斗形、梭形(表2)。
分流間灣為水下分流河道之間相對低洼的地區(qū),以泥質(zhì)沉積為主,含少量粉砂巖和細(xì)砂巖,具水平層理和透鏡狀層理,可見生物鉆孔。其測井曲線主要為小幅指形(表2)。
5 構(gòu)型單元邊界劃分與組合樣式
構(gòu)型單元?jiǎng)澐质窃诔练e模式及地質(zhì)知識庫指導(dǎo)下,根據(jù)層次分析約束,由構(gòu)型界面控制完成。開展構(gòu)型單元精細(xì)劃分,有利于理清地下優(yōu)勢滲流通道以及剩余油的分布,因此,單一成因砂體的邊界劃分和組合樣式是關(guān)鍵。
圖層從下到上分別對應(yīng)早期、中期和晚期
圖3 第5砂層組2小層構(gòu)型單元砂體厚度變化特征
Fig.3 Change Characteristics of Architecture Element Sand Thickness in the Second Sublayer of the Fifth Sand Layer
5.1 利用Google Earth確定辮狀河三角洲地質(zhì)知識庫
豐富的儲(chǔ)層地質(zhì)知識庫是進(jìn)行精細(xì)儲(chǔ)層構(gòu)型解剖和建模的基礎(chǔ)[30]。在進(jìn)行構(gòu)型分析時(shí),充分參考了部分學(xué)者根據(jù)密井網(wǎng)解剖、露頭剖面、現(xiàn)代沉積考察、沉積模擬試驗(yàn)等方法所建立的地質(zhì)知識庫[31-33]。此外,本次研究還充分利用Google Earth軟件,測量現(xiàn)代辮狀河三角洲地表分流河道的河谷長度、河道長度、河道寬度等參數(shù),并計(jì)算分流河道彎曲指數(shù)。在統(tǒng)計(jì)的156條分流河道中,辮狀河三角洲分流河道彎曲度均在1.0~1.3之間;分流河道的寬度小于100 m的占77%,在100~500 m之間的占16%,大于500 m的僅占不到7%。統(tǒng)計(jì)結(jié)果表明,辮狀河三角洲分流河道具有河道直且寬度窄的特點(diǎn)。李國棟等研究認(rèn)為,單一分流河道寬度很少大于300 m[34-35],而河口壩規(guī)模通常較大,長寬均可達(dá)數(shù)千米。 上述認(rèn)識對單一三角洲前緣沉積體儲(chǔ)層構(gòu)型單元?jiǎng)澐制鸬搅酥匾闹笇?dǎo)作用。
5.2 單成因砂體剖面邊界劃分與組合
在研究區(qū)砂體橫向精細(xì)對比基礎(chǔ)上,借鑒已有河道單砂體邊界的劃分方法[36-37],總結(jié)研究區(qū)沙二段辮狀河三角洲單成因砂體的邊界劃分方案。
(1)曲線形態(tài)差異。不同成因砂體[圖4(a)]、不同期次沉積的相同成因砂體[圖4(b)]由于碎屑物質(zhì)性質(zhì)與沉積時(shí)水動(dòng)力條件存在差異,導(dǎo)致其在測井響應(yīng)上存在差異,利用這種差異可進(jìn)行單成因砂體邊界的識別。
(2)砂體側(cè)向厚度變化。分流河道砂體剖面具有“頂平底凸”的特點(diǎn),而河口壩具有“底平頂凸”的特點(diǎn),兩者從砂體中央向邊緣均具有由厚變薄的特
表2 沙二段構(gòu)型單元測井響應(yīng)特征
Tab.2 Well Logging Response Characteristics of Architecture Elements in the Second Member of Shahejie Formation
征,因此,當(dāng)砂體厚度出現(xiàn)“厚—薄—厚”的變化特征時(shí),往往為兩期沉積[圖4(c)]。
(3)砂體間泥質(zhì)沉積。分流河道間的道間泥和河口壩間的壩間泥沉積[圖4(d)]是區(qū)分單一分流河道砂體和單一河口壩砂體的有效標(biāo)志。
(4)隔夾層數(shù)目差異。同一小層內(nèi),不同井之間隔夾層數(shù)目不同,反映不同期次單成因砂體的疊置與拼接[圖4(e)]。
5.3 構(gòu)型單元平面展布與組合
在沉積規(guī)律控制下,以單井構(gòu)型單元分析為立足點(diǎn),以砂巖等厚圖為參考,以剖面單成因砂體邊界識別為基礎(chǔ),根據(jù)單成因砂體的測井曲線形態(tài)以及邊界劃分方案,由點(diǎn)到線、由線到面進(jìn)行單一三角洲前緣沉積體各構(gòu)型單元的平面展布分析。
以第5砂層組某4級構(gòu)型單元為例,砂體具有東北厚、西南薄的特點(diǎn)。砂體從XLA8-9井到XLA8-11井具有“厚—薄—厚”的變化特征,為兩期單一三角洲前緣沉積體側(cè)向拼接的產(chǎn)物。從圖5可以看出,在XLA8X69井存在河口壩A由XLA8CX58井—XLA8-51井—XLA8X69井—XLA8-17井構(gòu)型單元連井剖面圖從沉積末期的頂部泥巖,河口壩B與河口壩A在邊部存在部分拼接疊置,比如XLA8X69井在河口壩A頂部泥巖之上沉積河口壩B砂體。
在上述方法指導(dǎo)下,可以進(jìn)一步揭示單一三角洲前緣沉積體各構(gòu)型單元的平面展布,將同一單砂層不同期次砂體在平面上的疊置關(guān)系劃分出來。根據(jù)單砂層的剖面和平面構(gòu)型圖(圖6),不同期次砂體平面構(gòu)型單元的分布規(guī)律為:單一三角洲前緣沉積體一般具有河窄壩寬、河薄壩厚、河順壩橫的特點(diǎn),其他構(gòu)型單元圍繞分流河道與河口壩分布。
圖4 沙二段單成因砂體邊界識別標(biāo)志
Fig.4 Boundary Identification of Single Sandbody in the Second Member of Shahejie Formation
圖5 第5砂層組1小層兩期河口壩的關(guān)系
Fig.5 Relationship Between Two Mouth Bars in the First Sublayer of the Fifth Sand Layer
圖6 第5砂層組2小層辮狀河三角洲前緣砂體構(gòu)型單元分布
Fig.6 Distribution of Architecture Elements of Sandbody from Braided River Delta Front
in the Second Sublayer of the Fifth Sand Layer
6 沙二段辮狀河三角洲構(gòu)型單元定量化表征
根據(jù)本次構(gòu)型單元?jiǎng)澐纸Y(jié)果,嘗試對研究區(qū)單一成因砂體開展定量分析研究,試圖揭示研究區(qū)沙二段辮狀河三角洲各構(gòu)型單元的量化特征。
6.1 分流河道定量分析
研究區(qū)單一分流河道[圖7(a)]厚度在1~6 m之間,厚度在1.5~4.5 m之間的分流河道占81.2%。單一分流河道寬度范圍在160~430 m之間,91%分流河道寬度小于300 m,40.1%的寬度小于200 m。分流河道寬厚比在33~200之間,寬厚比在50~150之間的占73%。
圖7 單砂體厚度與寬度的關(guān)系
Fig.7 Relationship of Single Sandbody Between Thickness and Width
6.2 河口壩定量分析
研究區(qū)單一河口壩[圖7(b)]厚度在1.80~7.75 m之間,其中小于7 m的占91%,小于5 m的占71%,小于3 m的占12.5%。單一河口壩寬度在450~1 700 m之間,其中500~1 500 m之間的占87.5%。河口壩寬厚比為95~580,其中寬厚比為100~200的占42%,寬厚比為200~300的占29.2%,寬厚比大于300的不足21%。
6.3 分流河道與河口壩規(guī)模之間關(guān)系
研究區(qū)沙二段辮狀河三角洲前緣主要構(gòu)型單元分流河道和河口壩在寬度、厚度之間的相關(guān)性不甚明顯(圖7),推測其與研究區(qū)古湖水大面積偏淺以及三角洲辮狀河道常不穩(wěn)定進(jìn)積有關(guān)。古湖盆水體較淺,使得單一三角洲進(jìn)積體的沉積厚度較薄,單一河口壩最厚僅為7.75 m,且側(cè)向上的厚度相對比較穩(wěn)定(圖2~5)。因?yàn)楹拥婪€(wěn)定性的差異,所以河口壩發(fā)育規(guī)模也不穩(wěn)定,即當(dāng)河道位置比較穩(wěn)定時(shí),前方河口壩的發(fā)育規(guī)模也就偏大,當(dāng)河道位置不穩(wěn)定時(shí),遷移改道比較頻繁,前方發(fā)育的河口壩規(guī)模也就變小。
統(tǒng)計(jì)結(jié)果顯示:河口壩厚度與分流河道厚度之比在1.25~2.50之間,分布于1.25~2.00之間的約占80%[圖8(a)];河口壩寬度與河道寬度的比值在2.23~8.95之間,變化范圍大,在3~6之間的約占75%[圖8(b)]。二者具有較好的相關(guān)性。
圖8 河口壩與分流河道厚度之比以及寬度之比的分布
Fig.8 Distributions of the Ratios of Thickness and Width Between Mouth Bar and Distributary Channel
7 結(jié) 語
(1)勝利油田永8斷塊沙二段砂體厚度變化特征表明,4級構(gòu)型界面控制下的單一三角洲前緣沉積體在空間上呈現(xiàn)逐層進(jìn)積的特征,從東北部向西南部逐漸推進(jìn)。
(2)綜合巖芯、測井等資料,在辮狀河三角洲前緣識別出水下分流河道、河道周緣溢岸砂體、河口壩主體、河口壩周緣、分流間灣等構(gòu)型單元。
(3)綜合利用曲線形態(tài)差異、砂體側(cè)向厚度變化、砂體間泥質(zhì)沉積、隔夾層數(shù)目差異等方法,進(jìn)行單成因砂體剖面邊界劃分,并與平面構(gòu)型單元?jiǎng)澐窒嘟Y(jié)合進(jìn)行構(gòu)型單元邊界劃分。結(jié)果表明:辮狀河三角洲前緣主要構(gòu)型單元水下分流河道和河口壩具有河窄壩寬、河薄壩厚、河順壩橫的特點(diǎn)。
(4)辮狀河三角洲分流河道厚度與寬度、河口壩厚度與寬度之間的相關(guān)性不明顯,但分流河道厚度與河口壩厚度、分流河道寬度與河口壩寬度之間具有較好的相關(guān)性。河口壩厚度為分流河道厚度的1.25~2.50倍,河口壩寬度為分流河道寬度的2.23~8.95倍,這與研究區(qū)偏淺水的辮狀河三角洲沉積特點(diǎn)是相符的。
參考文獻(xiàn):
References:
[1] 劉寶珺,謝 俊,張金亮.我國剩余油技術(shù)研究現(xiàn)狀與進(jìn)展[J].西北地質(zhì),2004,37(4):1-6.
LIU Bao-jun,XIE Jun,ZHANG Jin-liang.Present Situation and Advance of Remaining Oil Research Technology in China[J].Northwestern Geology,2004,37(4):1-6.
[2] 林承焰,余成林,董春梅,等.老油田剩余油分布:水下分流河道岔道口剩余油富集[J].石油學(xué)報(bào),2011,32(5):829-835.
LIN Cheng-yan,YU Cheng-lin,DONG Chun-mei,et al.Remaining Oils Distribution in Old Oilfields:Enrichment of Remaining Oils in Underwater Distributary Channel Crotches[J].Acta Petrolei Sinica,2011,32(5):829-835.
[3] 于興河,王德發(fā).陸相斷陷盆地三角洲相構(gòu)型要素及其儲(chǔ)層地質(zhì)模型[J].地質(zhì)論評,1997,43(3):225-231.
YU Xing-he,WANG De-fa.The Architectural Elements of the Deltaic System in the Terrestrial Faulted Basin and the Significance of Its Reservoir Geological Model[J].Geological Review,1997,43(3):225-231.
[4] 陳 莉,蘆鳳明,范志勇.大港油田官80斷塊辮狀河儲(chǔ)層構(gòu)型表征[J].大慶石油學(xué)院學(xué)報(bào),2012,36(2):71-76,90.
CHEN Li,LU Feng-ming,F(xiàn)AN Zhi-yong.The Characterization of Braided River Reservoir Configuration in 80-fault-block Dagang Oil Field[J].Journal of Daqing Petroleum Institute,2012,36(2):71-76,90.
[5] 封從軍,鮑志東,楊 玲,等.三角洲前緣水下分流河道儲(chǔ)集層構(gòu)型及剩余油分布[J].石油勘探與開發(fā),2014,41(3):323-329.
FENG Cong-jun,BAO Zhi-dong,YANG Ling,et al. Reservoir Architecture and Remaining Oil Distribution of Deltaic Front Underwater Distributary Channel[J].Petroleum Exploration and Development,2014,41(3):323-329.
[6] 林 煜,吳勝和,岳大力,等.扇三角洲前緣儲(chǔ)層構(gòu)型精細(xì)解剖:以遼河油田曙2-6-6區(qū)塊杜家臺油層為例[J].天然氣地球科學(xué),2013,24(2):335-344.
LIN Yu,WU Sheng-he,YUE Da-li,et al.Fine Anatomizing Reservoir Architecture of Fan-delta Front: A Case Study on Dujiatai Reservoir in Shu2-6-6 Block, Liaohe Oilfield[J].Natural Gas Geoscience,2013,24(2):335-344.
[7] 封從軍,鮑志東,代春明,等.三角洲前緣水下分流河道單砂體疊置機(jī)理及對剩余油的控制:以扶余油田J19區(qū)塊泉頭組四段為例[J].石油與天然氣地質(zhì),2015,36(1):128-135.
FENG Cong-jun,BAO Zhi-dong,DAI Chun-ming,et al.Superimposition Patterns of Underwater Distributary Channel Sands in Deltaic Front and Its Control on Remaining Oil Distribution:A Case Study from K1q4 in J19, Fuyu Oilfield[J].Oil and Gas Geology,2015,36(1):128-135.
[8] 蔣 平,呂明勝,王國亭.基于儲(chǔ)層構(gòu)型的流動(dòng)單元?jiǎng)澐郑阂苑鲇嘤吞飽|5-9區(qū)塊扶楊油層為例[J].石油實(shí)驗(yàn)地質(zhì),2013,35(2):213-219.
JIANG Ping,LU Ming-sheng,WANG Guo-ting.Flow Unit Division Based on Reservoir Architecture:Taking Fuyu-Yangdachengzi Formation in Blocks Dong5-9 of Fuyu Oilfield as an Example[J].Petroleum Geology and Experiment,2013,35(2):213-219.
[9] 熊光勤,劉 麗.基于儲(chǔ)層構(gòu)型的流動(dòng)單元?jiǎng)澐旨皩﹂_發(fā)的影響[J].西南石油大學(xué)學(xué)報(bào):自然科學(xué)版,2014,36(3):107-114.
XIONG Guang-qin,LIU Li.Flow Units Classification Based on Reservoir Architecture and Its Influence on Reservoir Development[J].Journal of Southwest Petroleum University:Science and Technology Edition,2014,36(3):107-114.
[10] 郭 平,景莎莎,彭彩珍.氣藏提高采收率技術(shù)及其對策[J].天然氣工業(yè),2014,34(2):44-58.
GUO Ping,JING Sha-sha,PENG Cai-zhen.Technology and Countermeasures for Gas Recovery Enhancement[J].Natural Gas Industry,2014,34(2):44-58.
[11] 彭 松,郭 平.縫洞型碳酸鹽巖凝析氣藏注水開發(fā)物理模擬研究[J].石油實(shí)驗(yàn)地質(zhì),2014,36(5):645-649.
PENG Song,GUO Ping.Physical Simulation of Exploiting Fractured-vuggy Carbonate Gas Condensate Reservoirs by Water Injection[J].Petroleum Geology and Experiment,2014,36(5):645-649.
[12] 余成林,國殿斌,熊運(yùn)斌,等.厚油層內(nèi)部夾層特征及在剩余油挖潛中的應(yīng)用[J].地球科學(xué)與環(huán)境學(xué)報(bào),2012,34(1):35-39.
YU Cheng-lin,GUO Dian-bin,XIONG Yun-bin,et al.Characteristics of Interbeds in Thick Reservoir and Application in Potential Tapping of Residual Oil[J].Journal of Earth Sciences and Environment,2012,34(1):35-39.
[13] 程 倩,李曦鵬,劉中春,等.縫洞型油藏剩余油的主要存在形式分析[J].西南石油大學(xué)學(xué)報(bào):自然科學(xué)版,2013,35(4):18-24.
CHENG Qian,LI Xi-peng,LIU Zhong-chun,et al.Ana-lysis of Major Occurrence Modes of Remaining Oil in Karstic-fracture Reservoirs[J].Journal of Southwest Petroleum University:Science and Technology Edition,2013,35(4):18-24.
[14] 田景春,陳高武,竇偉坦,等.湖泊三角洲前緣砂體成因組合形式和分布規(guī)律:以鄂爾多斯盆地姬塬白豹地區(qū)三疊系延長組為例[J].成都理工大學(xué)學(xué)報(bào):自然科學(xué)版,2004,31(6):636-640.
TIAN Jing-chun,CHEN Gao-wu,DOU Wei-tan,et al.Origin and Association Types of Lake Delta Front Sandstones and Their Distribution Patterns of Triassic Yanchang Formation in Ordos Basin,China[J].Journal of Chengdu University of Technology:Science and Technology Edition,2004,31(6):636-640.
[15] 劉自亮.三角洲前緣儲(chǔ)集砂體的成因組合與分布規(guī)律:以松遼盆地大老爺府地區(qū)白堊系泉頭組四段為例[J].沉積學(xué)報(bào),2009,27(1):32-40.
LIU Zi-liang.Delta-front Sandbody Genetic Assemblages and Their Distribution Patterns of the 4th Member of Quantou Formation in Dalaoyefu Oilfield, Southern Songliao Basin,China[J].Acta Sedimentologica Sinica,2009,27(1):32-40.
[16] 杜 民,蘇俊青,陸永潮,等.歧口凹陷歧深地區(qū)沙三段沉積體系演化特征及沉積模式[J].地學(xué)前緣,2013,20(5):139-148.
DU Min,SU Jun-qing,LU Yong-chao,et al.Sedimentary Evolution Characteristics and Sedimentary Model of the Third Member of Shahejie Formation in Qishen Area of Qikou Sag[J].Earth Science Frontiers,2013,20(5):139-148.
[17] 王 黎,王果壽,謝銳杰,等.蘇北盆地溱潼凹陷俞垛—華莊地區(qū)沉積微相類型及特征[J].石油實(shí)驗(yàn)地質(zhì),2014,36(1):51-55.
WANG Li,WANG Guo-shou,XIE Rui-jie,et al.Sedimentary Microfacies Types and Features in Yuduo-Huazhuang Area,Qingtong Sag,Northern Jiangsu Basin[J].Petroleum Geology and Experiment,2014,36(1):51-55.
[18] 王 慶,王德山,孫寶財(cái),等.永8斷塊出砂預(yù)測及防砂技術(shù)的應(yīng)用[J].斷塊油氣田,2002,9(2):74-76.
WANG Qing,WANG De-shan,SUN Bao-cai,et al.Sand Production Forecast and Application of Sand Control Techniques in Yong8 Fault Block[J].Fault-block Oil and Gas Field,2002,9(2):74-76.
[19] 李恒清,楊少春,路智勇.油氣充注方式對油藏內(nèi)油水分布特征的影響:以東營凹陷永8斷塊油藏為例[J].油氣地質(zhì)與采收率,2012,19(2):9-11,15.
LI Heng-qing,YANG Shao-chun,LU Zhi-yong.Effects of Hydrocarbon Infilling on Distribution of Oil and Water in Reservoir:Case of Yong8,Dongying Depression[J].Petroleum Geology and Recovery Efficiency,2012,19(2):9-11,15.
[20] 田 飛,金 強(qiáng),王端平,等.東營凹陷永8斷塊斷層調(diào)節(jié)帶及其對油氣分布的控制作用[J].高校地質(zhì)學(xué)報(bào),2012,18(2):358-364.
TIAN Fei,JIN Qiang,WANG Duan-ping,et al.Fault Accommodation Zones and Their Controlling Effects on Hydrocarbon Distribution in Yong8 Fault Block,Dongying Sag[J].Geological Journal of China University,2012,18(2):358-364.
[21] 王守嶺.永8疏松砂巖稠油油藏提高采收率技術(shù)研究[D].東營:中國石油大學(xué),2005.
WANG Shou-ling.EOR Technology Research on Unconsolidated Sand Heavy Oil Reservoir of Yong8 Block[D].Dongying:China University of Petroleum,2005.
[22] MIALL A D.Architectural-elements Analysis:A New Method of Facies Analysis Applied to Fluvial Deposits[J].Earth-science Reviews,1985,22:261-308.
[23] MIALL A D.Reconstructing the Architecture and Sequence Stratigraphy of the Preserved Fluvial Record as a Tool for Reservoir Development:A Reality Check[J].AAPG Bulletin,2006,90(7):989-1002.
[24] 何文祥,吳勝和,唐義疆,等.河口壩砂體構(gòu)型精細(xì)解剖[J].石油勘探與開發(fā),2005,32(5):42-46.
HE Wen-xiang,WU Sheng-he,TANG Yi-jiang,et al.Detailed Architecture Analyses of Debouch Bar in Shengtuo Oilfield,Jiyang Depression[J].Petroleum Exploration and Development,2005,32(5):42-46.
[25] 陳歡慶,趙應(yīng)成,舒治睿,等.儲(chǔ)層構(gòu)型研究進(jìn)展[J].特種油氣藏,2013,20(5):7-13.
CHEN Huan-qing,ZHAO Ying-cheng,SHU Zhi-rui,et al.Advances in Reservoir Architecture Research[J].Special Oil and Gas Reservoirs,2013,20(5):7-13.
[26] 張昌民.儲(chǔ)層研究中的層次分析法[J].石油與天然氣地質(zhì),1992,13(3):344-350.
ZHANG Chang-min.Hierarchy Analysis in Reservoir Researches[J].Oil and Gas Geology,1992,13(3):344-350.
[27] 張昌民,尹太舉,張尚鋒,等.泥質(zhì)隔層的層次分析:以雙河油田為例[J].石油學(xué)報(bào),2004,25(3):48-52.
ZHANG Chang-min,YIN Tai-ju,ZHANG Shang-feng,et al.Hierarchy Analysis of Mudstone Barriers in Shuang-he Oilfield[J].Acta Petrolei Sinica,2004,25(3):48-52.
[28] 趙翰卿,付志國,呂曉光.儲(chǔ)層層次分析和模式預(yù)測方法[J].大慶石油地質(zhì)與開發(fā),2004,23(5):74-77.
ZHAO Han-qing,F(xiàn)U Zhi-guo,LU Xiao-guang.Reservoir Type Analysis and Model Prediction Description Method[J].Petroleum Geology and Oilfield Development in Daqing,2004,23(5):74-77.
[29] 吳勝和,岳大力,劉建民,等.地下古河道儲(chǔ)層構(gòu)型的層次建模研究[J].中國科學(xué):D輯,地球科學(xué),2008,38(增1):111-121.
WU Sheng-he,YUE Da-li,LIU Jian-min,et al.Hierachy Modeling Researching of Reservoir Architecture of River Reservoir[J].Science in China:Series D,Earth Sciences,2008,38(S1):111-121.
[30] 單敬福,李占東,李浮萍,等.一種厘定復(fù)合辮狀河道砂體期次的新方法[J].天然氣工業(yè),2015,35(5):8-14.
SHAN Jing-fu,LI Zhan-dong,LI Fu-ping,et al.A New Method for Determining the Phases of Composite Braided River Channel Sand Bodies[J].Natural Gas Industry,2015,35(5):8-14.
[31] 陳 程,孫義梅,賈愛林.扇三角洲前緣地質(zhì)知識庫的建立及應(yīng)用[J].石油學(xué)報(bào),2006,27(2):53-57.
CHEN Cheng,SUN Yi-mei,JIA Ai-lin.Development and Application of Geological Knowledge Database for Fan-delta Front in the Dense Spacing Area[J].Acta Petrolei Sinica,2006,27(2):53-57.
[32] 尹太舉,張昌民,樊中海,等.雙河油田井下地質(zhì)知識庫的建立[J].石油勘探與開發(fā),1997,24(6):95-98,120.
YIN Tai-ju,ZHANG Chang-min,F(xiàn)AN Zhong-hai,et al.Founding Subsurface Geological Data Bank for Shuanghe Oil Field[J].Petroleum Exploration and Development,1997,24(6):95-98,120.
[33] 石書緣,胡素云,馮文杰,等.基于Google Earth軟件建立曲流河地質(zhì)知識庫[J].沉積學(xué)報(bào),2012,30(5):868-878.
SHI Shu-yuan,HU Su-yun,F(xiàn)ENG Wen-jie,et al.Building Geological Knowledge Database Based on Google Earth Software[J].Acta Sedimentologica Sinica,2012,30(5):868-878.
[34] 李國棟,嚴(yán) 科,寧士華.水下分流河道儲(chǔ)層內(nèi)部結(jié)構(gòu)表征:以勝坨油田沙二段81層為例[J].油氣地質(zhì)與采收率,2013,20(1):28-31.
LI Guo-dong,YAN Ke,NING Shi-hua.Inner Architecture Characterization of Underwater Distributary Channel:Case of Es281 Sand Unit of Shengtuo Oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(1):28-31.
[35] 何宇航,于開春.分流平原相復(fù)合砂體單一河道識別及效果分析[J].大慶石油地質(zhì)與開發(fā),2005,24(2):17-19.
HE Yu-hang,YU Kai-chun.Recognition and Its Effect Analysis of Single River Channel in Composite Sand Body with Distributary Plain Facies[J].Petroleum Geology and Oilfield Development in Daqing,2005,24(2):17-19.
[36] 趙小慶,鮑志東,劉宗飛,等.河控三角洲水下分流河道砂體儲(chǔ)集層構(gòu)型精細(xì)分析:以扶余油田探51區(qū)塊為例[J].石油勘探與開發(fā),2013,40(2):181-187.
ZHAO Xiao-qing,BAO Zhi-dong,LIU Zong-fei,et al.An In-depth Analysis of Reservoir Architecture of Underwater Distributary Channel Sand Bodies in a River Dominated Delta:A Case Study of T51 Block,F(xiàn)uyu Oilfield[J].Petroleum Exploration and Development,2013,40(2):181-187.
[37] 陳清華,曾 明,章鳳奇,等.河流相儲(chǔ)層單一河道的識別及其對油田開發(fā)的意義[J].油氣地質(zhì)與采收率,2004,11(3):11-15.
CHEN Qing-hua,ZENG Ming,ZHANG Feng-qi,et al.Identification of Single Channel in Fluvial Reservoir and Its Significance to the Oil Field Development[J].Petroleum Geology and Recovery Efficiency,2004,11(3):11-15.