任鴻,胡寶祥
(浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,浙江杭州310014)
氮雜環(huán)丙烷[3+2]環(huán)加成反應(yīng)研究進(jìn)展
任鴻,胡寶祥
(浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,浙江杭州310014)
介紹了最近幾年在不同催化體系下,氮雜環(huán)丙烷與含雙鍵化合物的[3+2]環(huán)加成反應(yīng)研究進(jìn)展。
氮雜環(huán)丙烷;[3+2]環(huán)加成;綜述
氮雜環(huán)丙烷是一類含氮原子的三元雜環(huán)化合物,由于該三元環(huán)的張力極高,導(dǎo)致其具有較強(qiáng)的反應(yīng)活性,因而在有機(jī)合成中,基于氮雜環(huán)丙烷開環(huán)反應(yīng)的應(yīng)用非常廣泛[1]。
如式1所示,氮雜環(huán)丙烷在加熱或光輻射等條件下,易發(fā)生C-C鍵的斷裂,將環(huán)打開,形成亞甲胺內(nèi)钅翁鹽,然后參與1,3-偶極環(huán)加成反應(yīng),生成含氮五元雜環(huán)。另一方面,在路易斯酸作用下,氮雜環(huán)丙烷則發(fā)生C-N鍵的斷裂,與烯烴、炔烴、醛、腈類和聯(lián)烯等含重鍵的化合物發(fā)生[3+2]環(huán)加成反應(yīng),生成另一種構(gòu)型的含氮五元雜環(huán)[2]。
式1氮雜環(huán)丙烷參與的[3+2]開環(huán)加成反應(yīng)
Yadav等人[3]報(bào)導(dǎo)了Sc(OTf)3可以作為路易斯酸催化N-對甲苯磺?;蓟s環(huán)丙烷得到1,3-二偶極體。當(dāng)與環(huán)烯醚反應(yīng)時,可以得到相應(yīng)的吡咯烷,并且具有較高的收率和區(qū)域選擇性(式2)。
式2 Sc(OTf)3催化氮雜環(huán)丙烷與烯烴的反應(yīng)
2011年,Aggarwal等人[4]報(bào)導(dǎo)了應(yīng)用于合成紅藻氨酸的具有手性中心的吡咯烷類化合物的手性合成,如式3。
式3鈀催化氮雜環(huán)丙烷的環(huán)加成反應(yīng)
在與炔烴的[3+2]反應(yīng)中,許多路易斯酸都能催化該反應(yīng)的進(jìn)行[5]。一系列的芳基炔烴(式4)都能在FeCl3催化下與芳基氮雜環(huán)丙烷反應(yīng),得到官能團(tuán)化的吡咯類化合物。
式4 FeCl3催化氮雜環(huán)丙烷與炔烴的反應(yīng)
N-對甲苯磺?;s環(huán)丙烷與腈類化合物的[3+2]環(huán)合反應(yīng)通常涉及到C-N鍵的斷裂。在對這類反應(yīng)的研究中,主要是關(guān)于催化劑的探索,研究發(fā)現(xiàn),一系列的路易斯酸,比如BF3·OEt2[6-11,13],ZnX2(X=Cl,Br,I)[12],Zn(OTf)2[13],Sc(OTf)3[14],Bi(OTf)3[15]和Cu(OTf)2[16]都能應(yīng)用于該反應(yīng)。
2005年,Yadav等人[10]利用TBDPS取代的氮雜環(huán)丙烷,在BF3·OEt2催化下與氰基發(fā)生[3+2]環(huán)加成反應(yīng)(式5)。
2011年,Wei等人[15]以Bi(OTf)3為催化劑,催化N-對甲苯磺?;s環(huán)丙烷和一系列腈類化合物之間的[3+2]環(huán)加成反應(yīng),得到相應(yīng)的咪唑啉,如式6。該方法同樣適用于稠環(huán)芳烴氮雜環(huán)丙烷。
式5 BF3·OEt2催化氮雜環(huán)丙烷與氰基的反應(yīng)
式6 Bi(OTf)3催化氮雜環(huán)丙烷與腈類化合物的反應(yīng)
傳統(tǒng)的合成1,3-惡唑烷衍生物的方法都是從1,2-氨基醇和含羰基類化合物出發(fā),在較高的溫度下進(jìn)行。并且該方法對底物限制較大,同時副反應(yīng)較多。因而越來越多的人開始對由路易斯酸催化氮雜環(huán)丙烷與含羰基化合物反應(yīng)的研究產(chǎn)生了興趣。但到目前為止,對于催化該反應(yīng)的路易斯酸催化劑報(bào)導(dǎo)還比較少,只有BF3·OEt2[10],Cu(OTf)2[16],Zn(OTf)2[13],Sc(OTf)3[17]和AgSbF6[18]。
叔丁基二苯基硅烷基取代的氮雜環(huán)丙烷在BF3·OEt2催化下,也可以與醛發(fā)生[3+2]環(huán)加成反應(yīng)[10]。該反應(yīng)在溫和的條件能快速進(jìn)行,并且適用于芳香族和脂肪族醛,反應(yīng)都有較高的收率,如式7。
式7 BF3·OEt2催化氮雜環(huán)丙烷與醛的反應(yīng)
2009年,Nguyen等[17]以Sc(OTf)3為催化劑,將2-烷基-N-對甲苯磺?;s環(huán)丙烷與醛或者酮反應(yīng),得到了5-烷基-1,3-惡唑烷,如式8。
式8 Sc(OTf)3催化氮雜環(huán)丙烷與醛或酮的反應(yīng)
2011年,Hanamoto等[18]開發(fā)了AgSbF6作為氮雜環(huán)丙烷與醛的[3+2]環(huán)加成反應(yīng)催化劑,如式9。
式9 AgSbF6催化氮雜環(huán)丙烷與醛的反應(yīng)
惡唑酮作為經(jīng)典的雜環(huán)化合物,廣泛應(yīng)用于有機(jī)合成及具有生物活性化合物的合成上面。而過去十年,CO2作為碳源研究的快速發(fā)展,吸引了越來越多來自有機(jī)合成及化工行業(yè)的興趣。到目前為止,報(bào)導(dǎo)的催化體系有堿金屬鹵化物[19-24],四烷基季銨鹽鹵化物[20],DBN[33],碘[24-28],自然存在的氨基酸[29],Cr(III)/DMAP[30],氯氧化鋯[31],聚乙二醇修飾的季銨鹽[32],氨基酸修飾的聚苯乙烯[33],聚乙二醇修飾的季鹽[34]和離子液體[35-36]等。
2011年,Liu等[24]以DBN作催化劑,Li為助催化劑,成功合成了N-官能團(tuán)化2-惡唑酮,并推測了如式10所示反應(yīng)機(jī)理:首先DBN固定CO2,得到中間體a,再與氮雜環(huán)丙烷反應(yīng)得到中間體b;然后在LiI催化下環(huán)打開,并經(jīng)由分子內(nèi)環(huán)化得到目標(biāo)產(chǎn)物,并有較高的收率。
式10 DBN催化氮雜環(huán)丙烷與CO2的反應(yīng)及其機(jī)理
2010年,Jiang等[29]也報(bào)道了在無溶劑、催化劑的條件下,通過天然的α-氨基酸催化將CO2成功插入到氮雜環(huán)丙烷中,如式11。對于這類反應(yīng),幾乎所有自然存在的α-氨基酸(例如,L-組氨酸)都是有效的催化劑。
式11α-氨基酸催化氮雜環(huán)丙烷與CO2的反應(yīng)
2010年,He等[35]首次報(bào)道了在無溶劑下,Lewis堿的離子液體催化氮雜環(huán)丙烷與CO2的反應(yīng),合成5-芳基惡唑酮,如式12。
式12離子液體催化氮雜環(huán)丙烷與CO2的反應(yīng)
2010年,Pinhas等[37]利用高速球磨技術(shù)(HSBM),在無溶劑和無催化劑條件下,在室溫條件下就能使2-烷基或2-芳基氮雜環(huán)丙烷與CO2發(fā)生環(huán)加成反應(yīng),如式13。
式13無溶劑條件下氮雜環(huán)丙烷與CO2的反應(yīng)
2008年,Hou等[38]以三丁基膦為催化劑,催化N-對甲苯磺?;s環(huán)丙烷與二硫化碳及異硫氰酸酯的環(huán)加成反應(yīng),得到1,3-四氫噻唑衍生物,該化合物被廣泛應(yīng)用于有機(jī)合成及藥物化學(xué)領(lǐng)域,如式14。
式14三丁基膦催化氮雜環(huán)丙烷與CS2或異硫氰酸酯的反應(yīng)
2013年,Tharmalingam等[39]以水為溶劑,硝酸鐵為催化劑,催化氮雜環(huán)丙烷與異硫氰酸酯、異氰酸酯及異硒氰酸酯的環(huán)加成反應(yīng),如式15所示。
式15 Fe(NO3)3催化氮雜環(huán)丙烷與異硒氰酸酯的反應(yīng)
氮雜環(huán)丙烷參與的[3+2]環(huán)加成反應(yīng)在合成含氮五元雜環(huán)化合物中具有重要作用。隨著人們對其研究的深入,開發(fā)了一系列催化劑并應(yīng)用于該反應(yīng)中,使其在有機(jī)合成、藥物和生物等領(lǐng)域的應(yīng)用越來越廣泛。在今后的研究中,重點(diǎn)仍在開發(fā)出更多高效新型的催化劑,以在溫和的反應(yīng)條件中進(jìn)行,并且具有更廣的底物適用性。
[1]Liu P.Recent developments inregioselective ring opening of aziridines[J].Tetrahedron,2010,66:2549-2560.
[2]Dauban P,Malik G.Ein maskierter,aus Aziridinen freigesetzter 1,3-Dipol[J].Angew.Chem.2009,121(48),9188-9191;Dauban P,Malik G.A masked 1,3-dipole revealed from aziridines[J].Angew.Chem.Int.Ed.2009,48:9026-9029.
[3]Yadav J S,Reddy B V S,Pandey S K.Scandium triflatecatalyzed 1,3-dipolar cycloaddition of aziridines with alkenes[J].Tetrahedron Lett.2001,42:5399-5403.
[4]Lowe M A,Ostovar M,Aggarwal V K.Palladium-mediated annulation of vinyl aziridines with michael acceptors:stereocontrolled synthesis of substituted pyrrolidines and its application in a formal synthesis of(-)-alpha-Kainic acid [J].Angew.Chem.Int.Ed.2011,50:6370-6374.
[5]Wender P A,Strand D.Cyclocarboamination of alkynes with aziridines:synthesis of 2,3-dihydropyrroles by a catalyzed Formal[3+2]cycloaddition[J].J.Am.Chem.Soc. 2009,131:7528-7529.
[6]Hiyama T,Koide H,Fujita S,Nozaki H.Reaction of N-alkoxycarbonylaziridines with nitriles[J].Tetrahedron 1973, 29:3137-3139.
[7]Legters J,Willems J,Thijs L,Zwanenburg B.Synthesis of functionalized amino-acids by ring-opening reactions of aliphatically substituted aziridine-2-carboxylic esters[J]. Recl.Trav.Chim.Pays-Bas 1992,111:59-68.
[8]Papa C,Tomasini C.Synthesis and ring opening of methyl 2-alkyl-3-(alkyl/aryl)-1-benzo ylaziridine-2-carboxylates:Synthesis of polysubstituted amino acids[J].Eur.J. Org.Chem.2000,2000:1569-1576.
[9]Prasad B A B,Pandey G,Singh V K.Synthesis of substituted imidazolines via[3+2]-cycloaddition of aziridines with nitriles[J].Tetrahedron Lett.2004,45:1137-1141.
[10]Yadav V K,Sriramurthy V.Silylmethyl-substituted aziridine and azetidine as masked 1,3-and 1,4-dipoles for formal[3+2]and[4+2]cycloaddition reactions[J].J.Am. Chem.Soc.2005,127:16366-16367.
[11]Concellon J M,Riego E,Suarez J R.Synthesis of enantiopureimidazolines through a ritter reaction of 2-(1-aminoalkyl)aziridines with nitriles[J].Org.Lett.2004,6: 4499-4501
[12]Ghorai M K,Kumar A,Ghosh K,An efficient route to regioselective opening of N-tosylaziridines with zinc(II)halides[J].Tetrahedron Lett.2005,46:4103-4106.
[13]Gandhi S,Bisai A,Singh V K.Studies on the reaction of aziridines with nitriles and carbonyls:Synthesis of imidazolines and oxazolidines[J].J.Org.Chem.2007,72:2133-2142. [14]Wu J,Sun X,Xia H G.Sc(OTf)(3)-catalyzed[3+2]-cycloaddition of aziridines with nitriles under solvent-free conditions[J].Tetrahedron Lett.2006,47:1509-1512.
[15]Li X,Yang X,Chang H.A new and efficient procedure for Bi(OTf)(3)-promoted[3+2]cycloaddition of N-tosylaziridines to yield imidazolines[J].Eur.J.Org.Chem. 2011:3122-3125.
[16]Ghorai M K,Das K,Ghosh K.Copper(II)triflate promoted cycloaddition of alpha-alkyl or aryl substituted N-tosylaziridines with nitriles:a highly efficient synthesis of substituted imidazolines[J].Tetrahedron Lett.2006,47:5399-5403.
[17]Kang S B,Miller A W,Nguyen S T.Sc(OTf)(3)-catalyzed condensation of 2-alkyl-N-tosylaziridine with aldehydes or ketones:an efficient synthesis of 5-alkyl-1,3-oxazolidines [J].Chem.Commun.2009:3928-3930.
[18]Maeda R,Ishibashi R,Hanamoto T.AgSbF6-promoted cycloaddition reaction of 2-trifluoromethyl-N-tosylaziridine with aldehydes[J].Org.Lett.2011,13:6240-6243.
[19]Hancock M T,Pinhas A R.A convenient and inexpensive conversion of an aziridine to an oxazolidinone[J].Tetrahedron Lett.2003,44:5457-5460.
[20]Sudo A,Koizumi E,Senda F,Endo T.Highly efficientchemical fixations of carbon dioxide and carbon disulfide by cycloaddition to aziridine under atmospheric pressure[J]. Tetrahedron Lett.2003,44:7889-7891.
[21]Sudo A,Senda F,Endo T.N-tosylaziridine,a new substrate for chemical fixation of carbon dioxide via ring expansion reaction under atmospheric pressure[J].Tetrahedron Lett.2004,45:1363-1365.
[22]Mu W H,Chasse G A,Fang D C.High level a initio exploration on the conversion of carbon dioxide into oxazolidinones:The mechanism and regioselectivity[J].J.Phys. Chem.A.2008,112:6708-6714.
[23]Phung C,Pinhas A R.The high yield and regioselective conversion of an unactivated aziridine to an oxazolidinone using carbon dioxide with ammonium iodide as the catalyst [J].Tetrahedron Lett.2010,51:4552-4554.
[24]Wu Y,Liu G.Organocatalyzed cycloaddition of carbon dioxide to aziridines[J].Tetrahedron Lett.2011,52:6450-6452.
[25]Shen Y M,Duan W L,Shi M.Chemical fixation of carbon dioxide co-catalyzed by a combination of Schiff bases or phenols and organic bases[J].Eur.J.Org.Chem.2004: 3080-3089.
[26]Soga K,Hosoda S,Ikeda S.A new synthetic route to 2-oxazolidones[J].J.Chem.Soc.Chem.Commun.1976:617-617. [27]Kawanami H,Ikushima Y.Regioselectivity and selective enhancement of carbon dioxide fixation of 2-substituted aziridines to 2-oxazolidinones under supercritical conditions[J].Tetrahedron Lett.2002,43:3841-3844.
[28]Kawanami H,Ikushima Y.Effective ScCO2-ionic liquid reaction system based on symmetric aliphatic ammonium salts for the rapid CO2fixation with aziridine to 2-oxazolidinone[J].Chem.Lett.2005,34:60-61.
[29]Jiang H F,Ye J W,Huang L B.Naturally occurring alphaamino acid:a simple and inexpensive catalyst for the selective synthesis of 5-aryl-2-oxazolidinones from CO2and aziridines under solvent-free conditions[J].Tetrahedron Lett.2010,51:928-932.
[30]Miller A W,Nguyen S T.(Salen)chromium(III)/DMAP: An efficient catalyst system for the selective synthesis of 5-substituted oxazolidinones from carbon dioxide and aziridines[J].Org.Lett.2004,6:2301-2304.
[31]Wu Y,Miao C X,Li W.Zirconyl chloride:an efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2under solvent-free conditions[J]. Tetrahedron.2009,65:6204-6210.
[32]Du Y,Wu Y,He L N.Quaternary ammonium bromide functionalized polyethylene glycol:A highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions[J].J.Org.Chem.2008,73:4709-4712. [33]Chaorong Q,Jinwu Y,Wei Z,Huanfeng J.Polystyrenesupported amino acids as efficient catalyst for chemical fixation of carbon dioxide[J].Adv.Synth.Catal.2010,352: 1925-1933.
[34]Watile R A,Bagal D B,Bhanage B M.Regioselective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines using Br-Ph3+PPEG(600)P+Ph3Br-as an efficient,homogenous recyclable catalyst at ambient conditions.Tetrahedron Lett[J].2011,52:6383-6387.
[35]Yang Z Z,Peng S Y,He L N.Lewis basic ionic liquidscatalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2under solvent-free conditions[J].Green Chem.2010,12:1850-1854.
[36]Yang Z Z,He L N.He.Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2under mild conditions[J].Green Chem.2011,13:2351-2353 [37]Dou X Y,He Z Z,Wang J L,He L N.Catalyst-free process for the synthesis of 5-aryl-2-oxazolidinones via cycloaddition reaction of aziridines and carbon dioxide[J]. synlett.2010,14:2159-2163.
[38]Wu J Y,Luo Z B,Dai L X,Hou X L.Tributylphosphinecatalyzed cycloaddition of aziridines with carbon disulfide and isothiocyanate[J].J.Org.Chem.2008,73:9137-9139
[39]Mani S,Tharmalingam P.“On Water”:efficient iron-catalyzed cycloaddition of aziridines with heterocumulenes[J]. Angew.Chem.Int.Ed.2013,52:572-575.
The Research Progress in the[3+2]Cycloaddition of Azirdines
REN Hong,HU Bao-Xiang
(College of Chemical Engineering,Zhejiang University of Technology,Hangzhou,Zhejiang 310014,China)
The research of the[3+2]cycloaddition of azirdines and compounds with double bond,for instance,alkene,alkyne,aldehyde and carbon dioxide,was reviewed.The developing prospects was also discussed.
azirdines;[3+2]cycloaddition;research progress
1006-4184(2015)1-0022-07
2014-04-16
國家自然科學(xué)基金資助項(xiàng)目(編號:20876149)。
任鴻(1989-),男,浙江東陽人,碩士研究生,主要從事有機(jī)合成研究。E-mail:renhong1004@163.com。