李晴宇,李楊玲,張博,嚴(yán)偉,林能明*
(1.南京醫(yī)科大學(xué)附屬杭州醫(yī)院臨床藥學(xué)研究室,浙江 杭州 310006; 2.杭州市第一人民醫(yī)院轉(zhuǎn)化醫(yī)學(xué)研究中心臨床藥理研究室,浙江 杭州 310006)
低氧誘導(dǎo)因子-1α作為肝癌治療靶點的研究進(jìn)展
李晴宇1,李楊玲1,2,張博1,2,嚴(yán)偉1,林能明1,2*
(1.南京醫(yī)科大學(xué)附屬杭州醫(yī)院臨床藥學(xué)研究室,浙江 杭州 310006; 2.杭州市第一人民醫(yī)院轉(zhuǎn)化醫(yī)學(xué)研究中心臨床藥理研究室,浙江 杭州 310006)
低氧在實體瘤中常有發(fā)生,實體瘤的低氧能刺激低氧誘導(dǎo)因子(HIF-1α)的過度表達(dá)。HIF-1α的高表達(dá)能夠進(jìn)一步促進(jìn)癌細(xì)胞的增殖、浸潤能力,甚至能夠降低癌細(xì)胞對放化療的敏感性。以HIF-1α為靶點的肝癌藥物治療方案已經(jīng)越來越受到臨床及相關(guān)研究者的關(guān)注,抑制HIF-1α的表達(dá)可抑制肝癌轉(zhuǎn)移、克服多藥耐藥、誘導(dǎo)肝癌細(xì)胞增殖和凋亡,因此通過直接或間接的手段靶向HIF-1α將成為治療肝癌的有效手段。
HIF-1α;肝癌;耐藥
肝癌在全球的發(fā)病率呈上升趨勢,尤其在我國,肝癌的新增病例和死亡人數(shù)均居世界首位。作為一種高代謝的腫瘤,肝癌耗氧量高于正常組織;此外,肝臟內(nèi)兼具有肝動脈和肝門靜脈這一獨特的血管結(jié)構(gòu),可致部分區(qū)域的肝癌細(xì)胞氧供進(jìn)一步減少,加劇缺氧狀況。低氧誘導(dǎo)因子-1α(hypoxia inducible factor-1α,HIF-1α)是缺氧效應(yīng)調(diào)控中最為關(guān)鍵的核轉(zhuǎn)錄調(diào)控因子,HIF-1α的表達(dá)與肝癌發(fā)生發(fā)展、復(fù)發(fā)轉(zhuǎn)移、癌細(xì)胞凋亡和耐藥性均有緊密的聯(lián)系。本文對近年來HIF-1α在肝癌發(fā)生發(fā)展中的作用以及針對HIF-1α作為潛在治療靶點的研究進(jìn)展作一綜述,旨在為開發(fā)靶向HIF-1α的肝癌治療藥物研究提供更多的理論基礎(chǔ)和實踐支持。
低氧是實體瘤的常見特征,腫瘤由于血管微環(huán)境異常造成血液供應(yīng)不足而導(dǎo)致缺氧。低氧最先刺激低氧誘導(dǎo)因子(hypoxia inducible factors,HIFs)的過度表達(dá),通過信號轉(zhuǎn)導(dǎo)通路誘導(dǎo)下游基因的表達(dá),使細(xì)胞適應(yīng)低氧環(huán)境,繼續(xù)增殖,并具有高侵襲與轉(zhuǎn)移能力以及對放化療法的耐受性[1]。
1.1 低氧誘導(dǎo)因子家族
HIFs是細(xì)胞應(yīng)對氧氣水平降低時的主要調(diào)節(jié)因子,廣泛表達(dá)于哺乳動物的各種組織細(xì)胞。HIF是由一個不穩(wěn)定的α亞基(HIF-α)和一個穩(wěn)定的β亞基(HIF-β)組成的二聚體,具有結(jié)合靶基因的低氧反應(yīng)元件(hypoxia response elements,HREs)的能力,從而發(fā)揮調(diào)控作用。目前認(rèn)為HIF-α亞基在人體中有3種:HIF-1α、HIF-2α和HIF-3α[2]。與HIF-1α亞基相比,目前對HIF-2α和HIF-3α的研究相對匱乏。HIF-1α在低氧條件下表達(dá)上調(diào),并與HIF-1β結(jié)合成異質(zhì)二聚體,HIF-1β在細(xì)胞內(nèi)持續(xù)表達(dá),而HIF-1α被認(rèn)為是HIF-1發(fā)揮功能的限速因子[3]。常氧狀態(tài)下,HIF-1α雖然可以表達(dá),但其氧依賴降解區(qū)(oxygen degradation domain,ODD)被脯氨酸羥化酶修飾,隨后迅速被希佩爾林道病腫瘤抑制蛋白(Von Hippel Lindau protein, pVHL)以及E3泛素化連接酶介導(dǎo)的蛋白酶體降解[4],圖1顯示HIF-1α在常氧下容易被降解,而在低氧下高表達(dá),最終引起大量靶基因的表達(dá)。
圖1 HIF-1α活性的氧依賴性調(diào)節(jié)Figure 1 Oxygen-dependent regulation of HIF-1α activity
除了已知的泛素蛋白酶體通路外,自噬是否參與降解HIF-1α蛋白這一問題也引起了研究者們的注意。Hubbi等[5]利用小分子化合物和分子克隆技術(shù)特異性改變細(xì)胞內(nèi)溶酶體的含量,發(fā)現(xiàn)HIF-1α 蛋白水平隨著溶酶體數(shù)目的增加而降低。進(jìn)一步的分子機制研究結(jié)果顯示,HIF-1α 蛋白可以與標(biāo)志性蛋白HSC70和LAMP2A相互結(jié)合,HSP70和LAMP2A蛋白含量的多少能夠影響HIF-1α 蛋白水平,證實分子伴侶蛋白介導(dǎo)的自噬參與調(diào)控HIF-1α 蛋白降解。另外,Liu等[6]在研究新型化合物Q6(1)的抗肝癌作用中發(fā)現(xiàn),Q6通過引起HIF-1α發(fā)生自噬性降解,從而抑制肝癌細(xì)胞的增殖,間接表明HIF-1α蛋白亦可以通過自噬途徑進(jìn)行降解。
1.2 HIF-1α與腫瘤的關(guān)系
腫瘤組織內(nèi)部細(xì)胞缺氧是惡性腫瘤的重要生物學(xué)特征,臨床和動物模型已證實約90%的實體瘤內(nèi)存在低氧微環(huán)境。HIF-1α是低氧微環(huán)境關(guān)鍵調(diào)控因子,可通過調(diào)控下游多種蛋白和信號轉(zhuǎn)導(dǎo)通路影響腫瘤的發(fā)生發(fā)展[7]。通過對大量的臨床腫瘤病理組織樣本進(jìn)行分析,研究人員發(fā)現(xiàn)HIF-1α在肝癌、乳腺癌、卵巢癌、肺癌等多種腫瘤組織中過度表達(dá);另外,多種轉(zhuǎn)移性腫瘤中HIF-1α的表達(dá)顯著高于原發(fā)瘤;而乳腺、子宮等良性病變和鄰近的正常組織中HIF-1α處于正常水平,以上種種跡象均提示HIF-1α的表達(dá)在腫瘤的轉(zhuǎn)移和侵襲過程中起著關(guān)鍵作用[8-10]。HIF-1α在實體腫瘤組織內(nèi)選擇性持續(xù)高表達(dá),下游關(guān)鍵調(diào)控靶基因在細(xì)胞異常增殖、存活、維持干細(xì)胞特性,代謝重組,血管生成,上皮間質(zhì)轉(zhuǎn)化,轉(zhuǎn)移與侵襲中起重要作用[11](見表1)。最新研究發(fā)現(xiàn),TAZ可作為HIF-1α的靶基因參與調(diào)控乳腺癌的腫瘤干細(xì)胞特性[12];HIF-1α可與PD-L1啟動子區(qū)域的HRE直接結(jié)合,激活PD-L1蛋白的轉(zhuǎn)錄,增加該蛋白的表達(dá)從而介導(dǎo)腫瘤免疫逃逸[13];FTCD作為受HIF-1α的新調(diào)控靶蛋白參與促進(jìn)肝癌的轉(zhuǎn)移、增殖和化療耐藥[14]。
表1 HIF-1α的靶基因調(diào)控腫瘤發(fā)生與演進(jìn)Table 1 HIF-1αtarget genes involved in crucial aspects of cancer progression
在肝癌形成的早期,HIF-1α在轉(zhuǎn)錄水平和蛋白水平上均呈現(xiàn)過表達(dá),表現(xiàn)為肝細(xì)胞變性、癌前和癌變組織HIF-1α在基因和蛋白表達(dá)上呈動態(tài)梯度增高,且外周血中亦可檢測到HIF-1α的表達(dá)變化[15],這些現(xiàn)象均提示,與大多數(shù)的實體瘤類似,HIF-1α在缺氧微環(huán)境下的肝癌發(fā)生和惡性演進(jìn)中可能扮演重要的角色,而后續(xù)的研究也表明HIF-1α可以通過調(diào)控多種下游靶基因和信號通路參與肝癌發(fā)生發(fā)展、復(fù)發(fā)轉(zhuǎn)移、癌細(xì)胞凋亡、耐藥性的獲得,因此靶向HIF-1α也將可能成為治療肝癌的有效手段之一[16]。
2.1 HIF-1α與肝癌細(xì)胞能量代謝
低氧微環(huán)境下,腫瘤發(fā)生從有氧代謝到無氧代謝的轉(zhuǎn)變,HIF-1α被報道是能量代謝的關(guān)鍵調(diào)控因子。已有文獻(xiàn)報道HIF-1α通過激活下游與糖酵解相關(guān)因子例如GLUT1、GLUT3、HK1和HK2等實現(xiàn)無氧糖酵解,從而為腫瘤細(xì)胞的發(fā)生發(fā)展提供能量[8]。最新研究顯示,HIF-1α能夠通過降低脂質(zhì)代謝相關(guān)因子MCAD和LCAD的表達(dá)水平,抑制脂肪酸的β氧化,促進(jìn)肝癌細(xì)胞的增殖和腫瘤生長[17]。此外,值得關(guān)注的是,HIF-1α還可以通過調(diào)節(jié)鈣離子的穩(wěn)態(tài)來促進(jìn)低氧下肝癌的生長,Li等[18]在探究HIF-1α如何驅(qū)動肝癌生成的問題中發(fā)現(xiàn),HIF-1α能夠通過影響鈣離子動員來促進(jìn)肝癌生成:一方面,HIF-1α直接控制了STIM1轉(zhuǎn)錄,并促進(jìn)了鈣庫操縱性鈣離子內(nèi)流(SOCE);另一方面,STIM1介導(dǎo)的SOCE通過激活CaMKII和p300,增加HIF-1α于低氧條件下在肝癌細(xì)胞中的累積,給予HIF-1α抑制劑YC-1(2)或特異性敲除HIF-1α蛋白均能夠顯著降低STIM1蛋白表達(dá)并有效抑制肝癌的發(fā)生,闡明HIF1-STIM1交互作用參與肝癌的生成。
2.2 HIF-1α與肝癌血管生成
肝癌的發(fā)展需要新生毛細(xì)血管的形成以提供營養(yǎng)和運輸代謝產(chǎn)物,維持腫瘤生長發(fā)育的適宜環(huán)境,而腫瘤血管的形成與某些血管生成素和生長因子如血管內(nèi)皮生長因子(VEGF)、表皮生長因子(EGF)和纖維生長因子(FGF)等有關(guān),其中VEGF在腫瘤血管形成過程中起關(guān)鍵作用。研究表明:在缺氧時HIF-1α能調(diào)節(jié)VEGF的信號傳導(dǎo),HIF-1α不僅可以增加VEGF的mRNA穩(wěn)定性,而且能提高VEGF的轉(zhuǎn)錄活性,從而促進(jìn)腫瘤血管的形成[3,19]。Li等[20]最近發(fā)現(xiàn),低氧條件下,肝癌細(xì)胞內(nèi)Cbx4蛋白能夠促進(jìn)HIF-1α的K391和K477位點的sumo化修飾,穩(wěn)定HIF-1α蛋白,從而增強其下游靶蛋白VEGF的表達(dá),實現(xiàn)促進(jìn)肝癌的血管生成作用,該研究不僅為發(fā)現(xiàn)新的抗腫瘤血管生成提供作用靶點,同時也說明VEGF受HIF-1α所調(diào)控。
2.3 HIF-1α與肝癌復(fù)發(fā)轉(zhuǎn)移
腫瘤組織內(nèi)HIF-1α的表達(dá)和肝癌的轉(zhuǎn)移復(fù)發(fā)密切相關(guān),表現(xiàn)為上皮細(xì)胞間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)的發(fā)生、腫瘤細(xì)胞黏附性的改變、侵襲性的增強等,因此,肝癌組織內(nèi)如果HIF-1α表達(dá)高,則預(yù)示著術(shù)后生存率下降,復(fù)發(fā)的可能性增加[21]。有研究顯示,低氧微環(huán)境下,肝癌細(xì)胞內(nèi)累積的HIF-1α蛋白通過轉(zhuǎn)錄激活Snail,從而誘導(dǎo)EMT的發(fā)生[22]。其他一些E-cadherin抑制因子,例如TCF3、ZEB1和ZEB2被報道均可以通過HIF-1α上調(diào),為腫瘤細(xì)胞的轉(zhuǎn)移提供分子基礎(chǔ)[23-25]。另外,HIF-1α還可以通過調(diào)節(jié)趨化因子來促進(jìn)細(xì)胞的轉(zhuǎn)移能力,例如Tian等[26]的研究結(jié)果顯示,HIF-1α能夠通過上調(diào)趨化因子CXCL6的表達(dá)水平促進(jìn)肝癌的轉(zhuǎn)移侵襲能力。除此之外,研究人員也發(fā)現(xiàn)了一些新的蛋白參與HIF-1α所介導(dǎo)的腫瘤轉(zhuǎn)移,例如最近的研究發(fā)現(xiàn)Rab11-FIP4在肝癌組織中的表達(dá)顯著高于癌旁組織,是促進(jìn)肝癌轉(zhuǎn)移的重要因子,其自身高表達(dá)常指示著肝癌患者的預(yù)后不良,機制研究揭示該因子受HIF-1α蛋白所調(diào)控,是HIF-1α的靶基因[27]。在探討肝癌轉(zhuǎn)移的分子機制中,Liu等[28]發(fā)現(xiàn)PROX1蛋白能夠促進(jìn)肝癌細(xì)胞的轉(zhuǎn)移侵襲能力,這種作用通過促進(jìn)HIF-1α蛋白的表達(dá)而實現(xiàn),進(jìn)一步證明HIF-1α在調(diào)控肝癌轉(zhuǎn)移中的作用。
2.4 HIF-1α與肝癌細(xì)胞凋亡
HIF-1α可以抑制肝癌細(xì)胞的凋亡,Piret等[29]研究發(fā)現(xiàn)缺氧或氯化鈷可以誘導(dǎo)HIF-1α的表達(dá),進(jìn)而抑制叔丁基過氧化氫或去血清引起的肝癌細(xì)胞HepG2的凋亡。目前,應(yīng)用于肝癌治療的靶向抑制劑索拉非尼,被報道通過抑制HIF-1α/VEGFA信號通路,誘導(dǎo)肝癌細(xì)胞凋亡[30];另外,體內(nèi)動物實驗表明,應(yīng)用反義核苷酸特異性沉默HIF-1α蛋白,能夠明顯增強化療藥物多柔比星誘導(dǎo)肝癌細(xì)胞的凋亡作用,這些結(jié)果均表明HIF-1α的表達(dá)對細(xì)胞具有保護(hù)作用[31]。不過,也有個別文獻(xiàn)報道HIF-1α既可促進(jìn)凋亡又可抑制凋亡,具體取決于細(xì)胞類型和實驗條件,其機制仍有待進(jìn)一步研究[32]。
2.5 HIF-1α與肝癌治療抵抗
放療是目前治療肝癌的重要手段,Xiang等[33]對原代肝癌樣本進(jìn)行分析,發(fā)現(xiàn)病人肝癌細(xì)胞內(nèi)HIF-1α的高表達(dá)常預(yù)示放療效果不佳和預(yù)后不良。另外Wang等[34]研究發(fā)現(xiàn),柴胡皂苷D通過抑制HIF-1α從而增強肝癌放療敏感性,進(jìn)一步說明HIF-1α蛋白參與肝癌放療抵抗作用。除此之外,很多文獻(xiàn)報道HIF-1α蛋白是實體瘤在低氧微環(huán)境中產(chǎn)生放療抵抗的重要因素[35]。在肝癌實體瘤中,研究人員發(fā)現(xiàn)HIF-1α蛋白參與腫瘤細(xì)胞對多種常用化療藥物的低氧耐藥現(xiàn)象。例如Liang等[36]比較了索拉非尼耐藥的肝癌組織與敏感型肝癌組織,發(fā)現(xiàn)前者的低氧程度高于后者;緊接著作者檢測到耐藥型的腫瘤組織中高表達(dá)HIF-1α、MDR和GLUT-1蛋白(另一個HIF-1α靶蛋白),而應(yīng)用shRNA特異性沉默HIF-1α蛋白可以逆轉(zhuǎn)這種藥物抵抗作用,并進(jìn)一步發(fā)現(xiàn)姜黃素類似物EF24通過促進(jìn)HIF-1α蛋白降解而增強索拉非尼的藥效。類似地,Cai等[37]的實驗研究發(fā)現(xiàn)HIF-1α蛋白的累積會明顯降低TopoⅠ抑制劑拓?fù)涮婵怠N-38(3)和10-羥基喜樹堿等的藥效,而沉默HIF-1α蛋白能夠顯著提高它們的抗腫瘤活性,更加說明HIF-1α蛋白參與介導(dǎo)肝癌的治療抵抗。針對HIF-1α如何影響肝癌細(xì)胞的耐藥性問題,有實驗研究表明低氧主要是通過累積激活HIF-1α蛋白,啟動下游MDR1轉(zhuǎn)錄,從而產(chǎn)生P-糖蛋白,將藥物由細(xì)胞內(nèi)泵出,進(jìn)而降低細(xì)胞內(nèi)藥物濃度誘發(fā)MDR[38];另外,Tong等[39]研究發(fā)現(xiàn),WSB-1蛋白能夠作為HIF-1α蛋白的靶基因參與降低肝癌細(xì)胞對藥物依托泊苷的敏感性,特異性敲低WSB-1蛋白的表達(dá)能夠增強該藥的抗腫瘤作用;此外,Wang等[40]發(fā)現(xiàn)HIF-1α還可以通過調(diào)控ADAM17蛋白的表達(dá)水平,影響EGFR/PI3K/Akt等信號通路使肝癌細(xì)胞產(chǎn)生低氧耐藥特性。
鑒于HIF-1α在促進(jìn)腫瘤的發(fā)生發(fā)展中具有重要的作用,因而尋找和設(shè)計靶向HIF-1α的化合物將成為近期的研究熱點。目前,已有不少藥物或化合物被發(fā)現(xiàn)具有抑制HIF-1α的作用,如表2所示。根據(jù)作用特點不同將HIF-1α抑制劑分為以下幾類:1)作用于HIF-1α上游相關(guān)信號通路,如mTOR、PI3K抑制劑等;2)抑制HIF-1α的mRNA表達(dá),如EZN-2968[41]、PX-478;3)抑制HIF-1α蛋白合成,如喜樹堿類TopoⅠ抑制劑拓?fù)涮婵档龋?2],HDAC抑制劑vorinostat[43];4)促進(jìn)HIF-1α蛋白降解,包括YC-1、HSP90抑制劑等;5)抑制HIF-1α異二聚體的形成,例如丫啶黃[44-45];6)阻斷HIF-1α與靶基因的結(jié)合,如阿霉素等;7)抑制HIF-1α介導(dǎo)的轉(zhuǎn)錄激活,如chetomin、硼替佐米等[46]。
目前關(guān)于以HIF-1α為靶點治療肝癌的研究進(jìn)展如下:一方面,研究人員將以上被報道具有抑制HIF-1α活性的化合物應(yīng)用于肝癌,例如Ma等[47]將HIF-1α抑制劑2-methoxyestradiol(4)與索拉非尼聯(lián)合應(yīng)用,發(fā)現(xiàn)其可以明顯增強后者的抗肝癌藥效。Choi 等[48]應(yīng)用shRNA靶向沉默HIF-1α后,發(fā)現(xiàn)肝癌的血管生成和腫瘤生長受到明顯抑制。另一方面,以肝癌為模型,不斷發(fā)現(xiàn)新的化合物通過抑制HIF-1α活性從而發(fā)揮抗腫瘤作用,例如,Weng等[49]的研究結(jié)果顯示化合物Q39(5)通過減少HIF-1α透膜轉(zhuǎn)位,促進(jìn)HIF-1α蛋白泛素化降解,從而發(fā)揮低氧環(huán)境中Q39誘導(dǎo)肝癌細(xì)胞凋亡的作用。Cai等[37]研究發(fā)現(xiàn)低氧選擇性化合物替莫唑胺通過降低HIF-1α蛋白表達(dá),從而增強伊立替康等TopoⅠ抑制劑的抗肝癌作用。此外,越來越多的中藥成分也被發(fā)現(xiàn)具有抑制HIF-1α的作用,例如姜黃素被發(fā)現(xiàn)可以抑制肝癌的HIF-1α活性從而逆轉(zhuǎn)EMT的發(fā)生[50];Lu等[51]研究發(fā)現(xiàn)藤黃酸通過增加脯氨酸羥化酶PHD2的表達(dá),提高HIF-1α的羥基化水平進(jìn)而促進(jìn)其降解,從而降低下游VEGF的表達(dá),抑制肝癌的血管生成。
表2 HIF-1α的代表性抑制劑及其作用機制Table 2 Representative chemical inhibitors targeting HIF-1α
HIF-1α在肝癌細(xì)胞中的表達(dá)明顯高于正常組織細(xì)胞。HIF-1α作為肝癌細(xì)胞適應(yīng)低氧微環(huán)境的重要調(diào)節(jié)因子,可以通過調(diào)控下游多個靶基因,影響肝癌的生長繁殖、侵襲和轉(zhuǎn)移、新生血管生成、凋亡、耐藥等過程。目前各項研究均不同程度地支持將HIF-1α作為治療靶點是可行的,因而通過直接或者間接的手段靶向HIF-1α將可能成為治療肝癌的有效手段。盡管目前針對于HIF-1α的研究越來越多,HIF-1α抑制劑也被大量的發(fā)現(xiàn),但均處在臨床前研究階段。在將這些抑制劑推向臨床應(yīng)用的過程中,仍有不少問題亟待解決,如HIF-1α抑制劑特異性不強,對腫瘤的殺傷作用不明顯等,因此,目前尚無上市的HIF-1α 抑制劑,所以尋找和研發(fā)特異性更強的抑制劑刻不容緩。
[1]Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer[J]. Int J Cancer, 2015,1(1): 1-9.
[2]Sakamoto T, Weng J S, Hara T, et al. Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP[J]. Mol Cell Biol, 2014, 34(1): 30-42.
[3]Ahluwalia A, Tarnawski A S. Critical role of hypoxia sensor - HIF-1 alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing[J]. Curr Med Chem, 2012, 19(1): 90-97.
[4]Buckley D L, Van Molle I, Gareiss P C, et al. Targeting the Von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/ HIF-1 alpha interaction[J]. J Am Chem Soc, 2012, 134(10): 4465-4468.
[5]Hubbi M E, Hu H, Kshitiz, et al. Chaperone-mediated autophagy targets hypoxia-inducible factor-1alpha (HIF-1alpha) for lysosomal degradation[J]. J Biol Chem, 2013, 288(15): 10703-10714.
[6]Liu X W, Cai T Y, Zhu H, et al. Q6, a novel hypoxia-targeted drug,regulates hypoxia-inducible factor signaling via an autophagy-dependent mechanism in hepatocellular carcinoma[J]. Autophagy, 2014, 10(1): 111-122.
[7]Hu Y, Liu J, Huang H. Recent agents targeting HIF-1alpha for cancer therapy[J]. J Cell Biochem, 2013, 114(3): 498-509.
[8]Semenza G L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy[J]. Trends Pharmacol Sci,2012, 33(4): 207-214.
[9]Saponaro C, Malfettone A, Ranieri G, et al. VEGF, HIF-1 alpha expression and MVD as an angiogenic network in familial breast cancer[J]. PLoS One, 2013, 8(1): e40597.
[10]Sun W, Shen Z Y, Zhang H, et al. Overexpression of HIF-1 alpha in primary gallbladder carcinoma and its relation to vasculogenic mimicry and unfavourable prognosis[J]. Oncol Rep, 2012, 27(6): 1990-2002.
[11]Semenza G L. Hypoxia-inducible factors in physiology and medicine[J]. Cell, 2012, 148(3): 399-408.
[12]Xiang L S, Gilkes D M, Hu H X, et al. Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype[J]. Oncotarget, 2014, 5(24): 12509-12527.
[13]Noman M Z, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1 alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation[J]. J Exp Med, 2014, 211(5): 781-790.
[14]Yu Z H, Ge Y Y, Xie L, et al. Using a yeast two-hybrid system to identify FTCD as a new regulator for HIF-1 alpha in HepG2 cells[J]. Cell Signal, 2014, 26(7): 1560-1566.
[15]Yao D F, Jiang H, Yao M, et al. Quantitative analysis of hepatic hypoxiainducible factor-1alpha and its abnormal gene expression during the formation of hepatocellular carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2009, 8(4): 407-413.
[16]Zheng S S, Chen X H, Yin X, et al. Prognostic significance of HIF-1 alpha expression in hepatocellular carcinoma: A meta-analysis[J]. PLoS One, 2013, 8(6): e65753.
[17]Huang D, Li T T, Li X H, et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression[J]. Cell Rep, 2014, 8(6): 1930-1942.
[18]Li Y S, Guo B, Xie Q C, et al. STIM1 mediates hypoxia-driven hepatocarcinogenesis via interaction with HIF-1[J].Cell Rep, 2015, 12(3): 388-395.
[19]De Francesco E M, Lappano R, Santolla M F, et al. HIF-1 alpha/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs)[J]. Breast Cancer Res, 2013, 15(4): 1-18.
[20]Li J, Xu Y, Long X D, et al. Cbx4 Governs HIF-1 alpha to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity [J]. Cancer Cell, 2014, 25(4): 547-548.
[21]Semenza G L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy[J]. Trends Pharmacol Sci,2012, 33(4): 207-214.
[22]Zhang L, Huang G, Li X, et al. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1alpha in hepatocellular carcinoma[J]. BMC Cancer, 2013, 13: 108.
[23]Zhu G H, Huang C, Feng Z Z, et al. Hypoxia-induced snail expression through transcriptional regulation by HIF-1 alpha in pancreatic cancer cells[J]. Digest Dis Sci, 2013, 58(12): 3503-3515.
[24]Kumar S, Mehta K. Tissue transglutaminase constitutively activatesHIF-1 alpha promoter and nuclear factor-kappa B via a non-canonical pathway [J]. PLoS One, 2012, 7(11): e49321.
[25]Li S, Zhang J, Yang H, et al. Copper depletion inhibits CoCl2-induced aggressive phenotype of MCF-7 cells via downregulation of HIF-1 and inhibition of Snail/Twist-mediated epithelial-mesenchymal transition[J]. Sci Rep, 2015, 5(1): 1-17.
[26]Tian H, Huang P, Zhao Z, et al. HIF-1alpha plays a role in the chemotactic migration of hepatocarcinoma cells through the modulation of CXCL6 expression[J]. Cell Physiol Biochem, 2014, 34(5): 1536-1546.
[27]Hu F, Deng X, Yang X, et al. Hypoxia upregulates Rab11-family interacting protein 4 through HIF-1alpha to promote the metastasis of hepatocellular carcinoma[J]. Oncogene, 2015,1(1): 1-11.
[28]Liu Y, Zhang J B, Qin Y, et al. PROX1 promotes hepatocellular carcinoma metastasis by way of up-regulating hypoxia-inducible factor 1alpha expression and protein stability[J]. Hepatology, 2013, 58(2): 692-705.
[29]Piret J P, Mottet D, Raes M, et al. CoCl2, a chemical inducer of hypoxiainducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2[J]. Ann Ny Acad Sci, 2002, 973: 443-447.
[30]Liu F, Wang P, Jiang X, et al. Antisense hypoxia-inducible factor 1alpha gene therapy enhances the therapeutic efficacy of doxorubicin to combat hepatocellular carcinoma[J]. Cancer Sci, 2008, 99(10): 2055-2061
[31]Xu M, Zheng Y L, Xie X Y, et al. Sorafenib blocks the HIF-1alpha/ VEGFA pathway, inhibits tumor invasion, and induces apoptosis in hepatoma cells[J]. DNA Cell Biol, 2014, 33(5): 275-281.
[32]Xu Z Q, Chen X P, Peng C, et al. Hypoxia-inducible factor-1 alpha suppressed hepatocellular carcinoma cell apoptosis through influencing on Omi/HtrA2 expression and its releasing from the mitochondrion[J]. Oncol Res, 2012, 20(5/6): 213-220.
[33]Xiang Z L, Zeng Z C, Fan J, et al. The expression of HIF-1alpha in primary hepatocellular carcinoma and its correlation with radiotherapy response and clinical outcome[J]. Mol Biol Rep, 2012, 39(2):2021-2029.
[34]Wang B F, Wang X J, Kang H F, et al. Saikosaponin-D enhances radiosensitivity of hepatoma cells under hypoxic conditions by inhibiting hypoxia-inducible factor-1 alpha[J]. Cell Physiol Biochem, 2014, 33(1): 37-51.
[35]Wu W D, Hu Z M, Shang M J, et al. Cordycepin down-regulates multiple drug resistant (MDR)/HIF-1 alpha through regulating AMPK/ mTORC1 signaling in GBC-SD gallbladder cancer cells[J]. Int J Mol Sci, 2014, 15(7): 12778-12790.
[36]Liang Y J, Zheng T S, Song R P, et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1 alpha inhibition in hepatocellular carcinoma[J]. Hepatology, 2013, 57(5): 1847-1857.
[37]Cai T Y, Liu X W, Zhu H, et al. Tirapazamine sensitizes hepatocellular carcinoma cells to topoisomerase I inhibitors via cooperative modulation of hypoxia-inducible factor-1 alpha[J]. Mol Cancer Ther, 2014, 13(3): 630-642.
[38]Wartenberg M, Ling F C, Muschen M, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxiainducible factor-1 and reactive oxygen species[J]. FASEB J,2003,17(1): 503-505.
[39]Tong Y, Li Q G, Xing T Y, et al. HIF1 regulates WSB-1 expression to promote hypoxia-induced chemoresistance in hepatocellular carcinoma cells[J]. FEBS Lett, 2013, 587(16): 2530-2535.
[40]Wang X J, Feng C W, Li M. ADAM17 mediates hypoxia-induced drug resistance in hepatocellular carcinoma cells through activation of EGFR/ PI3K/Akt pathway[J]. Mol Cell Biochem, 2013, 380(1): 57-66.
[41]Minegishi H, Fukashiro S, Ban H S, et al. Discovery of indenopyrazoles as a new class of hypoxia inducible factor (HIF)-1 inhibitors[J]. ACS Med Chem Lett, 2013, 4(2): 297-301.
[42]Wang Y, Li J X, Wang Y Q, et al. Tanshinone I inhibits tumor angiogenesis by reducing STAT3 phosphorylation at TYR705 and hypoxia-induced HIF-1a accumulation in both endothelial and tumor cells[J]. Oncotarget, 2015, 6(18): 16031-16042.
[43]Hutt D M, Roth D M, Vignaud H, et al. The histone deacetylase inhibitor, vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition[J]. PLoS One, 2014, 9(8): e106224.
[44]Lee K, Zhang H, Qian D Z, et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization[J]. Proc Natl Acad Sci USA, 2009, 106(42): 17910-17915.
[45]Shay J E, Imtiyaz H Z, Sivanand S, et al. Inhibition of hypoxia-induciblefactors limits tumor progression in a mouse model of colorectal cancer[J]. Carcinogenesis, 2014, 35(5): 1067-1077.
[46]Xia Y, Choi H K, Lee K. Recent advances in hypoxia-inducible factor(HIF)-1 inhibitors[J]. Eur J Med Chem, 2012, 49: 24-40.
[47]Ma L, Li G, Zhu H, et al. 2-Methoxyestradiol synergizes with sorafenib to suppress hepatocellular carcinoma by simultaneously dysregulating hypoxia-inducible factor-1 and -2[J]. Cancer Lett, 2014, 355(1): 96-105.
[48]Choi S H, Kwon O J, Park J Y, et al. Inhibition of tumour angiogenesis and growth by small hairpin HIF-1alpha and IL-8 in hepatocellular carcinoma[J]. Liver Int, 2014, 34(4): 632-642.
[49]Weng Q J, Wang D D, Guo P, et al. Q39, a novel synthetic quinoxaline 1,4-di-N-oxide compound with anti-cancer activity in hypoxia[J]. Eur J Pharmacol, 2008, 581(3): 262-269.
[50]Duan W, Chang Y, Li R, et al. Curcumin inhibits hypoxia inducible factor1alpha induced epithelial-mesenchymal transition in HepG2 hepatocellular carcinoma cells[J]. Mol Med Rep, 2014, 10(5): 2505-2510.
[51]Lu N, Hui H, Yang H, et al. Gambogic acid inhibits angiogenesis through inhibiting PHD2-VHL-HIF-1 alpha pathway[J].Eur J Pharm Sci, 2013, 49(2): 220-226.
[專家介紹] 林能明 :醫(yī)學(xué)博士,教授/主任藥師,博士生導(dǎo)師?,F(xiàn)為杭州市第一人民醫(yī)院副院長。2010年入選浙江省衛(wèi)生高層次創(chuàng)新人才培養(yǎng)對象,2011年獲首屆浙江省藥學(xué)會醫(yī)藥科技獎。目前擔(dān)任中國抗癌協(xié)會抗癌藥物專業(yè)委員會委員,中國藥理學(xué)會腫瘤藥理專業(yè)委員會委員,浙江省抗癌協(xié)會抗癌藥物專業(yè)委員會主任委員,浙江省抗癌協(xié)會理事、癌痛專業(yè)委員會副主任委員,浙江省醫(yī)院協(xié)會藥事管理專業(yè)委員會副主任委員,浙江省中西醫(yī)結(jié)合學(xué)會中藥學(xué)專業(yè)委員會副主任委員,杭州市藥事質(zhì)控中心主任。主要從事臨床藥理學(xué)、腫瘤藥理與腫瘤個性化藥物治療方案篩選方面的研究。目前主持國家自然科學(xué)基金面上項目及省部級課題5項,科研經(jīng)費500余萬元,發(fā)表論文80余篇, SCI論文20多篇,出版專著4部??蒲谐晒@浙江省科技進(jìn)步二、三等獎各1項。
Advances in Hypoxia-inducible Factor-1alpha: Moleculartargeted Therapy for Hepatocellular Carcinoma
LI Qingyu1, LI Yangling1,2, ZHANG Bo1,2, YAN Wei1, LING Nengming1,2
(1.Department of Clinical Pharmacy, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou 310006, China; 2. Department of Clinical Pharmacology, Hangzhou Translational Medicine Research Center, Hangzhou First People’s Hospital, Hangzhou, 310006, China)
Hypoxia has long been recognized as a common feature of solid tumors. Intratumoral hypoxia can lead to the overexpression of HIF-1α, which is associated with increase in tumor cell proliferation, invasion, and even resistance to radiation and chemotherapy. Thus, there has been growing interest in HIF-1α targeted therapy for hepatocellular carcinoma.The inhibition of HIF-1α expression and/or activity is an effective way to suppress tumor metastasis, reverse multi-drug resistance and induce apoptosis of hepatocellular carcinoma cells. Therefore, it is a promising strategy to treat liver cancer by directly or indirectly targeting HIF-1α.
HIF-1α; hepatocellular carcinoma; drug resistance
R966;R962
A
1001-5094(2015)10-0746-08
接受日期:2015-10-12
項目資助:浙江省公益性技術(shù)應(yīng)用研究計劃項目(2015C33269);杭州市科技發(fā)展計劃項目(20140633B03)
*通訊作者:林能明,教授/主任藥師,博士生導(dǎo)師;
研究方向:臨床藥理學(xué),腫瘤藥理與腫瘤個性化藥物治療方案篩選;
Tel:0571-56007905; E-mail:lnm1013@163.com