王立社,李智明,仇銀江,楊鵬飛,,姜寒冰,段星星,詹小弟
(1.中國(guó)地質(zhì)調(diào)查局西安地質(zhì)調(diào)查中心國(guó)土資源部巖漿作用成礦與找礦重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710054;2.新疆地質(zhì)勘查基金項(xiàng)目管理中心,新疆 烏魯木齊 830001;3.長(zhǎng)安大學(xué)地球科學(xué)與資源學(xué)院,陜西 西安 710054)
阿爾金環(huán)形山榴輝巖巖石地球化學(xué)及地質(zhì)意義
王立社1,2,李智明1,仇銀江2,楊鵬飛1,3,姜寒冰1,段星星1,詹小弟3
(1.中國(guó)地質(zhì)調(diào)查局西安地質(zhì)調(diào)查中心國(guó)土資源部巖漿作用成礦與找礦重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710054;2.新疆地質(zhì)勘查基金項(xiàng)目管理中心,新疆 烏魯木齊 830001;3.長(zhǎng)安大學(xué)地球科學(xué)與資源學(xué)院,陜西 西安 710054)
調(diào)查研究發(fā)現(xiàn),阿爾金南緣環(huán)形山榴輝巖呈透鏡體狀產(chǎn)于新元古代石榴石二長(zhǎng)花崗片麻巖中,巖石經(jīng)退變質(zhì)作用,白眼圈構(gòu)造發(fā)育,石榴石變少,石英及金紅石等礦物較少,未見峰期礦物組合。綠輝石被次透輝石及角閃石替代,巖石為榴輝巖、榴閃巖及斜長(zhǎng)角閃巖。主量及微量元素地球化學(xué)分析顯示:主量元素Al2O3、TiO2、MgO、P2O5及稀土Nb/Ta、Zr/Hf、Zr/Nb、La/Nb、Y/Nb特征比值與洋脊玄武巖一致;稀土標(biāo)準(zhǔn)化模式圖、微量元素原始地幔標(biāo)準(zhǔn)化圖及MORB標(biāo)準(zhǔn)化圖指示巖石具洋脊玄武巖特征,原巖可能為地幔巖經(jīng)15%~30%的部分熔融形成。結(jié)合榴輝巖圍巖年齡、變質(zhì)作用等分析認(rèn)為,該榴輝巖為似洋脊玄武巖的基性巖漿侵入花崗巖后,于500 Ma左右發(fā)生大陸俯沖折返形成。
阿爾金;榴輝巖;大陸深俯沖;地球化學(xué)
阿爾金造山帶位于新疆、青海、甘肅省區(qū)結(jié)合部,為塔里木、柴達(dá)木及東西昆侖、天山、柴北緣、北祁連和北山構(gòu)造帶的銜接帶,具有重要構(gòu)造位置。前人在相鄰構(gòu)造單元中發(fā)現(xiàn)榴輝巖-花崗巖帶,如甘肅北山柳園、柴北緣大柴旦魚卡河一帶榴輝巖-花崗巖帶,這些榴輝巖的圍巖花崗質(zhì)片麻巖結(jié)晶年齡分別為(880±31)Ma、950~850 Ma[1-6],且花崗質(zhì)片麻巖為S型花崗巖,表明北山和柴北緣新元古代可能具相似的構(gòu)造地質(zhì)背景。近年來(lái),阿爾金造山帶中發(fā)現(xiàn)超高壓變質(zhì)作用,許多學(xué)者對(duì)該區(qū)包括榴輝巖在內(nèi)的高壓-超高壓巖石變質(zhì)作用及變質(zhì)時(shí)代進(jìn)行了探討[7-20]。筆者在阿爾金山中段環(huán)形山一帶發(fā)現(xiàn)榴輝巖-花崗巖帶,認(rèn)為該帶花崗巖為二長(zhǎng)花崗片麻巖,屬S型花崗巖,巖石年齡為(928±9)Ma;榴輝巖峰期變質(zhì)年齡為507~509 Ma,原巖年齡為592~790 Ma(另文刊發(fā))。榴輝巖及退變巖石具怎樣的巖石地球化學(xué)特征,其原巖與阿爾金江尕勒薩依及英格利薩依兩地榴輝巖產(chǎn)出背景是否一致,具何種地質(zhì)意義?本文首次對(duì)其進(jìn)行報(bào)道。
前人研究表明,阿爾金造山帶是在太古代古老地殼形成及多期巖漿活動(dòng)、古元古代(2 500~1 800 Ma)強(qiáng)烈改造和中基性巖漿侵入、新元古代(1000~800Ma)碰撞造山及大規(guī)模巖漿活動(dòng)的基礎(chǔ)上[21],經(jīng)早古生代古板塊(或地塊)間的相互俯沖-碰撞形成的復(fù)雜構(gòu)造帶,之后又遭受了中新生代走滑斷裂系的改造。據(jù)區(qū)內(nèi)不同地質(zhì)單元特征及巖石學(xué)、地球化學(xué)和同位素年代學(xué)等研究成果,將該造山帶由北向南依次劃分為阿北變質(zhì)地體、紅柳溝-拉配泉構(gòu)造混雜巖帶、阿中米蘭河-金雁山地塊、阿南茫崖構(gòu)造混雜巖帶等4個(gè)構(gòu)造單元[22,23],阿爾金南緣榴輝巖帶位于阿中-米蘭河-金雁山地塊與阿南茫崖構(gòu)造混雜巖帶間(圖1)[24]。本文研究的榴輝巖位于阿爾金環(huán)形山一帶(圖1),西延為江尕勒薩依榴輝巖帶,東延有英格利薩依超高壓榴輝巖帶。環(huán)形山榴輝巖呈自然露頭(圖2),無(wú)覆蓋,樣品采自該區(qū)多個(gè)露頭,采樣中心坐標(biāo)為(88°07.95′~88°08.15′;38°14.00′~38°13.80′)。
榴輝巖及退變質(zhì)榴閃巖、斜長(zhǎng)角閃巖呈不等粒變晶結(jié)構(gòu),粒度較細(xì),塊狀構(gòu)造。榴輝巖中石榴石含量約28%,為半自形等軸多邊粒狀變晶結(jié)構(gòu),部分晶粒具篩眼狀構(gòu)造,粒徑0.15~0.8 mm;次透輝石約28%,半自形短柱狀、粒柱狀,粒徑0.1×0.15 mm~0.8×1.6 mm;基性斜長(zhǎng)石約20%,半自形、他形中細(xì)粒變晶,粒徑0.1~0.4×0.5 mm;次閃石約22%,多為輝石次變邊;黑云母約0.5%,為細(xì)片狀交代角閃石;金紅石約1%,呈他形微細(xì)晶分布于角閃石及石榴石晶粒中;鈦磁鐵礦約1%,微細(xì)粒晶,粒徑0.05~0.1 mm;磷灰石約0.5%,為短柱狀細(xì)晶。含石榴-石英斜長(zhǎng)角閃石,角閃石約55%,呈半自形不完整柱狀、粒柱狀,粒徑0.1×0.15 mm~1.6×2.2 mm;石榴石約2%,半自形等軸多邊粒狀變晶,部分晶粒具篩眼狀構(gòu)造,粒徑0.1~0.8 mm;基性斜長(zhǎng)石約37%,半自形、他形不等細(xì)粒,粒徑0.05~0.3×0.6 mm;黑云母約4%,細(xì)片狀交代角閃石;綠簾石約1%,他形微細(xì)晶,交代角閃石;另有短柱狀細(xì)晶磷灰石數(shù)粒。榴閃輝巖中,簾石約35%,為原生輝石次變產(chǎn)物,完全承襲柱狀-短柱狀輝石晶體輪廓,呈泥晶集合體,與部分次閃石次變物混生,粒徑0.1×0.15 mm~0.6×0.8 mm;次閃石含量約27%,為不完整柱狀-短柱狀變晶;石榴石含量約34%,半自形-自形粒狀變晶,粒徑0.1~0.6 mm;石英約2%,似文象狀細(xì)微晶與次閃石交生,為石榴石、輝石退變分解產(chǎn)物;鈦鐵礦約1.5%,半自形-他形板狀、板粒狀;金紅石約0.5%,不規(guī)則細(xì)粒狀。礦物分析顯示,環(huán)形山一帶榴輝巖遭受較強(qiáng)程度退變質(zhì)作用,榴輝巖中未見榴輝巖相峰期礦物組合。綠輝石幾乎被次透輝石及角閃石替代,常見石榴石與周圍退變產(chǎn)物斜長(zhǎng)石、角閃石、石英等組成的“白眼圈”構(gòu)造(圖2),顯示巖石普遍發(fā)生了退變質(zhì)作用,僅在DY1b2中發(fā)現(xiàn)綠輝石,綠輝石周圍已退變?yōu)榻情W石,僅核部殘留綠輝石。
圖1 阿爾金構(gòu)造地質(zhì)簡(jiǎn)圖及環(huán)形山一帶地質(zhì)圖Fig.1 Geological sketch map of AltynTagh and geological sketch map of ring mountain
圖2 巖石野外及微觀特征Fig.2 Field characteristics and Microstructures of rocks
元素地球化學(xué)分析測(cè)試在西安地質(zhì)礦產(chǎn)研究所實(shí)驗(yàn)測(cè)試中心完成,主量元素采用Panalytical公司產(chǎn)PW4400型X螢光光譜儀(XRF)測(cè)定,分析誤差低于5%;微量元素和稀土元素采用Thermo Fisher公司產(chǎn)X-seriesll型電感偶合等離子質(zhì)譜儀(ICP-MS)測(cè)定,相對(duì)標(biāo)準(zhǔn)偏差優(yōu)于5%。
榴輝(閃)巖等透鏡體在復(fù)雜的進(jìn)變質(zhì)和退變質(zhì)過程中,一些較活躍堿性元素隨流體遷移[25-29]。巖石中有些主要元素含量在榴輝巖變質(zhì)過程中變化較小,如MgO、TiO2、P2O5、Al2O3在蝕變(包括熱液蝕變)中基本保持穩(wěn)定,通常保留了原巖性質(zhì)和類型[30,31]。此外,稀土元素在榴輝巖相變質(zhì)過程中作為一組地球化學(xué)性質(zhì)相似的群體雖含量可能發(fā)生變化,但其相應(yīng)的特征比值及稀土標(biāo)準(zhǔn)化模式是穩(wěn)定的。因此,可利用變質(zhì)過程中相對(duì)穩(wěn)定的MgO,TiO2,P2O5,Al2O3,REE,Zr,Hf,Nb,Ta,Co,Cr,Ni等元素綜合探討巖石地球化學(xué)特征及成因。
4.1 主量元素
本次共分析榴輝巖、榴閃巖及斜長(zhǎng)角閃巖等樣品8件,主量元素分析結(jié)果見表1。從表1看出,SiO2含量為45.33%~48.85%,顯示基性巖石特征;Na2O+ K2O(2.21%~3.17%)含量較低,且Na2O>K2O;Al2O3(15.48%~16.34%)和CaO(7.79%~10.79%)含量較高;TiO2(0.85%~1.52%)含量變化較大,一般小于1.52%,平均1.04%。Wilson指出洋島拉斑玄武巖的A12O3和TiO2分別為13.45%、2.63%[32],環(huán)形山榴輝巖與洋島拉斑玄武巖相比較Al2O3含量明顯偏高,TiO2明顯偏低;Sun S S研究顯示島弧拉斑玄武巖的TiO2平均含量為0.80%[33];本文巖石TiO2平均1.04%,高于0.80%,顯然不同于島弧拉斑玄武巖。Melson WG通過對(duì)大西洋、太平洋和印度洋中脊拉斑玄武巖的A12O3和TiO2平均含量研究顯示,A12O3分別為15.6%、14.86%、15.15%,TiO2分別為1.49%、1.77%、1.19%[34];Pearce指出典型洋中脊拉斑玄武巖TiO2含量約1.5%[35],顯然環(huán)形山榴輝(閃)巖及斜長(zhǎng)角閃巖與洋脊拉斑玄武巖A12O3和TiO2含量較一致,與一般板內(nèi)火山巖通常具高Ti含量的特征不同[36]。利用TFeO/MgO-TiO2判別圖及w(P2O5)-w(TiO2)判別圖解(圖3)[37],對(duì)樣品進(jìn)行判別投圖,結(jié)果樣品落在MORB區(qū)域。
圖3 TFeO/MgO-TiO2判別圖和w(P2O5)-w(TiO2)判別圖解Fig.3 TFeO/MgO-TiO2distinguishing diagram andw(P2O5)-w(TiO2)distinguishing diagram for tectonic settings
4.2 稀土和微量元素地球化學(xué)特征
從稀土元素分析結(jié)果及球粒隕石標(biāo)準(zhǔn)化分布模式圖可知(表1,圖4)[38],榴輝(閃)巖及斜長(zhǎng)角閃巖中,除DY9b1榴閃輝巖、DY1b3斜長(zhǎng)角閃石巖稀土含量較高,∑REE(不含Y)分別為64.86、87.61,δEu具負(fù)異常,其余巖石∑REE(不含Y)=31.89×10-6~42.75×10-6,平均36.28×10-6,∑LREE=20.87×10-6~25.92×10-6,平均23×10-6,∑HREE=10.98×10-6~16.83×10-6,平均13.28×10-6,(La/Yb)N=0.73~1.28,平均為1,具非常一致的稀土元素含量和球粒隕石標(biāo)準(zhǔn)化分布模式圖。模式圖整體上呈輕重稀土稍低于中稀土的平緩模式,輕重稀土元素間無(wú)明顯分餾,且Eu異常弱。榴輝(閃)巖及斜長(zhǎng)角閃巖的這種稀土分布模式與大洋玄武巖中洋脊拉斑玄武巖一致,這種稀土分布模式主要?dú)w結(jié)為部分熔融程度較高,Gast經(jīng)定量估算認(rèn)為其為地幔巖經(jīng)15%~30%的部分熔融形成[39]。筆者對(duì)榴輝巖年齡研究表明,其原巖年齡為592~790 Ma,雖年代有差異,但稀土元素的上述特征表明其源區(qū)性質(zhì)一致。
表1 巖石主量元素及微量元素化學(xué)組成Table 1 Major elements and trace elements compositions
Nb,Ta和其它高場(chǎng)強(qiáng)元素及穩(wěn)定的Nb/Ta、Zr/Hf比值等被廣泛作為指示地質(zhì)演化的示蹤劑[40-42]。榴輝巖及退變巖石微量元素分析結(jié)果見表1。巖石Nb/Ta和Zr/Hf比值分別為3.42~15.32、26.52~34.24,其Nb/Ta比值明顯低于球粒隕石相應(yīng)比值17.5[43],而接近MORB的Nb/Ta比值15.5[44,45];Zr/Hf比值也低于球粒隕石相應(yīng)比值36.6[46],與MORB的相應(yīng)比值28~45相符[47],巖石Zr/Nb特征值是研究巖石產(chǎn)出背景的有效標(biāo)志之一。前人研究N-MORB和E-MORB的Zr/Nb值分別大于16和小于16[48],板內(nèi)玄武巖的Zr/Nb比值平均約10[32]。本文巖石相應(yīng)比值為5.83~18.61,變化范圍較大,平均10.59,與E-MORB和板內(nèi)玄武巖平均值較接近。Pearce指出典型的OIB的Nb含量為13.0 μg/g[49],本文樣品Nb值除一件樣品大于13外,其余均小于13,與典型OIB巖石不符。郭安林等認(rèn)為類似地幔柱的巖漿和正常洋中脊虧損地幔巖漿相互作用可形成OIB-EMORB-NMORB區(qū)域內(nèi)逐漸變化的巖石組合Nb豐度范圍變化較大[50],顯然本文巖石不屬此類情況。樣品稀土La/Nb值為0.43~1.42(平均0.83),Y/Nb值為2.14~7.21(平均4.02),分別與MORB的La/Nb和Y/Nb平均值0.76和3.5相近[51]。稀土元素的這些特征比值綜合顯示本文樣品與MORB更具親緣性。
微量元素經(jīng)原始地幔標(biāo)準(zhǔn)化后,元素蛛網(wǎng)圖顯示巖石強(qiáng)烈富集Rb,U,Ta等(圖4)[43]。富Nb,Sm,相對(duì)虧損Ba,Sr,K,P,Y等,RbN/YbN比值明顯大于1,為強(qiáng)烈不相容元素富集型。表明其為富集或交代地幔源,低程度熔融分離結(jié)晶程度的殘余熔體。微量元素Hf/3-Th-Nb/16圖解及Ti/100-Zr-Sr/2圖解也是判斷基性巖石產(chǎn)出背景的一個(gè)重要手段(圖5)[52,53],圖5顯示巖石與島弧鈣堿性玄武巖、富集型洋中脊及板內(nèi)拉斑玄武巖特征相關(guān)。樣品MORB標(biāo)準(zhǔn)化蛛網(wǎng)圖整體顯示前隆后平緩型(圖6)[35,43],Ce之前的元素除Sr接近于1外,其余元素K,Rb,Ba,Th,Ta和Nb相對(duì)MORB均較富集,無(wú)明顯的Nb-Ta谷(表明Nb和Ta不虧損);Ce之后元素P,Zr,Hf,Sm,Ti,Y和Yb具微弱低P,稍高Sm外,整體顯示較平坦的分布模式,顯示了洋脊玄武巖而非島弧玄武巖特征。
圖4 球粒隕石標(biāo)準(zhǔn)化圖解及微量元素蛛網(wǎng)圖解Fig.4 Chondrite-normalized REE Patterns and primitive-mantle normalized spider diagram for samples
近年來(lái),阿爾金江尕勒薩依相繼發(fā)現(xiàn)榴輝巖及超高壓證據(jù)[12,14,54]。阿爾金英格利薩依地區(qū)確定出超高壓石榴石二輝橄欖巖、花崗質(zhì)片麻巖及片麻狀(含)鉀長(zhǎng)石榴輝巖的存在[55,56],表明阿爾金南緣可能分布著一條超高壓變質(zhì)巖帶。鋯石U-Pb定年結(jié)果和英格利薩依地區(qū)超高壓巖石及組合特征進(jìn)一步表明[57],該超高壓變質(zhì)巖帶的峰期變質(zhì)時(shí)代約為500 Ma,屬早古生代[10],同環(huán)形山榴輝巖峰期變質(zhì)年齡一致,為同一變質(zhì)帶。該榴輝巖及退變質(zhì)巖的成因研究顯示,其原巖具大洋中脊玄武巖特征。前人通過對(duì)榴輝巖微量及稀土元素地球化學(xué)研究證明[13],阿爾金西段江尕勒薩依榴輝巖原巖主要為“T”型大洋玄武巖,這些榴輝巖具洋脊玄武巖特征。該榴輝巖原巖是否為大洋環(huán)境產(chǎn)物呢?早期多數(shù)研究者從俯沖環(huán)境角度,將造山帶中榴輝巖劃分為兩種類型:“大洋俯沖型”(Fransiscan型)和“大陸俯沖型”(阿爾卑斯型)。前者與大洋巖石圈的消減和俯沖有關(guān),原巖為洋殼巖石,常與藍(lán)片巖和具洋殼性質(zhì)的蛇綠巖和島弧火山巖伴生。后者與陸殼的俯沖及陸陸碰撞有關(guān)[58,59],原巖多為陸殼成因的侵入體,常呈透鏡體狀分布于長(zhǎng)英質(zhì)片麻巖、泥質(zhì)片麻巖及大理巖等陸殼性質(zhì)的變質(zhì)巖中。最典型的有中國(guó)的大別—蘇魯超高壓帶、西阿爾卑斯的Dora Maira地塊和哈薩克斯坦的Kocchetav等[60]。隨著近年研究工作的深入,學(xué)者們?cè)诘湫脱髿じ_成因的榴輝巖中發(fā)現(xiàn)超高壓變質(zhì)證據(jù)[61-66],且原巖具遠(yuǎn)洋沉積物性質(zhì)的zermattsaas榴輝巖的圍巖片麻巖也存在指示超高壓變質(zhì)的礦物和礦物組合[61],表明洋殼深俯沖形成的超高壓巖石可折返出露地表,從而打破了密度較大的洋殼俯沖后不能折返的認(rèn)識(shí)[57]。那么阿爾金南緣中段榴輝巖及退變巖和西段榴輝巖究竟是陸殼的深俯沖還是洋殼的深俯沖,或是洋殼先期深俯沖繼而拖動(dòng)后期的陸殼深俯沖,亦或是類似洋脊性質(zhì)的巖石早期就位于陸殼之中后又和陸殼一起發(fā)生了陸殼的深俯沖?也有學(xué)者提出地震成因榴輝巖[67,68],研究這個(gè)問題的關(guān)鍵,必須考慮到榴輝巖及圍巖年齡、地球化學(xué)特征,及相關(guān)的大地構(gòu)造背景、變質(zhì)情況等。劉良等對(duì)阿爾金英格利薩依相關(guān)巖石地球化學(xué)特征研究表明[11],變質(zhì)中性巖石的REE分布型式與變質(zhì)基性巖石一致,并具較明顯的負(fù)Eu異常,認(rèn)為它們的原巖可能是同一巖漿源區(qū)基性巖漿經(jīng)分離結(jié)晶作用演化結(jié)果。據(jù)阿爾金英格利薩依地區(qū)超高壓花崗質(zhì)片麻巖具超高壓變質(zhì)特征,含鉀長(zhǎng)石榴輝石巖及石榴石二輝橄欖巖地球化學(xué)證據(jù),認(rèn)為其應(yīng)為大陸深俯沖作用產(chǎn)物。筆者研究發(fā)現(xiàn),環(huán)形山花崗片麻巖為S型花崗巖,U-Pb鋯石年齡為(928±9)Ma,遠(yuǎn)大于592~790 Ma的榴輝巖原巖年齡[69]。據(jù)礦物組合特征,該巖石至少經(jīng)歷了高角閃巖相或麻粒巖相的變質(zhì)變形作用,與具超高壓變質(zhì)特征的英格利薩依榴輝巖圍巖花崗片麻巖相似,目前發(fā)表數(shù)據(jù)顯示榴輝巖峰期變質(zhì)年齡在500 Ma左右。劉良測(cè)得江尕勒薩依榴輝巖圍巖原巖年齡為(920±14)Ma[23],原巖為典型陸殼沉積物的石榴子石黑云母片麻巖,變質(zhì)鋯石年齡為(499±27)Ma,顯然圍巖的峰期變質(zhì)年齡與榴輝巖一致。且末縣南該榴輝巖圍巖角閃質(zhì)糜棱巖的Sm-Nd礦物對(duì)等時(shí)線年齡為(519±37.3)Ma[9],正是該時(shí)期區(qū)內(nèi)動(dòng)力變質(zhì)作用的響應(yīng)。筆者對(duì)榴輝巖原巖鋯石Lu-Hf同位素研究表明,鋯石來(lái)自為富集地幔,遭受地殼影響,微量元素顯示部分地殼混染特征。
圖5 巖石Hf/3-Th-Nb/16及Ti/100-Zr-Sr/2圖解Fig.5 Hf/3-Th-Nb/16 and Ti/100-Zr-Sr/2 distinguishing diagram for tectonic settings
圖6 巖石MORB標(biāo)準(zhǔn)化圖解Fig.6 MORB standardization diagram for tectonic settings
綜上所述,環(huán)形山榴輝巖是由具洋脊玄武巖特征的基性巖漿侵入地殼后,與圍巖一起發(fā)生大陸俯沖折返形成的。阿爾金南緣500 Ma發(fā)生大陸俯沖折返運(yùn)動(dòng),形成一條超高壓變質(zhì)帶。
致謝:劉良、張復(fù)新、董云鵬教授、李行研究員在成文過程中給予指導(dǎo),藺啟珍及程秀華高工在分析測(cè)試樣品時(shí)提供幫助,采用路遠(yuǎn)發(fā)編制Geokit軟件繪圖[70],在此一并感謝。
[1]陸松年.新元古時(shí)期Rodinia超大陸研究進(jìn)展述評(píng)[J].地質(zhì)論評(píng),1998,44(5):489-495.
[2]楊經(jīng)綏,許志琴,李海兵,等.柴北緣大柴旦榴輝巖的發(fā)現(xiàn)及區(qū)域構(gòu)造意義[J].科學(xué)通報(bào),1998,43(14):1544-1549.
[3]于海峰,陸松年,梅華林,等.中國(guó)西部新元古代榴輝巖-花崗巖帶和深層次韌性剪切帶特征及其大陸再造意義[J],巖石學(xué)報(bào),1999,15(4):532-538.
[4]李懷坤,陸松年,趙風(fēng)清,等.柴達(dá)木盆地北緣?mèng)~卡河含柯石英榴輝巖的確定及其意義[J].現(xiàn)代地質(zhì),1999,13(1):43-49.
[5]Zhang JX,Mattinson CG,Meng FC,et al.Polyphase tectonothermal history recordedin granulitized gneisses from the North Qaidam HP/UHP metamorphic terrane,Western China:Evidence from zircon U-Pb geochronology[J].Geological Society of America Bulle tin,2008,120:732-749.
[6]Song SG,Su L,Li XH,et al.Grenvile-age orogenesis in the Qaidam-Qilian block:The link between South China and Tarim[J].Pre cambrian Research,2012,220-221:9-22.
[7]車自成,劉良,羅金海.阿爾金高壓變泥質(zhì)巖石的發(fā)現(xiàn)及其產(chǎn)出環(huán)境[J].科學(xué)通報(bào),1995,40(14):1298-1300.
[8]車自成,劉良,羅金海.中國(guó)及其鄰區(qū)區(qū)域大地構(gòu)造學(xué)[M].北京:科學(xué)出版社,2002:354-386.
[9]劉良,車自成,羅金海,等.阿爾金西段榴輝巖的確定及其地質(zhì)意義[J].科學(xué)通報(bào),1996,41(14):1458-1488.
[10]劉良,孫勇,車自成,等.阿爾金發(fā)現(xiàn)超高壓(>3.8 Gpa)石榴石二輝橄欖巖[J].科學(xué)通報(bào),2002,47(9):657-662.
[11]劉良,孫勇,羅金海,等.阿爾金英格利薩依花崗質(zhì)片麻巖超高壓變質(zhì)[J].中國(guó)科學(xué),D輯,2003,33(12):1184-1192.
[12]張建新,張澤明,許志琴,等.阿爾金構(gòu)造帶西段榴輝巖的Sm-Nd及U-Pb年齡——阿爾金構(gòu)造帶中加里東期山根存在的證據(jù)[J].科學(xué)通報(bào),1999,44(10):1109-1112.
[13]張建新,許志琴,楊經(jīng)綏,等.阿爾金構(gòu)造帶西段榴輝巖巖石學(xué)、地球化學(xué)和同位素年代學(xué)研究及其構(gòu)造意義[J].地質(zhì)學(xué)報(bào),2001,75(2):186-197.
[14]張建新,楊經(jīng)綏,許志琴.阿爾金榴輝巖中超高壓變質(zhì)作用證據(jù)[J].科學(xué)通報(bào),2002,47(3):231-234.
[15]張建新,李懷坤,孟繁聰,等.塔里木盆地東南緣(阿爾金山)“變質(zhì)基底”記錄的多期構(gòu)造熱事件:鋯石U-Pb年代學(xué)的制約[J].巖石學(xué)報(bào),2011,27(1):23-46.
[16]張安達(dá),劉良,孫勇,等.金超高壓花崗質(zhì)片麻巖中鋯石SHRIMP U-Pb定年及其地質(zhì)意義[J].科學(xué)通報(bào),2004,49(22):2335-2341.
[17]陸松年,于海峰,李懷坤,等.中國(guó)前寒武紀(jì)重大地質(zhì)問題研究——中國(guó)西部前寒武紀(jì)重點(diǎn)地質(zhì)事件群及全球構(gòu)造意義[M].北京:地質(zhì)出版社,2006:1-197.
[18]王超,劉良,車自成,等.阿爾金南緣榴輝巖帶中花崗片麻巖的時(shí)代及構(gòu)造環(huán)境探討[J].高校地質(zhì)學(xué)報(bào),2006,12(1):74-82.
[19]Wang C,Liu L,Yang WQ,et al.Provenance and ages of the Altyn Complex in Altyn Tagh:Implications for the early Neoproterozoic evolution of northwestern China[J].Precambrian Research,2013,230:193-208.
[20]Yu SY,Zhang JX,Pablo García del Real,et al.The Grenvillian orogeny in the Altun-Qilian-North Qaidam mountain belts of northern Tibet Plateau:Constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks[J].Journal of Asian Earth Sciences,2013,73:372-395.
[21]劉永順,于海峰,辛后田,等.阿爾金山地區(qū)構(gòu)造單元?jiǎng)澐趾颓昂浼o(jì)重要地質(zhì)事件[J].地質(zhì)通報(bào),2009,28(10):1430-1438.
[22]劉良,車自成,王焰,等.阿爾金高壓變質(zhì)巖帶的特征及其構(gòu)造意義[J].巖石學(xué)報(bào),1999,15(1):57-64.
[23]劉良,張安達(dá),陳丹玲,等.阿爾金江尕勒薩依榴輝巖和圍巖鋯石LA-ICP-MS微區(qū)原位定年及其地質(zhì)意義[J].地學(xué)前緣,2007,14(1):098-107.
[24]Liu L,Wang C,Cao YT,et al.Geochronology of multi-stage metamorphic events:Constraintson episodic zircon growth from the UHP eclogite in the South Altyn[J].NW China.Lithos,2012.136-139:10-26.
[25]周漢文,李獻(xiàn)華,劉穎.南大別花涼亭冷榴輝巖退變質(zhì)作用過程中的元素地球化學(xué)變異[J].地球化學(xué),1997,26(5):25-33.
[26]凌文黎,賈望魯,高山,等.大別超高壓變質(zhì)過程中流體作用的微量元素效應(yīng)及其地球化學(xué)意義[J].地球化學(xué),2000,29(6):533-541.
[27]Jahn B M,Rumble D,Liou J G.Geochemistry and isotope tracer study of UHP metamorphic rocks[J].EMU Notesin Mineralogy,2003,5(12):365-414.
[28]Griffin W L,Brueckner H K.REE,Rb-Sr and Sm-Nd studies of Norwegian eclogites[J].Chemical Geology,1985,52(2):249-271.
[29]陳永松,楊經(jīng)綏,羅立強(qiáng),等.西藏拉薩地塊MORB型榴輝巖的巖石地球化學(xué)特征[J].地質(zhì)通報(bào),2007,26(10):1327-1339.
[30]Bernard C J,Peucat JJ,Cornichet J.U-Pb,Nd isotope and REE geochemistry in eclogues from the Cabo Ortegal Complex,Galicia Spain:an example of REE immobility conserving MORB-like patterns during high-grade metamorphism[J].Chemical Geology,1985,52(2):217-22.
[31]侯增謙,莫宣學(xué),朱勤文,等.“三江”古特提斯地幔熱柱——洋中脊玄武巖證據(jù)[J].地球?qū)W報(bào),1996,17(4):362-375.
[32]Wilson M.Igneous Petrogenesis[M].London:Unwin Hyman,1989:1-466.
[33]Sun S S.Lead isotopic study of young volcanic rocks form midoceanridges,ocean islands and island arcs[J].Phil R Soc Lon A,1980,297:409-445.
[34]Melson WG,Vallier TL,Wright T L,et al.Chemical diversity of abyssal volcanic glass erupted along Pacific,Atlantic and Indian Ocean sea floor,spreading centers.In:The Geophysics of the Pacific Ocean Basin and Its Margin[J].Washington D C:Am Geophys Union,1976,351-367.
[35]Pearce J A.Role of subcontinental lithosphere in magmagenesis at destructive plate margins[C]//Hawkesworth,Norry.Continental Basalts and Mantle Xenoliths.Nantwich:Shiva,1983,230-249.
[36]賴紹聰,秦江鋒.青藏高原雙湖地區(qū)二疊系玄武巖地球化學(xué)及其大地構(gòu)造意義[J].地學(xué)前緣,2009,16(2):70-78.
[37]Glassily W.Geochemistry and tectonics of the Grescent volcanic rocks,Olympic Peninsula,Washington[J].Geol.Soc.Am.Bull.,1974,85:785-794.
[38]Taylor SR,MclemannSM.The Continental Crust:Its Composition ofmeltsand Evolu tion[M].Blackwell:Oxford Press:1985,312.
[39]Gast,PW.Trace element fractionation and the origin of tholeiite and alkaline magma type,Geochim[J].Cosmochim.Acta,1968,32:1057-1086.
[40]Hofmann A W.Chemical differentiation of the Earth:the relationship between mantle,continental crust,and oceanic crust[J].Earth Planet.Sci.Lett.,1988,90:297-314.
[41]McDonough W F.Constraints on the composition of the continental lithospheric mantle[J].Earth Planet.Sci.Lett.,1990,101:1-18.
[42]McDonough W F.Partial melting of subducted oceanic crust andisolation of its residual eclogitic lithology[J].Phil.Trans.R.Soc. London Ser.,1991,A335:407-418.
[43]Sun S,McDonough W.Chemical and isotopic systematics of oceanic basalts:for implications for mantle composition and processes[C]//Saunders A,Norry M.Magmatism in the Ocean Basin.Geo logical Society Special Publication,1989,42:313-345.
[44]Jochum K P,Seufert H M,Spettel B,et al.The solar system abundances of Nb,Ta and Y,and the relative abundances of refractory lithophile elementsin diferentiated planetary bodies[J].Geochim. Cosmochim.Acta,1986,50:1173-1183.
[45]Jochum K P,Stolz J.High-precision Nb,Ta,Zr,and Y data for carbonaceous chondrites:constraints on solar system Nb/Ta and Zr/Nb ratios,Meteorit[J].Planet.Sci.,1997,32:67.
[46]Jochum K P,Hofmann A W.Nb/Ta in MORB and continental crust implications for a superchondritic Nb/Ta reservoir in the mantle[J].EOS,1998,79:354.
[47]J?rg A Pfàder,Carsten Münker,Andreas Stracke,et al.Nb/Ta and Zr/Hf in ocean island basalts—Implications for crust-mantle differ entiation and the fate of Niobium[J].Earth and Planetary Science Letters,2007,254:158-172.
[48]Leroex AP,Dick HJB,F(xiàn)isher RL.Petrology and geochemistry of MORB from 25°E to 46°E along the southwest Indian ridge:evidence for contrasting styles of mantle enrichment[J].J.Petrol.,1989,30:947-986.
[49]Pearce J A.Trace element characteristics of lavas from destructive plate boundaries.In:Thorps RS(ed)[M].Andesites.New York:John Wiley and Sons.1982:525-548.
[50]郭安林,張國(guó)偉,孫延貴,等.阿尼瑪卿蛇綠巖帶OIB和MORB的地球化學(xué)及空間分布特征:瑪積雪山古洋脊熱點(diǎn)構(gòu)造證據(jù)[J].中國(guó)科學(xué)(D輯),2006,36(7):618-629.
[51]Weaver BL.The origin of ocean island end-member compositions:trace element and isotopic contrains[J].Earth Planet Sci Lett,1991,104:381-397.
[52]Wood D A.The application of a Th-Hf-Nb diagram to problems of tectomagmatic classification and to establishing the nature of crustal contamination of the British Tertiary volcanic provinic[J]. Earth Plant Sci Lett,1980,(50):11-30.
[53]Pearce J A,Cann J R.Tectonic setting of basic volcanic rocks deter mined using trace element analyses[J].Earth and Planetary Sci ence Letters,1973,19:290-300.
[54]Chen D L,Liu L,Sun Y,et al.Silica-exsolution in eclogitefromAltynTagh,NW China[C]MAliceWainMemorialWestern Norway eclogite field symp,Selje,Western Nor-way,AbstrVol,81. Budapest:EtvsUniversity Press,2003.
[55]劉良,孫勇,羅金海,等.阿爾金發(fā)現(xiàn)超高壓(>3.8Gpa)石榴石二輝橄欖巖.大陸的俯沖、拆離和減薄作用學(xué)術(shù)研討會(huì)論文摘要集[J],匯編:從柏林,翟明國(guó),郭敬輝,劉建明.西安,西北大學(xué),2001,13-17.
[56]劉良,陳丹玲,張安達(dá),等.阿爾金超高壓(>7GPa)片麻狀(含)鉀長(zhǎng)石榴輝石巖—石榴子石出溶單斜輝石的證據(jù)[J].中國(guó)科學(xué),2005,35(2):105-114.
[57]張安達(dá).阿爾金超高壓榴輝巖及其圍巖的地球化學(xué)、年代學(xué)研究及其地質(zhì)意義[D].西安:西北大學(xué),博士論文.2006.
[58]Ernst W G,Liou J G.Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts[J].Geology,1995,23(4):353-356.
[59]Maruyama S,Liou J G,Terabayashi M.Blueschists eclogites of the world and their exhumation[J].International Geology Review,1996,38:485-594.
[60]Shatsky V S,agoutz E J,Sobolev N V,et al.Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif(Northern Kazakhstan)[J].Contrib Mineral Petrol,1999,137:185-205.
[61]Reinecke T.Prograde high-to ultrahigh-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana,Zermatt-Saas Zone,western Alps[J].Lithos,1998,42:147-189.
[62]Zhang LF,Ellis D J,Jiang WB.Ultrahigh pressure metamorphism in western Tianshan,China,part-:evidences from the inclusion of coesite pseudomorphs in garnet and quartz exsolution lamellae in omphacite in eclogites[J].American Mineralogist,2002,87:861-866.
[63]Zhang LF,Ellis DJ,Williams S,et al.Ultrahigh pressure metamorphism in western Tianshan,China,part-:evidence from magnesite in eclogite[J].American Mineralogist,2002,87:853-860.
[64]Tagiri M,ano T,Bakirov A,et al.Mineral para geneses and metamorphic P-T paths of ultrahigh-pressure eclogites from Kyrghyas tan Tian-Shan[J].The Island Arc,1995,4,280-292.
[65]Parkinson CD,Miyazaki K,Wakita K,et al.An overview and tectonic synthesis of the very high pressure and associated rocks of Sulawesi,Java and Kalimantan,Indonesia[J].The Island Arc,1998,7,184-200.
[66]張立飛,David J,Ellis,艾永亮,等.新疆西天山超高壓變質(zhì)榴輝巖[J].礦物巖石學(xué)雜志,2002,21(4):371-386.
[67]劉景波.中溫榴輝巖中柯石英和金剛石形成的一種地震成因模型[J].巖石學(xué)報(bào),1994,10(4):390-400.
[68]Yang J J,Huang M X,Wu Q Y.Coesite-bearing eclogite breccia:implication for co-seismic ultrahigh-pressure metamorphism and the rate of the process[J].Contrib Mineral Petrol,2014,167:1013.
[69]王立社,張巍,段星星,等.阿爾金環(huán)山花崗片巖同位素年齡及成礦研究[J].巖石學(xué)報(bào),2015,31(1):119-132.
[70]陸遠(yuǎn)發(fā).Geokit:一個(gè)用VBA構(gòu)建的地球化學(xué)工具軟件包[J].地球化學(xué),2004,33(5):459-464.
Geochemistry and Geological Significance of Eclogite from Huanxingshan in Altyn Tagh
Wang Lishe1,2,Li Zhiming1,Qiu Yinjiang2,Yang Pengfei1,3,Jiang Hanbing1,Duan Xingxing1,Zhan Xiaodi3
(1.Xi’an Geological center,China Geological survey,Key Laboratory for the study of Focused Magnatism and Giant Ore Deposits,MLR Xi’an,Shaanxi,710054,China;2.Geological Exploration Fund Project Management Center,Urumqi,Xinjiang,830001,China;3.School of Earth Science and Resources,Chang’an University,Xi’an,Shaanxi,710054,China)
On the south rim Altyn Tagh crater eclogite investigation found that eclogite was a lens-shaped garnet produced in early Neoproterozoic granite gneiss,rocks experienced retrograde,white-circle structure development,less garnets,quartzesand rutile mineral,the peak mineral combination almost invisible,omphacite almost all replaced by salites and amphiboles,There are the eclogite,amphibole eclogite and amphibolite at present.The main elements and trace element geochemical analysis found that the stable main elements Al2O3,TiO2,MgO,P2O5and rare earth Nb/Ta,Zr/Hf,Zr/Nb,La/Nb,Y/Nb characteristics ratio consistent with oceanic basalt.Rare earth standardized model diagram,primitive mantle normalized trace elements diagram and MORB standardization map also indicates the rock a mid ocean ridge basalt characteristics,and the original rock could be formed by 15%~30%partial melting of mantle rock.Based on the geochemical characteristics and comprehensive analysis on host granite gneiss age,metamorphism grade,and regional contrast indicate that the eclogite is like ridge basalt magma penetrated the granite base,after the formation of continental subduction occurred at about 500Ma.
Altyn Tagh;Eclogite;Continental deep subduction;Geochemistry
1000-8845(2015)02-143-08
P588.3;P59
A
項(xiàng)目資助:國(guó)家自然科學(xué)基金(41103021;41272089)和中國(guó)地質(zhì)調(diào)查局項(xiàng)目(1212011220861)資助
2014-08-04;
2014-10-24;作者E-mail:804249689@qq.com
王立社(1976-),男,陜西周至人,博士,副研究員,2001年畢業(yè)于西北大學(xué)巖石學(xué)、礦物學(xué)、礦床學(xué)專業(yè)。從事地質(zhì)礦產(chǎn)調(diào)查研究工作