国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

電池?zé)峁芾碛孟嘧儍?chǔ)能材料的研究進(jìn)展

2015-11-14 00:48:28郭成龍黃叢亮饒中浩
關(guān)鍵詞:石蠟電池組石墨

劉 霞,匡 勇,錢 振,郭成龍,黃叢亮,饒中浩

(中國(guó)礦業(yè)大學(xué)電力工程學(xué)院,江蘇 徐州 221116)

汽車的出現(xiàn)使人們的生活發(fā)生重大的改變,但同時(shí)也帶來了能源消耗和環(huán)境污染等問題;電動(dòng)汽車滿足節(jié)能減排的要求,而且其技術(shù)也日趨成熟,勢(shì)必將成為未來汽車界發(fā)展的一種趨勢(shì)[1]。電池作為儲(chǔ)能的主要元件,直接影響電動(dòng)汽車儲(chǔ)能系統(tǒng)的性能[2-3],而溫度是影響電池組性能的重要因素[4]。過低或過高的溫度都會(huì)影響到電池的充放電性能以及其它性能參數(shù),如內(nèi)阻、SOC、電壓、充放電效率及其壽命[5]。研究表明,-26~65 ℃是鉛酸電池組效率和最大運(yùn)行功率增加的溫度區(qū)間[6],充電接受能力與其溫度呈正相關(guān),即隨著電池溫度的降低,其充電的接受能力也下降,且在0 ℃以下尤為明 顯[7]。將溫度控制在35~40 ℃且保持鉛酸電池組內(nèi)溫度均勻分布將有利于其壽命延長(zhǎng)和性能發(fā) 揮[8];當(dāng)溫度低于0 ℃或是高于40 ℃時(shí),氫鎳電池的放電效率顯著降低[1],在高倍率充電時(shí),溫度每升高5 ℃會(huì)導(dǎo)致電池壽命減半;20~60 ℃是鋰離子電池組最適宜的工作溫度區(qū)間,同時(shí)電池組內(nèi)的最大溫差不能超過6 ℃[9]。當(dāng)環(huán)境溫度低于0℃時(shí),鋰離子電池的內(nèi)阻增加較快,比功率和比能量都迅速下降,電動(dòng)汽車啟動(dòng)性能受到較大影響[10],溫度達(dá)到-40 ℃時(shí)電池的功率無法滿足電動(dòng)汽車正常工作的需求[11],在0 ℃以上的環(huán)境溫度對(duì)鋰離子電池進(jìn)行慢充,可以提高電池的循環(huán)壽命及其安全性[12]。一般來說,只有在特定的溫度范圍內(nèi)電池充放電過程中的電化學(xué)反應(yīng)才能發(fā)生,溫度過低或過高,電池的壽命和溫度都將受到影響,嚴(yán)重的會(huì)在電池中形成“熱點(diǎn)”,從而使電池?zé)崾Э豙13]。在實(shí)際運(yùn)行中,電池組的充放電、內(nèi)阻和內(nèi)部傳熱不良等引起的電池內(nèi)部溫度不均衡是致使電池失效的主要原因之一[14-16]。在散熱不良的情況下,鋰離子電池在工作過程中產(chǎn)生的大量熱可能發(fā)生燃燒或爆炸,阻礙了大型鋰離子電池的實(shí)際應(yīng)用和發(fā)展[4,17]。任何一個(gè)單體電池性能下降都將影響到電池組的整體性能,在相同的充電情況下,當(dāng)溫差為5℃、10℃和15℃時(shí),電池組的荷電態(tài)分別下降 10%、15%和20%[18-19]。因此,具有維持電池工作溫度的電池?zé)峁芾硐到y(tǒng)對(duì)于增加電池容量和壽命,提高電動(dòng)汽車整車性能必不可少。目前國(guó)內(nèi)外對(duì)電池?zé)峁芾淼难芯恐饕姵氐姆N類、運(yùn)行工況、布置形式、安放位置、散熱結(jié)構(gòu)以及冷卻方式等[17,20-25]。

目前電池?zé)峁芾砀鶕?jù)其傳熱介質(zhì)的不同分為三類[26]:基于空氣的電池?zé)峁芾恚ˋCS,air cooling system);基于液體介質(zhì)的電池?zé)峁芾恚↙CS,liquid cooling system);基于相變材料的電池?zé)峁芾?(PCM,phase change material)。其中,基于空氣和液體介質(zhì)的電池?zé)峁芾砑夹g(shù)研究已經(jīng)取得了一定的進(jìn)展[27-36]。本文總結(jié)并介紹了近年來基于相變材料的電池?zé)峁芾硌芯窟M(jìn)展,重點(diǎn)介紹了烷烴類相變儲(chǔ)能材料、PCM/高導(dǎo)熱粒子、PCM/泡沫金屬以及PCM用于電池?zé)峁芾淼男问健?/p>

1 基于相變材料的電池?zé)峁芾硐到y(tǒng)及 其工作原理

相變材料在發(fā)生相變的過程中,會(huì)吸收/放出大量的熱量,利用這個(gè)特性,可以將其用于電池?zé)峁芾硐到y(tǒng),維持電池溫度在合適的范圍:當(dāng)電池(電池組)的溫度較高時(shí),相變材料以潛熱的形式將電池產(chǎn)熱量?jī)?chǔ)存起來,而當(dāng)電池溫度下降時(shí)(在低溫環(huán)境下),則將這部分熱量釋放出來,從而使電池工作在一個(gè)比較良好的溫度環(huán)境中。

圖1是相變材料相變過程的示意圖。在相變過程中,相變材料吸收或放出大量的熱量(相變潛熱),而材料自身的溫度變化不大[37]。將相變材料用于電池?zé)峁芾?,可以形象地理解成為電池穿上一層“恒溫衣”。如圖2所示,當(dāng)電池充放電過程產(chǎn)生的大量熱量使電池溫度過高時(shí),大量的熱量將被相變材料吸收并儲(chǔ)存,當(dāng)電池的溫度較低時(shí),相變材料可以從環(huán)境或是自身傳遞熱量給電池,使它處在較佳的溫度范圍內(nèi)。

圖1 相變材料相變過程示意圖Fig.1 The schematic phase transition process of phase change materials

圖2 相變材料在電池包中的應(yīng)用模式[13]Fig.2 The application models of phase change materials in the battery pack[13]

2 相變材料用于電池?zé)峁芾淼难芯楷F(xiàn)狀

早在1997年,Maurice等[38]就提出,為了確保電池的正確操作和壽命延長(zhǎng),發(fā)展電池?zé)峁芾硎呛苡斜匾?,在電池的外面使用PCM可以使電池的工作溫度維持恒定。2000年,Al-Hallaj等[39]用有限元軟件模擬了使用相變材料控溫和未使用相變材料控溫的兩種鋰離子電池模塊在不同放電速率下的溫度曲線,其結(jié)果顯示:在不同的放電速率下,使用相變材料控溫的電池模塊內(nèi)的溫度更加均勻。2008年,Al-Hallaj等[40]模擬了在不同放電倍率和不同環(huán)境溫度下用相變材料和強(qiáng)制對(duì)流兩種方式對(duì)電池?zé)峁芾?,最終結(jié)果顯示用相變材料不僅節(jié)省了風(fēng)扇耗能,而且其效果也比用空氣冷卻的效果好。靳鵬超等[41]采用 Fluent模擬對(duì)比了基于相變材料的電池?zé)峁芾硐到y(tǒng)以3 C倍率在25 ℃的環(huán)境溫度下放電和以6 C大電流在40 ℃高溫環(huán)境下放電兩種工況下的冷卻性能。圖3是Tm=40 ℃、6 C放電的電池組溫度場(chǎng)分布圖,可以看出,基于相變材料的電池?zé)峁芾硐到y(tǒng)能夠?qū)㈦姵亟M的溫度維持在50 ℃(安全溫度)下,并且控制整體的最大溫差在5 ℃之內(nèi),在正常和惡劣溫度環(huán)境下都能滿足電池工作要求,表現(xiàn)出良好的冷卻性能。

圖3 Tm=40 ℃,6 C放電的電池組溫度場(chǎng)分布[41]Fig.3 Tm = 40 ℃, the temperature distribution under 6 C discharge the battery pack[41]

2.1 用于電池?zé)峁芾硐到y(tǒng)相變材料的研究

相變材料按其相變溫度可分為高溫相變材料(>200 ℃)、中溫相變材料(100~200 ℃)和低溫相變材料(<100 ℃)[42];按其材料結(jié)構(gòu)可分為有機(jī)相變材料、無機(jī)相變材料和復(fù)合相變材料。電池最佳工作環(huán)境溫度在20~40 ℃[43],因此,目前可用于電池?zé)峁芾淼南嘧儾牧习ㄋ消}、硬脂酸、聚乙二醇、石蠟等和以它們?yōu)榛A(chǔ)物質(zhì)的相變復(fù)合材料[13]。石蠟具有無過冷及析出現(xiàn)象的優(yōu)點(diǎn),且性能穩(wěn)定,無毒、無腐蝕性,價(jià)格便宜,是基于相變材料的電池?zé)峁芾淼难芯恐攸c(diǎn)[44-50]。

石蠟的主要成分是烷烴,目前研究較多的有正十八烷、正二十烷和二十二烷等。近年來Javani 等[51]對(duì)正十八烷用于電動(dòng)汽車電池?zé)峁芾碚归_了一系列的研究,其中包括用多孔泡沫吸收正十八烷,再用于熱管理,結(jié)果表明吸收正十八烷的質(zhì)量分?jǐn)?shù)對(duì)系統(tǒng)的熱力學(xué)行為有很大的影響。除此之外,在眾多可用相變材料中,正十八烷是能夠控制熱管理系統(tǒng)溫度在允許范圍之內(nèi)的最佳候選相變材料。他們還對(duì)一個(gè)混合動(dòng)力電動(dòng)汽車的冷卻系統(tǒng)進(jìn)行能量和的分析,用正十八烷作為相變材料。結(jié)果表明:其中PCM的質(zhì)量分?jǐn)?shù)從65%增加到80%,系統(tǒng)的COP從2.78增加到2.85,而熱管理系統(tǒng)效率從19.9%提高到了21%。使用PCM系統(tǒng)的效率比未使用PCM的增加5.04%。系統(tǒng)的最大效率是34.5%,且其成本低了1.38 美元/時(shí)[52]。Li等[53]研究了二十二烷和石墨復(fù)合的相變材料,當(dāng)石墨的質(zhì)量分?jǐn)?shù)為16%時(shí),復(fù)合相變材料的潛熱是71.2 kJ/kg,其導(dǎo)熱系數(shù)是0.75 W/(m·K)。另外,Karaipekli等[54]研究了用硬脂酸和碳纖維的復(fù)合相變材料,當(dāng)碳纖維的質(zhì)量分?jǐn)?shù)為10%時(shí),復(fù)合相變材料的潛熱是184.6 kJ/kg,其導(dǎo)熱系數(shù)是0.62 W/(m·K)。

2.2 石蠟/高導(dǎo)熱粒子用于電池?zé)峁芾淼难芯?/h3>

Goli等[38]研究了用石墨烯和石蠟的復(fù)合相變材料用于電池?zé)峁芾硐到y(tǒng),因使用了石墨烯使相變材料的熱導(dǎo)率增加了兩個(gè)數(shù)量級(jí)以上,通過模擬和測(cè)試,結(jié)果發(fā)現(xiàn)添加了石墨烯的PCM能夠很好地控制電池內(nèi)部溫度的上升。

張國(guó)慶等[55]做了關(guān)于用石蠟/石墨相變復(fù)合材料對(duì)動(dòng)力型鎳氫單體電池和電池組的散熱實(shí)驗(yàn),測(cè)定了不同電流下放電過程中電池的溫度變化,同時(shí)比較了相變冷卻技術(shù)和空氣冷卻技術(shù)的效果。實(shí)驗(yàn)結(jié)果顯示,相變冷卻技術(shù)的效果比自然空氣冷卻和強(qiáng)制空氣冷卻的效果都好,與自然空氣冷卻和強(qiáng)制空氣冷卻相比電池的溫升分別下降了14~18 ℃以及9~14 ℃,而且得出當(dāng)石蠟和石墨的質(zhì)量比為4︰1時(shí)冷卻效果達(dá)到最佳。Kizilel等[40]做了關(guān)于石蠟和發(fā)泡石墨復(fù)合相變材料和電池組之間的研究,結(jié)果表明,此復(fù)合材料不僅能夠很好地控制電池組內(nèi)的溫度和溫度均勻性,而且還發(fā)現(xiàn)它能夠有效地減少電池充放電時(shí)能量的損耗,即使在高溫(45 ℃)和大功率放電時(shí)仍能有較高的效率。

2005年Al-Hallaj等[56]設(shè)計(jì)和模擬筆記本電腦電池采用相變材料對(duì)其熱管理,相變材料采用石蠟(PCM)/膨脹石墨(EG)的復(fù)合材料,仿真結(jié)果顯示,即使在高放電倍率下,使用了PCM/EG的電池模塊,其溫度低于55 ℃,明顯提高了熱管理系統(tǒng)的性能。他們還得出如果使電池組體積增加10%,即使是在高放電倍率下也可以減小電池組內(nèi)溫度的波動(dòng)。2010年Alrashdan等[57]對(duì)用于電池?zé)峁芾淼腜CM/EG模塊進(jìn)行拉伸壓縮和爆破試驗(yàn)以及測(cè)試其導(dǎo)熱系數(shù)。實(shí)驗(yàn)結(jié)果顯示,拉伸強(qiáng)度、爆破強(qiáng)度以及導(dǎo)熱系數(shù)與PCM的質(zhì)量分?jǐn)?shù)存在一定的關(guān)系。劉臣臻等[58]通過實(shí)驗(yàn)驗(yàn)證了將 EG/PCM 復(fù)合材料應(yīng)用于動(dòng)力電池?zé)峁芾硐到y(tǒng)是可行的,他們分別用空氣和EG/PCM對(duì)單體電池和電池模塊冷卻后在1 C和1.5 C放電倍率下進(jìn)行放電,用這兩種散熱方式對(duì)動(dòng)力電池散熱,并對(duì)其效果進(jìn)行比較,實(shí)驗(yàn)數(shù)據(jù)見表1。根據(jù)實(shí)驗(yàn)數(shù)據(jù)可以得出EG/PCM復(fù)合材料對(duì)動(dòng)力電池具有較好的散熱效果,而且能夠很好地控制電池溫度的均衡性。

表1 兩種冷卻技術(shù)的實(shí)驗(yàn)數(shù)據(jù)對(duì)比[58]Table 1 The comparison of experimental data of two kinds of cooling technology[58]

Lin等[59]研究了磷酸鐵鋰電池模塊用相變材料的控溫情況,并在PCM中添加了膨脹石墨和石墨以彌補(bǔ)PCM低導(dǎo)熱系數(shù)的缺點(diǎn)。圖4(a)為電池組的熱管理系統(tǒng),圖4(b)為電池組內(nèi)熱傳遞的原理圖。研究結(jié)果表明,模塊溫度的高低與放電時(shí)間長(zhǎng)短和電流大小呈正相關(guān),當(dāng)采用了PCM后,放電倍率為1 C和2 C時(shí),模塊內(nèi)的最大溫差不超過5 ℃。保溫性能的實(shí)驗(yàn)結(jié)果表明,在寒冷的天氣中,加有PCM的熱管理系統(tǒng)能夠保持電池在最佳溫度工作很長(zhǎng)一段時(shí)間。

圖4 (a)電池組的被動(dòng)熱管理系統(tǒng);(b)電池組內(nèi)熱傳遞的原理圖[59]Fig.4 (a) Battery pack prototype with the passive TMS; (b)Schematic diagram of the heat flux in the battery pack with the passive TMS[59]

2.3 石蠟/泡沫金屬用于電池?zé)峁芾淼难芯?/h3>

2004年Siddique等[24]為電動(dòng)滑板車設(shè)計(jì)了一種采用相變材料的電池?zé)峁芾硐到y(tǒng)。圖5是設(shè)計(jì)的滑板車內(nèi)鋰電池包,模擬了在冬天和夏天的條件下,采用純石蠟和向石蠟中加入泡沫鋁以及在已經(jīng)加有泡沫鋁情況下再加鋁翅片等幾種情況,最終發(fā)現(xiàn)因純石蠟的導(dǎo)熱系數(shù)較低還不能完全滿足要求,添加泡沫鋁的PCM,其導(dǎo)熱系數(shù)增加了兩個(gè)數(shù)量級(jí),能夠滿足要求,在添有泡沫鋁的PCM的基礎(chǔ)上再添加鋁翅片,其控溫效果更好。

圖5 滑板車內(nèi)鋰電池的分布情況[24]Fig.5 Li-ion battery in the Zappy scooter[24]

2005年Khateeb等[60]通過實(shí)驗(yàn)分別對(duì)采用空氣冷卻、石蠟冷卻、泡沫鋁冷卻、石蠟和泡沫鋁結(jié)合冷卻的四組電池模塊進(jìn)行對(duì)比,實(shí)驗(yàn)裝置如圖6所示,圖7是鋰離子電池模塊在不同散熱系統(tǒng)下的不同放電倍率的實(shí)驗(yàn)結(jié)果,實(shí)驗(yàn)結(jié)果表明石蠟和泡沫鋁兩者結(jié)合后的性能優(yōu)于其它三組。西安交通大學(xué)對(duì)兩種熱管理模式用于鋰離子電池包進(jìn)行了實(shí)驗(yàn)。一種是金屬泡沫銅和PCM結(jié)合;另一種是純的PCM。圖8是金屬泡沫銅的局部圖,實(shí)驗(yàn)結(jié)果顯示,采用金屬泡沫銅和PCM結(jié)合的電池包內(nèi)的溫度比純PCM更低且分布更均勻[61]。張國(guó)慶等[62]用24個(gè)單體電池以12串3并的形式放入加工好的泡沫銅/石蠟復(fù)合相變材料的基體中進(jìn)行實(shí)驗(yàn),并比較了在不同放電倍率下單體電池處于自然對(duì)流和處于泡沫銅/石蠟基體兩種工況下的表面平均溫度,實(shí)驗(yàn)結(jié)果顯示,包裹了相變材料的比沒有包裹相變材料的溫度低11 ℃。以6 C的放電倍率,電池的最高溫度不超過50 ℃,并且同一點(diǎn)在不同的放電倍率下溫差也控制在10 ℃以內(nèi)。

圖6 被泡沫鋁和相變材料包圍的鋰電池模型[55]Fig.6 Li-ion battery module surrounded by Al-foam, filled with phase change material[55]

圖7 鋰離子電池模塊在不同散熱系統(tǒng)下的不同放電倍率的實(shí)驗(yàn)結(jié)果[55]Fig.7 Experimental results of Li-ion battery module using different heat dissipation systems during discharge cycle[55]

圖8 泡沫金屬的局部形態(tài)(u?20 PPI)[61]Fig.8 Local morphology of the metal foam (u ? 20 PPI)[61]

3 相變材料在電池?zé)峁芾碇袘?yīng)用形式 的研究

Zhao等[63]研究了電池外相變材料殼層數(shù)對(duì)傳熱的影響,他們分別設(shè)計(jì)了單層殼體和雙層殼體兩種結(jié)構(gòu),分別用4種不同的相變材料對(duì)其填充并對(duì)填充后的裝置進(jìn)行研究分析,最終結(jié)果表明,同種相變材料情況下雙層殼體的效率要高于單層殼體的。Javani等[64]研究了電池外相變材料包裹的厚度對(duì)鋰離子電池溫度的影響。最終結(jié)果表明,當(dāng)PCM的厚度分別為3 mm、6 mm、9 mm和12 mm時(shí),對(duì)應(yīng)溫度分別減少2.8 K、2.9 K、3.0 K和3.0 K。當(dāng)鋰離子電池外包裹3 mm的PCM時(shí),其溫度分布的均勻度會(huì)增加10%。

Fathabadi 等[65]設(shè)計(jì)了空氣冷卻和PCM冷卻兩種技術(shù)相結(jié)合的混合式熱管理系統(tǒng)。圖9是其設(shè)計(jì)的混合式熱管理示意圖,其結(jié)果表明,電壓、溫度分布均勻且其溫度在電池允許的溫度范圍內(nèi);仿真和數(shù)值結(jié)果顯示,該電池組的溫度曲線和參數(shù)與其它電池組相比,此種設(shè)計(jì)的電池優(yōu)勢(shì)很明顯。Javani等[66]設(shè)計(jì)的液體冷卻與PCM冷卻兩種技術(shù)相結(jié)合的熱管理系統(tǒng),通過遺傳算法結(jié)果顯示,管殼式換熱器的最佳長(zhǎng)度太大,以至于無法在車輛中使用,而通過使用添加了碳納米管或石墨烯等高導(dǎo)熱系數(shù)粒子的相變材料可以使換熱器的最佳長(zhǎng)度減少,從而可以滿足車輛使用的要求;使改進(jìn)后的熱管理系統(tǒng)與空氣熱管理系統(tǒng)以及液體的熱管理系統(tǒng)相比,更加具有競(jìng)爭(zhēng)力。

圖9 主被動(dòng)混合式電池?zé)峁芾硐到y(tǒng)電池包的設(shè)計(jì)示意圖[65]Fig.9 Battery pack design including the proposed hybrid activeepassive thermal management system[65]

Krishnan等[67-68]研究了相變材料和翅片結(jié)合的混合式熱管理系統(tǒng),其結(jié)果表明,用相變材料和翅片結(jié)合的熱管理系統(tǒng)的效果明顯優(yōu)于只用相變材料的熱管理系統(tǒng)。Yoo等[69]也對(duì)板翅片、鞘翅片與相變材料結(jié)合進(jìn)行了相關(guān)研究。Robinhe等[33,70-73]和饒中浩等[74-76]對(duì)此都有一定的研究。

4 結(jié) 語

目前對(duì)于電池?zé)峁芾淼难芯吭絹碓蕉?,熱管理的形式也多樣化,除了常見的空氣冷卻技術(shù)、液體冷卻技術(shù)、相變冷卻技術(shù)和熱管冷卻技術(shù)外,還有混合式熱管理系統(tǒng)。針對(duì)PCM的低導(dǎo)熱系數(shù),可以通過特定的技術(shù)向PCM添加高導(dǎo)熱系數(shù)的物質(zhì),如石墨、膨脹石墨、石墨烯、泡沫金屬、碳納米管等。相變材料在其它領(lǐng)域運(yùn)用也很廣泛,如電子設(shè)備、醫(yī)藥、建筑、紡織等領(lǐng)域。因PCM的導(dǎo)熱系數(shù)和價(jià)格等因素,目前相變材料冷卻技術(shù)大多數(shù)還處于實(shí)驗(yàn)室的研究階段。缺乏對(duì)其進(jìn)行系統(tǒng)全面的研究和驗(yàn)證。以下幾點(diǎn)是對(duì)相變材料用于電池?zé)峁芾硐到y(tǒng)的展望。

(1)將儲(chǔ)能相變材料運(yùn)用于電池?zé)峁芾硐到y(tǒng),不僅效果良好,而且與空氣冷卻技術(shù)和液體冷卻技術(shù)相比其系統(tǒng)簡(jiǎn)單、質(zhì)量輕、沒有額外的能量耗費(fèi),是促進(jìn)未來高性能和小型化電動(dòng)汽車發(fā)展的方向之一。

(2)脂肪酸和多元醇因其相變溫度滿足電池?zé)峁芾頊囟纫?,且其都具有各自的?yōu)點(diǎn),在電池?zé)峁芾矸矫娴难芯壳熬皬V闊,將其用于電池?zé)峁芾硐到y(tǒng)中不失為未來發(fā)展的一個(gè)方向。

(3)將空冷技術(shù)、液冷技術(shù)和相變材料冷卻技術(shù)相結(jié)合的混合式熱管理系統(tǒng)是目前比較熱門的研究方向。

(4)尋找價(jià)格低廉、資源豐富、結(jié)構(gòu)穩(wěn)定、高導(dǎo)熱系數(shù)、壽命長(zhǎng)、制作工藝簡(jiǎn)單的相變材料是未來電池?zé)峁芾碛孟嘧儾牧系陌l(fā)展趨勢(shì)。

[1]Fu Zhengyang(付正陽),Lin Chengtao(林成濤),Chen Quan shi (陳全世).Key technologies of thermal management system for EV battery packs[J].Journal of Highway and Transportation Research and Development(公路交通科技),2005(3): 119-123.

[2]Chen Quanshi(陳全世),Qi Zhanning(齊占寧).Technology challenge and prospect of fuel cell vehicle[J].Automotive Engineering(汽車工程), 2001(6): 361-364.

[3]Lin Chengtao(林成濤),Chen Quanshi(陳全世).Power train configuration analysis of fuel cell bus[J].Journal of Highway and Transportation Research and Development(公路交通科技), 2003(5): 133-137.

[4]Li D,Y ang K, Chen S,et al.Thermal behavior of overcharged nickel/metal hydride batteries[J].Journal of Power Sources, 2008, 184(2): 622-626.

[5]Wu M S, Wang YY, Wan C C.Thermal behaviour of nickel metal hydride batteries during charge and discharge[J].Journal of Power Sources,1998,74: 202-210.

[6]Wicks F, D o ane E.Temperature dependent performance of a lead acid electric vehicle battery[C]//Proceeding of the 28th Intersociety Energy Conversion Engineering Conference,At lanta, 1993.

[7]Li W,Zhang R, Jiang N,et al.Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage[J].Energy, 2013,57: 607-614.

[8]Mondal T,Bhowmick A K, Krishnamoorti R.Synthesis and characterization of bi-functionalized graphene and expanded graphite usingn-butyl lithium and their use for efficient water soluble dye adsorption[J].J.Mater.Chem.A,2013, 1(28): 8144-8153.

[9]Kizilel R, Sabbah R,Selman J R,et al.An alternative cooling system to enhance the safety of Li-ion battery packs[J].Journal of Power Sources, 2 009,194(2): 1105-1112.

[10]Gui Changqing(桂長(zhǎng)清).Influence of temperature on LiFePO4Li-ion power battery[J].Battery Bimonthly(電池),2011 (2): 88-91.

[11]Lei Zhiguo(雷治國(guó)),Zhang Chengning(張承齊).Research development on thermal management system of EVs battery package[J].Chinese Journal of Power Sources(電源技術(shù)), 2011(12):1609-1612.

[12]Yu Rongsheng(余榮升),YanHua(晏華),Wang Dawei (王大偉).Investigation of phase change materials in thermal management system of big capacitance Li-ion batter y[C]// Proceedings of 2011 China Functional Materials Technology and Industry Forum,Chongqing,2011: 967-969.

[13]Wang Yanhong(王彥紅),Zhang Chengliang(張成亮),Yu Huigen(俞會(huì)根),et al.The progress of phase change materials applied in battery thermal management[J].Journal of Functional Materials(功能材料),2013,44(22):3213-3218.

[14]Guerfi A, V igny SS,La gac M,et al.Nano-particle Li4Ti5O12spinel as electrode for electrochemical generators[J].Journal of Power Sources,2003, 119- 121: 88 -94.

[15]Tang Zhiyuan(唐致遠(yuǎn)), Guan Daoan(管道安), Zhang Na (張娜),et al.Research on safety characteristics of high power lithium-ion batteries[J].Chemical Industry and Engineering Progress(化工進(jìn)展), 2005(10): 1098-1102.

[16]Yang Kai(楊凱), Li Dahe(李大賀), Chen Shi(陳實(shí)),et al.Thermal model of batteries for electrical vehicles[J].Transactions of Beijing Institute of Technology(北京理工大學(xué)學(xué)大), 2008(9): 782-785.

[17]Chen S C, Wan CC, Wang Y Y.Thermal analysis of lithium-ion batteries[J].Journal of Power Sources,2005, 140(1): 111- 124.

[18]Belt J R, Ho CD, Mi ller T J,et al.The effect of temperature on capacity and power in cycled lithium ion batteries[J].Journal of Power Sources,2005,142(1-2): 354-360.

[19]Onda K, Ohshima T,Nakayama M,et al.Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J].Journal of Power Sources, 2006,158(1) : 535-542.

[20]Yang Yalian(楊亞聯(lián)),Zhang Xin(張昕), L i Longjian (李隆鍵),et al.The cooling structure of Ni-MH batteries in hybrid-electric vehicles[J].Journal of Chongqing University(重慶大學(xué)學(xué)報(bào)),2009(04): 415-419.

[21]Wu M S, Liu K H,Wang YY,et al.Heat dissipation design for lithium-ion batteries[J].Journal of Power Sources,2002,109(1) : 1 6 0-166.

[22]Al- Hallaj S, Slman J R.Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications[J].Journal of Power Sources, 2002,110(2) : 341-348.

[23]Pesaran A A.Battery thermal models for hybrid vehicle simulations[J].Journal of Power Sources, 2002, 110 (2): 377- 382.

[24]Khateeb S A, Farid MM, Selman J R,et al.Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter[J].Journal of Power Sources,2004,128(2) : 292-307.

[25]Al-Hallaj S, Maleki H, Hong J S,et al.Thermal modeling and design considerations of lithium-ion batteries[J].Journal of Power Sources,1999,83(1 -2): 1- 8.

[26]Park H.A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J].Journal of Power Sources,2013,239: 30-36.

[27]Qi Xiaoxia(齊曉霞),Wang Wen(王文), Shao Liqing(邵力清).Battery cooling issue and solutoins in HEVs[J].Chinese Journal of Power Sources(電源技術(shù)),2005(3): 178-181.

[28]Yang Yalian(楊亞聯(lián)), Zhang Xin(張昕),Li Longjian(李隆鍵),et al.A study on the cooling system of Ni/H batteries for hybrid electric vehicle based on CFD analysis[J].Automotive Engineering(汽車工程),2009(3): 214-218.

[29]Huo Yutao(霍宇濤),Rao Zhonghao(饒中浩),Liu Xinjian (劉新鍵),et al.Research development of battery thermal management system based on liquid medium[J].Advances in New and Renewable Energy(劉能源進(jìn)展),2014(2): 135-140.

[30]Yuan Hao(袁昊), Wang Lifang(王麗芳),Wang Liye (王立業(yè)).Battery thermal management system with liquid cooling and heating in electric vehicles[J].AutomotiveSafety and Energy(汽車安全與節(jié)能學(xué)報(bào)), 2012(4): 371-380.

[31]Zhang Jiangyun(張江云), Zhang Guoqing(張國(guó)慶), Zhang Lei(張磊),et al.Simulation and experiment on air-cooled thermal energy management of lithium-ion power batteries[J].Automotive Safety and Energy(汽車安全與節(jié)能學(xué)報(bào)),2011 (2): 181-184.

[32]Zhu Xiaotong(朱曉彤),Yang Zhenglin(楊正林).Study in wind cooling system for RAV-4 EV packs[J].Light Vehicles(輕型汽車技術(shù)), 2006(11): 13-16.

[33]Mohamma d ian S K, Zhang Y.Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J].Journal of Power Sources,2015,273: 431-439.

[34]Yu K, Yang X, Cheng Y,et al.Thermalanalysis and two- directional air flow thermal management for lithium-ion battery pack[J].Journal of Power Sources,2014,270: 193-200.

[35]Xu Xiaoming(徐齊明),Zhao Youqun(趙又群).Research on battery module thermal characteristics based on double inlet and outlet flow path liquod-cooled system[J].China Academic Joumal Electronic Publishing House(中國(guó)機(jī)中工程), 2013(3): 313-316, 321.

[36]Wang T, Tseng K J, Zhao J,et al.Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J].Applied Energy, 2014,134: 229-238.

[37]Chen Qing(陳慶),Zeng Juntang(曾軍堂),Yang Xinyu(楊欣宇).Research of phase change materialsin building energy efficiency[J].Advanced Materials Industry(劉材料產(chǎn)業(yè)),2008(11):54-58.

[38]Goli P,Legedza S, Dhar A,et al.Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J].Journal of Power Sources, 2014, 248: 37-43.

[39]Al- Hallaj S, Selman J R.A novel thermal management system for electric vehicle batteries using phase-change material[J].J.Electrochem.Soc.,2000, 147(9): 3231-3236.

[40]Kizilel R, L a teef A, Sabbah R,et al.Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J].Journal of Power Sources,2008,183(1) : 370-375.

[41]Jin Pengchao(靳鵬超), Wang Shixue(王世學(xué)).A novel thermal management system for EV batteries using phase-change material[J].Chemical Industry and Engineering Progress(化工進(jìn)展), 2014(10): 2608-2612.

[42]Li Jinhui(李金輝),Liu Xiaolan(劉曉蘭),Zhang Rongjun (張榮軍),et al.Research and development of new phase change materials for heat energy storage[J].New Chemical Materials(化工新型材料), 2006(08): 18 -21.

[43]Li lin(黎林).Research on Li-ion battery management systemin EV[D].Beijing: Beijing Jiaotong University(北京交通大學(xué)), 2009.

[44]Zhong Yajuan(仲亞娟),Li Sizhong(李四中), Wei Xinghai (魏興海),et al.Numerical simulation of the effect of heat conductive fillers on the heat conduction behavior of paraffin phase change energy storage system[J].New Carbon Materials(新型炭材料),2009(4): 349-353.

[45]Xiao Xin(肖鑫), Zhang Peng(張鵬).Thermal character ization of graphite foam/paraffin composite phase change material[J].Journal of Engineering Thermohysics(工程熱物理學(xué)報(bào)), 2013(3): 530-533.

[46]Zhang Zhengguo(張正國(guó)),Wang Xueze(王學(xué)澤),F(xiàn)ang Xiao ming(方曉明).Structure and thermal properties of composite paraffin/expanded graphite phase change material[J].Journal of South China University of Technology:NaturalScience Edition(華南理工大學(xué)學(xué)報(bào):自然科學(xué)版),2006(3): 1- 5.

[47]Ma Bingqian(馬炳倩),Li Jianqiang (李建強(qiáng)),Peng Zhijian (彭志堅(jiān)),et al.Paraffin based composite phase change materials for thermal energy storage: Thermal conductivity enhancement[J].Energy Storage Science and Technology(儲(chǔ)能科學(xué)與技術(shù)),2012(2): 131-138.

[48]Wang Xianglei(汪向磊),Guo Quangui(郭全貴),Zhong Yajuan(仲亞娟),et al.Numerical simulation of the effect of heat conductive fillers on the heat conduction behavior of paraffin phase change energy storage system[J].New Carbon Materials(新型炭材料),2014(2):149-154.

[49]Zhen Wenjuan(鄭文娟).Characteristics of paraffin/copper nanoparticles composite phase change materials[D].Jinan: Q i ngdao Univer sity of Science & Technology(青島科技大學(xué)), 2 0 12.

[50]Chen Yanghua(陳楊華),Li Yu(李鈺),Guo Wenshuai (郭文帥),et al.Thermophysical properties of cool storage of paraffin-based composite phase hange materials filled with carbon nanotubes[J].Journal of Refrigeration(制冷學(xué)報(bào)),2014 (5): 110-113.

[51]Javani N, Dincer I,Naterer G F,et al.Modeling of passive thermal management for electric vehicle battery packs with PCM between cells[J].Applied Thermal Engineering,2014,73(1): 307-316.

[52]Javani N, Dincer I,Naterer GF,et al.Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles[J].Applied Thermal Engineering,2014, 64 (1- 2): 471-482.

[53]Li M, Wu Z S.Thermal properties of the graphite/n-docosane composite PCM[J].J.Therm.Anal.Calorim., 2013,111(1): 77-83.

[54]Karaipekli A, Sari A, Kaygusuz K.Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J].Renew.Energ., 2007, 32 (13): 2201-2210.

[55]Zhang Guoqing(張國(guó)慶), Rao Zhonghao(饒中浩), Wu Zhong jie(吳忠杰),et al.Experimental investigation on the heat dissipation effect of power battery pack cooled with phase change materials[J].Chemical Industry and Engineering Progress(化工進(jìn)展),2009(1): 23-26,40.

[56]Mills A, Al -Hallaj S.Simulation of passive thermal management system for lithium-ion battery packs[J].Journal of Power Sources, 2005,141(2) : 307-315.

[57]Alrashdan A, Mayyas A T, Al -Hallaj S.Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs[J].J.Mater.Process Tech.,2010, 210(1): 174-179.

[58]Liu Chenzhen(劉臣臻), Zhang Guoqing(張國(guó)慶), Wang Ziyuan(王子緣),et al.Preparation of expanded graphite/paraffin composite materials and their heat dissipation characteristics in power battery thermal management system[J].Advances in New and Renewable Energy(新能源進(jìn)展),2014(3): 233-238.

[59]Lin C, XuS,Ch ang G,et al.Experiment and simulation of a LiFePO4battery pack with a passive thermal management system using composite phase change material and graphite sheets[J].Journal of Power Sources,2015, 275: 742-749.

[60]Khateeb S A, Am iruddin S, Farid M,et al.Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation[J].Journal of Power Sources, 2005, 142(1-2): 345-353.

[61]Li W Q, QuZ G, He Y L,et al.Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials[J].Journal of Power Sources, 2014, 255: 9-15.

[62]Zhang Guoqing(張國(guó)慶), Zhang Wenjing(張文靜),Zhang Yunyun(張?jiān)圃疲?,et al.Thermal characteristics of power battery based on copper foam/paraffin wax[J].Journal of Thermal Science and Technology(熱科學(xué)與技術(shù)),2013(1): 42-46.

[63]Zhao C Y, Wu Z G.Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J].Solar Energy Materials and Solar Cells,2011, 95(2): 636- 643.

[64]Javani N,Dincer I,Naterer G F,et al.Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J].International Journal of Heat and Mass Transfer, 2014,72: 690-703.

[65]Fathabadi H.High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles[J].Energy,2014, 70 : 52 9-538.

[66]Javani N, Dincer I, N a terer G F.New latent heat storage system with nanoparticles for thermal management of electric vehicles[J].Journal of Power Sources, 2014,268: 718-727.

[67]Krishnan S, Garimella S V, Kang S S.A novel hybrid heat sink using phase change materials for transient thermal management of electronics[J].IEEE T.Compon.Pack T., 2005,28(2): 281-289.

[68]Krishnan S, Ga rimella S V, Kang S S.A novel hybrid heat sink using phase change materials for transient thermal management of electronics[J].Itherm.,2004(1): 310-318.

[69]Yoo D W, Joshi Y K.Energy efficient thermal management of electronic components using solid-liquid phase change materials[J].IEEE T.Device Mat.Re., 2004, 4 (4) : 641-649.

[70]Allahbakhsh A, Sheydaei M, Ma zinani S,et al.Enhanced thermal properties of poly (ethylene tetrasulfide)viaexpanded graphite incorporation byin situpolymerization method[J].High Perform.Polym.,2013,25(5) : 576-583.

[71]?a han N,F(xiàn)ois M, Paksoy H.Improving thermal conductivity phase change materials:A study of paraffin nanomagnetite composites[J].Solar Energy Materials and Solar Cells,2015, 137: 61-67.

[72]Alshaer W G, Nada S A,Rady M A,et al.Thermal management of electronic devices using carbon foam and PCM/nano-composite[J].International Journal of Thermal Sciences,2015,89: 79-86.

[73]Alshaer W G, Nada S A, Rady M A,et al.Numerical investigations of using carbon foam/PCM/nano carbon tubes composites in thermal management of electronic equipment[J].Energy Conversion and Management, 2015, 89 : 873-884.

[74]Rao Zhonghao(饒中浩).Research on power battery thermal management based on solid-liquid phase change heat transfer medium[D].Gu angzhou: South China University of Technology (晏華理工大學(xué)),2013.

[75]Rao Z, Wang S.A review of power battery thermal energy management[J].Renewable and Sustainable Energy Reviews, 2011, 15 (9) : 4554-4571.

[76]Rao Z, Wang S, Zhang G.Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4power battery[J].Energy Conversion and Management,2011, 52(12): 3408-3414.

猜你喜歡
石蠟電池組石墨
石墨系升溫球的實(shí)踐與應(yīng)用
昆鋼科技(2022年1期)2022-04-19 11:36:14
體積占比不同的組合式石蠟相變傳熱數(shù)值模擬
煤氣與熱力(2022年2期)2022-03-09 06:29:16
二元低共熔相變石蠟的制備及熱性能研究
世界石蠟市場(chǎng)供需現(xiàn)狀及預(yù)測(cè)
2017年7月原電池及原電池組產(chǎn)量同比增長(zhǎng)2.53%
空間大載荷石蠟驅(qū)動(dòng)器研制
石墨烯的健康路
基于LTC6802的電池組均衡電路設(shè)計(jì)
一種優(yōu)化的基于ARM Cortex-M3電池組均衡控制算法應(yīng)用
鋰離子電池組不一致性及其彌補(bǔ)措施
汽車電器(2014年5期)2014-02-28 12:14:15
敦煌市| 石棉县| 酉阳| 庆城县| 会理县| 余姚市| 大理市| 三门峡市| 新建县| 兴宁市| 前郭尔| 丹阳市| 荆州市| 九龙坡区| 峨山| 宁晋县| 徐州市| 乌拉特中旗| 弋阳县| 桦甸市| 马公市| 平果县| 上杭县| 迁西县| 天等县| 濉溪县| 天峻县| 松溪县| 乌什县| 蓝山县| 徐水县| 玉林市| 卢龙县| 章丘市| 凌云县| 松桃| 彰化市| 辉南县| 普兰店市| 任丘市| 女性|