王玥 楊秋實 韓松 羅艷琳 李俊發(fā) 趙麗.首都醫(yī)科大學附屬北京朝陽醫(yī)院神經(jīng)內科,北京0000;.首都醫(yī)科大學基礎醫(yī)學院神經(jīng)生物學系,北京00069
糖尿病腦病大鼠皮層中蛋白激酶Cγ的表達及作用
王玥1楊秋實2韓松2羅艷琳2李俊發(fā)2趙麗21.首都醫(yī)科大學附屬北京朝陽醫(yī)院神經(jīng)內科,北京1000201;2.首都醫(yī)科大學基礎醫(yī)學院神經(jīng)生物學系,北京100069
目的探討糖尿病腦病大鼠皮層中蛋白激酶Cγ(PKCγ)表達及作用。方法36只成年雄性SD大鼠隨機分為正常對照組(N組)、2型糖尿病模型組(DM組)、2型糖尿病模型+側腦室DMSO注射組(DM+DMSO組)和2型糖尿病模型+側腦室注射Go6983組(DM+Go6983組),每組各9只。N組采用正常飼料喂養(yǎng),DM組、DM+DMSO組、DM+Go6983組通過高脂飲食和腹腔注射鏈尿佐菌素(STZ)建立2型糖尿病模型,之后DM+DMSO組、DM+Go6983組分別予以側腦室注射DMSO、Go6983 5 μL。通過Morris水迷宮檢測大鼠空間記憶能力。放免法檢測血清胰島素水平。取大鼠前額葉皮層組織,通過Wertern blot法檢測PKCγ蛋白表達和亞細胞分布。結果與N組比較,DM組大鼠水迷宮逃避潛伏期時間延長,搜索策略能力降低,空腹血糖顯著升高,血清胰島素水平和體重明顯減少,差異均有統(tǒng)計學意義(P<0.05)。與DM組、DM+DMSO組比較,DM+Go6983組大鼠水迷宮逃避潛伏期進一步延長,搜索策略得分顯著降低,差異均有統(tǒng)計學意義(P<0.05)。與N組比較,DM組大鼠皮層PKCγ蛋白全細胞表達量未有明顯變化(P>0.05),膜轉位水平明顯高于正常腦組織,差異有統(tǒng)計學意義(P<0.05)。結論PKCγ膜轉位(激活)可能在2型糖尿病腦病的發(fā)展過程中起到神經(jīng)保護作用。
糖尿病腦病;PKCγ;皮層;膜轉位;Morris水迷宮
糖尿病腦病是由于長期高血糖及其引起的代謝紊亂造成大腦結構、生理功能等多方面發(fā)生一列病理改變,其主要臨床表現(xiàn)為學習能力下降、記憶力衰退、注意力不集中和認知功能障礙等[1-2],嚴重者可以發(fā)展為阿爾茨海默?。?]。糖尿病腦病病因相對復雜,具體的發(fā)生機制尚不清楚。已有研究表明,高血糖引起DAG合成增加,從而激活蛋白激酶C(protein kinase C,PKC),PKC又通過激活多條信號通路參與了糖尿病并發(fā)癥的損傷過程[4]。根據(jù)激活方式的不同,可將PKC分為以下亞型:α、βⅠ、βⅡ、γ、δ、ε、ζ、η、θ、μ、ν、ι/λ。然而尚無研究探討PKC各個亞型在糖尿病腦病中的作用。PKCγ特異地表達于神經(jīng)元,本研究擬利用大鼠2型糖尿病模型,應用Western blot方法觀察2型糖尿病大鼠大腦皮層PKCγ蛋白表達量和膜轉位情況,并通過Morris水迷宮初步探討PKCγ在糖尿病腦病發(fā)生發(fā)展過程中的作用。
1.1實驗動物及試劑
清潔級雄性SD大鼠,體重200~250 g,由首都醫(yī)科大學實驗動物中心提供[動物合格證號:SCSK(京)2012-0001]。兔源性多克隆抗體Anti-PKCγ(一抗,Santa Cruz公司),鼠源性單克隆抗體Anti-actin(一抗,Sigma Aldrich公司),辣根過氧化物酶標記的山羊抗兔抗體和山羊抗鼠抗體(二抗,Proteintech公司),鏈脲佐菌素(STZ,Sigma Aldrich公司),細胞膜蛋白與細胞漿蛋白抽提試劑盒(碧云天公司)。
1.2糖尿病大鼠模型的建立
健康成年SD雄性大鼠36只,隨機分為4組:正常對照組(N組)、2型糖尿病模型組(DM組)、2型糖尿病模型+側腦室DMSO注射組(DM+DMSO組)和2型糖尿病模型+側腦室注射Go6983組(DM+Go6983組),每組各9只。正常對照組喂以正常飼料(蛋白質19%,碳水化合物67%,脂肪4%),其余三組喂以高脂飼料(蛋白質26%,碳水化合物26%,脂肪35%)。高脂飲食喂養(yǎng)4周,大鼠禁食12 h后一次性腹腔注射STZ 35 mg/kg,并繼續(xù)高脂喂養(yǎng);正常對照組腹腔注射檸檬酸緩沖液,繼續(xù)正常飼料喂養(yǎng)。1周后剪尾采血測空腹血糖,以空腹血糖值≥7.8 mmol/L為成模標準。Morris水迷宮測試前24 h,選擇大鼠右側側腦室(前囟后1 mm、中線旁開1.8 mm、顱骨表面下4.2 mm),用10 μL微量注射器緩慢注入5 μL所需藥品,分別為DMSO和Go6983(溶于DMSO,10 μmol/L)[5],給藥后緩慢退針,縫合傷口。
1.3 Morris水迷宮測試
2型糖尿病大鼠模型建立后8周,四組大鼠均測試Morris水迷宮。學習時將大鼠從任一象限入水點頭面向池壁輕放于水中,記錄動物的入水時間和潛伏期。每只大鼠每天在每個象限學習1次,設定最長游動時間為120 s。前4 d為訓練時間,第5天測試。實驗結束后記錄各實驗動物探索到達平臺所需的時間(逃避潛伏期)和搜索平臺的策略(圓圈式,記分1分;隨機式,記分2分;曲線式,記分3分;直線式,記分4分)。
1.4血清生化指標檢測
Morris水迷宮測試結束后,N組和DM組大鼠禁食12 h,取尾靜脈血測空腹血糖。10%水合氯醛(350 mg/kg)腹腔注射麻醉,頸動脈插管放血,血樣于3500 r/min離心10 min,分離血清,分裝于EP管內,-80℃凍存待測。放免法檢測血清胰島素水平。
1.5 Western blot
行為學測試后,N組和DM組大鼠斷頭取腦,冰上快速分離前額葉皮層,加入全細胞裂解液勻漿,或利用碧云天細胞膜蛋白與細胞漿蛋白抽提試劑盒分離、提取胞漿蛋白和胞膜蛋白。勻漿后的樣品加上樣緩沖液經(jīng)煮沸、離心后,取上清即為蛋白提取液,經(jīng)過蛋白測定后進行免疫印跡實驗。取各組等蛋白含量樣品于聚丙烯酰胺凝膠泳道進行蛋白電泳,經(jīng)過恒流、恒壓蛋白徹底分離后將蛋白轉移至PVDF膜上,再進行相應一抗、二抗孵育及ECL顯色。收集所得條帶灰度值進行統(tǒng)計學分析。應用Quantity One分析軟件進行蛋白印跡結果的半定量分析,得出PKCγ總蛋白以及β-actin的吸光度值,用β-actin校準后算出比值,并以N組作為100%,其余各組以相對百分數(shù)表示。
1.6統(tǒng)計學方法
采用統(tǒng)計軟件SPSS 11.5對數(shù)據(jù)進行分析,正態(tài)分布計量資料以均數(shù)±標準差(x±s)表示,兩獨立樣本的計量資料采用t檢驗;多組間比較采用方差分析,兩兩比較采用LSD-t檢驗。計數(shù)資料以率表示,采用χ2檢驗。以P<0.05為差異有統(tǒng)計學意義。
2.1實驗動物的空間學習記憶能力測試及評價
Morris水迷宮實驗的第1~5天,DM組、DM+DMSO組和DM+Go6983組逃避潛伏期較N組均明顯增加,差異有統(tǒng)計學意義(P<0.05)。與DM組和DM+DMSO組比較,DM+Go6983組逃避潛伏期進一步延長,差異有統(tǒng)計學意義(P<0.05)。見表1。
第5天各組大鼠搜索平臺策略的評分情況顯示,與N組[(3.22±0.28)分]比較,DM組[(2.22±0.32)分]、DM+DMSO組[(2.11±0.31)分]和DM+Go6983組[(1.33± 0.17)分]分數(shù)顯著降低,差異有統(tǒng)計學意義(P<0.05)。與DM組和DM+DMSO組比較,DM+Go6983組評分進一步降低,差異有統(tǒng)計學意義(P<0.05)。見圖1。
表1 各組大鼠水迷宮實驗逃避潛伏期的比較(分,
表1 各組大鼠水迷宮實驗逃避潛伏期的比較(分,
注:與N組比較,*P<0.05;與DM組和DM+DMSO組比較,#P<0.05
組別只數(shù)第1天第2天第3天第4天第5天N組DM組DM+DMSO組DM+Go6983組9999 60.78±7.91 84.00±6.27*85.56±8.98*95.00±16.52*#50.89±15.84 68.33±13.25*72.00±14.59*83.00±8.64*#35.44±11.59 54.11±9.16*54.89±10.86*72.89±12.21*#17.00±7.62 41.67±10.00*44.78±14.07*65.11±15.27*#7.56±2.30 26.89±10.87*27.44±13.08*57.00±16.26*#
圖1 各組實驗大鼠Morris水迷宮實驗的搜索平臺策略評分
2.2 N組、DM組大鼠特征、體重、空腹血糖、血胰島素的變化
N組大鼠精神狀態(tài)良好,體重穩(wěn)定、持續(xù)上升。給予STZ后,DM組大鼠精神萎靡,活動減少,消瘦,進食量、飲水量增加,尿量增加。與N組比較,DM組大鼠空腹血糖水平明顯升高,差異有統(tǒng)計學意義(P<0.05);而DM組大鼠體重和血清胰島素水平顯著低于N組,差異有統(tǒng)計學意義(P<0.05)。見表2。
表2 N組、DM組大鼠體重、血糖和血胰島素水平的比較
表2 N組、DM組大鼠體重、血糖和血胰島素水平的比較
注:與N組比較,*P<0.05
組別只數(shù)體重(g)血糖(mmol/L)血胰島素(mU/L)N組DM組99 713±14 635±28*5.2±0.8 13.2±2.7*16.51±4.19 9.87±1.31*
2.3 N組、DM組大鼠大腦皮層PKCγ蛋白全細胞表達量與亞細胞分布的變化
Western blot結果顯示,與N組比較,DM組大鼠皮層組織PKCγ蛋白全細胞表達量無明顯變化,差異無統(tǒng)計學意義(P>0.05)。見圖2。
與N組比較,DM組大鼠皮層組織胞膜成分內PKCγ含量明顯升高,而胞漿成分內PKCγ含量顯著降低,即發(fā)生了膜轉位,差異有統(tǒng)計學意義(P<0.05)。見圖3。
圖2 N組、DM組大鼠皮層組織中PKCγ蛋白表達情況
圖3 N組、DM組大鼠皮層組織中PKCγ在細胞膜和細胞漿的表達情況
PKC是一類使蛋白質分子內絲氨酸/蘇氨酸殘基磷酸化的蛋白激酶,廣泛分布于各種組織,其中以神經(jīng)組織中含量最為豐富[6-10]。當細胞受到刺激后,PKC從細胞漿中轉移到胞膜上,稱為膜轉位,可作為PKC激活的標志[11-14]。目前多項研究表明PKCα、β2、ε、δ、ζ、ι分別在糖尿病引起的炎癥反應、心室功能障礙、視網(wǎng)膜病變和糖尿病腎病中均發(fā)揮重要的作用[15-18]。
PKCγ最大的特征是它特異地分布于神經(jīng)元,并主要集中在中樞神經(jīng)系統(tǒng)。糖尿病大鼠胚胎神經(jīng)管發(fā)育過程中PKCγ磷酸化水平增加,PKCγ特異性抑制劑可以有效地降低糖尿病畸胎率的發(fā)生[19]。糖尿病小鼠三叉神經(jīng)脊髓核PKCγ表達增加,與頭面部熱痛覺過敏相關[20]。Bames空間迷宮實驗發(fā)現(xiàn),與未經(jīng)訓練大鼠相比,經(jīng)過訓練或熟悉迷宮的大鼠海馬CA1區(qū)PKC-γ免疫活性明顯增強,提示PKC-γ參與突觸發(fā)育和可塑性,可直接影響認知功能[21]。然而尚無研究系統(tǒng)地探索PKC-γ在糖尿病腦病中的作用。本研究通過高脂飼料結合STZ腹腔注射建立2型糖尿病大鼠模型,12周后通過Morris水迷宮實驗發(fā)現(xiàn)糖尿病大鼠學習、記憶、空間定向等認知能力明顯下降。通過Western blot實驗發(fā)現(xiàn),2型糖尿病大鼠皮層組織PKCγ蛋白全細胞表達量未有明顯變化,結果提示,2型糖尿病并非通過改變PKCγ蛋白表達量參與糖尿病腦病的發(fā)生發(fā)展過程。然而PKCγ亞細胞分布發(fā)生改變:胞膜成分內PKCγ含量明顯升高,而胞漿成分內PKCγ含量顯著降低,提示PKCγ可能通過膜轉位激活細胞內信號通路,參與糖尿病腦病的發(fā)病過程。進一步應用側腦室注射PKCγ抑制劑Go6983,發(fā)現(xiàn)Morris水迷宮潛伏期進一步延長,搜索策略能力顯著降低,認知功能障礙更加嚴重。
綜上所述,本實驗中糖尿病腦病大鼠出現(xiàn)明顯認知功能障礙,在此過程中PKCγ激活,給予PKCγ抑制劑可以進一步加重認知功能障礙,提示PKCγ激活可能在2型糖尿病腦病的發(fā)展過程中起到神經(jīng)保護作用,但其具體機制有待于進一步研究證實。
[1]Liu YW,Zhu X,Zhang L,et al.Cerebroprotective effects of ibuprofen on diabetic encephalopathy in rats[J].Pharmacol Biochem Behav,2014,117:128-136.
[2]Liu JP,F(xiàn)eng L,Zhang MH,et al.Neuroprotective effect of Liuwei Dihuang decoction on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat[J]. J Ethnopharmacol,2013,150(1):371-381.
[3]Zhou Y,Luo Y,Dai J.Axonal and dendritic changes are associated with diabetic encephalopathy in rats:an important risk factor for Alzheimer's disease[J].J Alzheimers Dis,2013,34(4):937-947.
[4]Brownlee M.The pathobiology of diabetic complications:a unifying mechanism[J].Diabetes,2005,54(6):1615-1625.
[5]Zhang N,Yin Y,Han S,et al.Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCγ-mediated molecular mechanism[J].Neurochem Int,2011,58(6):684-692.
[6]Verma SK,Deshmukh V,Liu P,et al.Reactivation of fetal splicing programs in diabetic hearts is mediated by protein kinase C signaling[J].J Biol Chem,2013,288(49):35372-35386.
[7]Hua KF,Wang SH,Dong WC,et al.High glucose increases nitric oxide generation in lipopolysaccharide-activated macrophages by enhancing activity of protein kinase C-α/ δ and NF-κB[J].Inflamm Res,2012,61(10):1107-1116.
[8]Huang D,Wang FB,Guo M,et al.Effect of combined treatment with rosuvastatin and protein kinase Cβ2 inhibitor on angiogenesis following myocardial infarction in diabetic rats[J].Int J Mol Med,2015,35(3):829-838.
[9]Jiang Y,Zhang Q,Steinle JJ.Beta-adrenergic receptor agonist decreases VEGF levels through altered eNOS and PKC signaling in diabetic retina[J].Growth Factors,2015,33(3):192-199.
[10]Ahmed MS,Pelletier J,Leumann H,et al.Expression of protein kinase C isoforms in pancreatic islets and liver of male goto-kakizaki rats,a model of Type 2 diabetes[J]. PLoS One,2015,10(9):e0135781.
[11]Koya D.Dual protein kinase C alpha and beta inhibitors and diabetic kidney disease:a revisited therapeutic target for future clinical trials[J].J Diabetes Investig,2014,5(2):147-148.
[12]Park J,Kim H,Park SY,et al.Tonicity-responsive enhancer binding protein regulates the expression of aldose reductase and protein kinase C δ in a mouse model of diabetic retinopathy[J].Exp Eye Res,2014,122:13-19.
[13]Xu M,Tang YQ,Dai DZ,et al.Comparison of sildenafil with strontium fructose diphosphate in improving erectile dysfunction against upregulated cavernosal NADPH oxidase,protein kinase Cε,and endothelin system in diabetic rats[J].J Pharm Pharmacol,2012,64(2):244-251.
[14]Soetikno V,Sari FR,Sukumaran V,et al.Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats:possible involvement of PKC-MAPK signaling pathway[J].Eur J Pharm Sci,2012,47(3):604-614.
[15]Mima A,Hiraoka-Yamomoto J,Li Q,et al.Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes[J].Diabetes,2012,61(11):2967-2979.
[16]Soliman H,Gador A,Lu YH,et al.Diabetes-induced increased oxidative stress in cardiomyocytes is sustained by a positive feedback loop involving Rho kinase and PKCβ2[J].Am J Physiol Heart Circ Physiol,2012,303(8):H989-H1000.
[17]Xi G,Shen X,Maile LA,et al.Hyperglycemia enhances IGF-I-stimulated Src activation via increasing Nox4-derived reactive oxygen species in a PKCζ-dependent manner in vascular smooth muscle cells[J].Diabetes,2012,61(1):104-113.
[18]Sajan MP,F(xiàn)arese RV.Insulin signalling in hepatocytes of humans with type 2 diabetes:excessive production and activity of protein kinase C-ι(PKC-ι)and dependent processes and reversal by PKC-ι inhibitors[J].Diabetologia,2012,55(5):1446-1457.
[19]Zhao ZY,Wu YK,Reece EA.Demonstration of the essential role of protein kinase C isoforms in hyperglycemia-induced embryonic malformations[J].Reprod Sci,2008,15(4):349-356.
[20]Xie HY,Xu F,Li Y,et al.Increases in PKC gamma expression in trigeminal spinal nucleus is associated with orofacial thermal hyperalgesia in streptozotocin-induced diabetic mice[J].J Chem Neuroanat,2015,63:13-19.
[21]Nithianantharajah J,Murphy M.Experience on the Barnes spatial maze influences PKCgamma levels in the hippocampus[J].Int J Neurosci,2009,119(7):1014-1030.
Expression and role of protein kinase Cγ in cortex of diabetic encephalopathy rat
WANG Yue1YANG Qiushi2HAN Song2LUO Yanlin2LI Junfa2ZHAO Li2
1.Department of Neurology,Beijing Chaoyang Hospital,Capital Medical University,Beijing100020,China;2.Department of Neurobiology,School of Basic Medical Sciences,Capital Medical University,Beijing100069,China
Objective To explore the expression and role of PKCγ in the cortex of diabetic encephalopathy of rats. Methods 36 adult male SD rats were randomly divided into four groups(9 rats in each group):normal control group(N group),type 2 diabetes model group(DM group),type 2 diabetes model+DMSO intracerebroventricular injection group(DM+DMSO group)and type 2 diabetes model+Go6983 intracerebroventricular injection group(DM+Go6983 group). The rats in N group were fed with normal feedstuff,the models of DM,DM+DMSO and DM+Go6983 groups were established by application of high-fat diet and intraperitoneal injection of streptozocin(STZ).5 μL DMSO or Go6983 was intracerebroventricular injected in DM+DMSO group or DM+Go6983 group respectively.The spatial memories were determined by Morris water maze test in rats.The serum insulin levels were detected by radio-immunity method.PKCγ protein expression and subcellular distribution in the prefrontal cortex of rats were explored by Western blot method. Results Compared with N group,the escape latencies of water maze in DM group were longer,the scores of search platform strategy in Morris water maze test of DM group were lower,the fasting plasma glucose of DM group increased significantly,while serum insulin levels and body weight decreased remarkably,the differences were statistically significant(P<0.05).Compared with DM group and DM+DMSO group,the water maze latency of rats in DM+Go6983 group extended and the scores of search platform strategy reduced,the differences were statistically significant(P<0.05). Compared with N group,the expression of PKCγ protein in cortex of DM group had no change(P>0.05).The membrane translocation of PKCγ was significantly higher than that of normal brain tissues,the difference was statistically significant(P<0.05).Conclusion The PKCγ membrane translocation(activated)may play a neuroprotective role in the development of type 2 diabetic encephalopathy.
Diabetic encephalopathy;Protein kinase Cγ;Cortex;Membrane translocation;Morris water maze
R587.2
A
1673-7210(2015)12(b)-0004-04
2015-09-05本文編輯:蘇暢)
國家自然科學基金項目(81400948);北京市自然科學基金項目(7144188);北京市教育委員會科技發(fā)展計劃面上項目(KM201410025004);首都醫(yī)科大學省部級重點實驗室開放研究課題(GJZDSS004)。
王玥(1978-),男,博士;研究方向:腦血管及神經(jīng)系統(tǒng)變性病發(fā)病機制。
趙麗(1978.5-),女,博士,研究方向:神經(jīng)生物學。