白淑萍,石德平,谷桂花
(內(nèi)蒙古民族大學數(shù)學學院,內(nèi)蒙 古通遼 028043)
凸函數(shù)的關(guān)于Riemann-Liouville分式積分的Hermite-Hadamard型不等式
白淑萍,石德平,谷桂花
(內(nèi)蒙古民族大學數(shù)學學院,內(nèi)蒙古通遼028043)
凸函數(shù)的Hermite-Hadamard型不等式具有重要的理論意義,并且有著廣泛的應(yīng)用.首先建立了一個關(guān)于Riemann-Liouville分式積分的等式,然后討論凸函數(shù)的關(guān)于Riemann-Liouville分式積分的Hermite-Hadamard型積分不等式,得到了若干個結(jié)果.
Riemann-Liouville分式積分;凸函數(shù);Hermite-Hadamard型積分不等式
凸函數(shù)的Hermite-Hadamard型不等式具有重要的理論意義,并且有著廣泛的應(yīng)用.其相關(guān)的定義和定理如下:
定義1[1-2]設(shè)f:IR=(-∞,+∞)→R.若對任意的x,y∈I,t∈[0,1],有:
本文首先建立一個關(guān)于Riemann-Liouville分式積分的一個等式,然后討論凸函數(shù)的關(guān)于Riemann-Liouville分式積分的Hermite-Hadamard型積分不等式.
[1]DRAGOMIR S S,AGARWAL R P.Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula[J].Appl Math Lett,1998,11(5):91-95.
[2]KIRMACI U S.Inequalities for differentiable mappings and applications to special means for real numbers to midpoint formula[J].Appl Math Comput,2004,147(1):137-146.
[3]GORENFLO R,MAINARDI F.Fractional Caleulus;Integral and Differential Equations of Fractional order[M].Springer Veriag,1997.
[4]PEARCE C E M,PEARIJ.Inequalities for differentiable mappings with application to special means and quadrature formulae[J].Appl Math Lett,2000,13(2):51-55.
[5]DRAGOMIR S S,F(xiàn)ITZPATRIK S.The Hadamard's inequality for s-convex functions in the second sense[J].Demonstratio Math,1999,32(4):687 -696.
[6]DAHMANI Z.New inequalities in fractional integrals[J].Int J Nonlinear Sci,2010,9(4):155-160.
[7]SHI D P,XI B Y,QI F.Hermite--Hadamard type inequalities for Riemann-Liouville fractional integrals of(α,m)-convex functions[J].Fractional Differential Calculus,2014,4(2):33-43.
[8]SHI D P,XI B Y,QI F.Hermite--Hadamard type inequalities for(m,h1,h2)-convex functions via Riemann-Liouville fractional integrals[J]. Turkish Journal of Analysis and Number Theory,2014,2(1):22-27.
責任編輯:時 凌
Hermite-Hadamard Type Inequalities for Convex Functions Via Riemann-Liouville Fractional Integrals
BAI Shuping,SHI Deping,GU Guihua
(College of Mathematics,Inner Mongolia University for the Nationalities,Tongliao 028043,China)
Hermite-Hadamard type inequality of convex function has important theoretical significance,and has a wide range of applications.First,we establish a fractional integral equation with Riemann-Liouville.Then we discuss convex functions on Riemann-Liouville fractional integral of Hermite-Hadamard type integral inequality and obtain some results.
Riemann-Liouville fractional integral;convex function;Hermite-Hadamard type integral inequality
O159
A
1008-8423(2015)04-0384-04DOI:10.13501/j.cnki.42-1569/n.2015.12.007
2015-10-09.
內(nèi)蒙古自治區(qū)高等學??茖W研究項目(NJZY14192);內(nèi)蒙古自治區(qū)自然科學研究項目(2015MS0123).
白淑萍(1967-),女,副教授,主要從事分析不等式的研究.