薛斌 李星
【摘 要】復(fù)合材料跨尺度失效理論是近些年提出的一類基于物理失效模式的強度理論,它從細觀層面判定纖維和基體的失效,在分析復(fù)合材料性能匹配和耐久性方面有獨特的優(yōu)勢。提出了一種新的跨尺度失效判定準則,利用Abaqus的內(nèi)嵌Python腳本語言開發(fā)了復(fù)合材料跨尺度失效分析軟件CMFAS,編制了圖形用戶界面(GUI)進行人機交互,實現(xiàn)了代表體積單元(RVE)參數(shù)化建模及后處理、應(yīng)力放大系數(shù)矩陣生成、失效準則臨界值求解和損傷演化處理等一系列功能,最終生成Abaqus子程序文件USDFLD和VUSDFLD。
【關(guān)鍵詞】復(fù)合材料;跨尺度;失效準則;二次開發(fā)
【Abstract】Composite multiscale failure theory is a newly proposed category of strength criteria, based on mechanical failure modes. In this theory, fiber and matrix failure are determined in meso level, which has special advantage in analyzing material property matching and durability. A new multiscale failure criteria was proposed, CMFAS (Composite Multiscale Failure Analysis Software) was developed using Python scripting language embedded in Abaqus. In CMFAS, GUI (Graphic User Interface) was compiled to realize human-computer interaction, RVE (Representative Volume Element) parametric modeling and post processing, stress amplification factors generation, failure criteria critical value solving and damage evolution were automatically accomplished, finally Abaqus subroutine files USDFLD and VUSDFLD were given.
【Key words】Composite materials; Multiscale; Failure criteria; Secondly development
0 引言
復(fù)合材料強度理論經(jīng)過幾十年的發(fā)展,先后產(chǎn)生了Tsai-Wu準則[1]、Hashin準則[2]等幾十種失效判定方法,并且不斷有新理論的提出[3]。復(fù)合材料跨尺度失效理論是21世紀初發(fā)展起來的一類復(fù)合材料失效理論,通過宏觀應(yīng)力(應(yīng)變)計算細觀層面纖維和基體的應(yīng)力(應(yīng)變),基于物理失效模式判定纖維和基體的失效。在此基礎(chǔ)上可以討論纖維體積含量、溫度變化等對材料性能的影響,這是其它失效理論無法實現(xiàn)的[4-5]。因此跨尺度失效理論在研究復(fù)合材料纖維、基體性能匹配和耐久性方面有獨特的優(yōu)勢,基于跨尺度失效理論的分析軟件也相繼提出。
1 跨尺度失效理論簡介
1.1 宏觀應(yīng)力到細觀應(yīng)力的轉(zhuǎn)換
復(fù)合材料纖維和基體的力學性能差異很大,它們在細觀上表現(xiàn)出不同的受力狀態(tài)。層板級力學試驗得到的應(yīng)力是截面上纖維和基體的宏觀平均應(yīng)力,并沒有反映細觀層面上的應(yīng)力分布。假設(shè)纖維和基體按一定方式規(guī)則排列,可以認為施加在單層上的宏觀應(yīng)力等效于施加在代表體積單元(RVE)上的應(yīng)力,如圖1所示。
2 CMFAS的目的
應(yīng)用跨尺度失效準則時,圖2中每個參考點都需求解式(1)中的機械應(yīng)力放大系數(shù)矩陣和熱應(yīng)力放大系數(shù)矩陣。當纖維或基體性能衰減后,應(yīng)力放大系數(shù)矩陣又要重新計算。手工完成有限元計算和數(shù)據(jù)提取工作量很大,限制了跨尺度失效準則的實際應(yīng)用,同時失效準則中臨界值的求解也需要編制程序來完成。CMFAS正是要為跨尺度失效準則的實際應(yīng)用提供技術(shù)輔助,從人機交互和有限元求解兩個方面入手,為復(fù)合材料結(jié)構(gòu)的跨尺度失效分析和損傷演化提供工具和手段。
3 CMFAS的功能和特點
3.1 CMFAS的功能
4.2 CMFAS的軟件編制和組成
(1)RVE參數(shù)化建模和后處理
(2)判定準則臨界值的求解
(3)損傷折減剛度求解及應(yīng)力放大系數(shù)修正
(4)人機交互界面開發(fā)
5 結(jié)論
(1)復(fù)合材料跨尺度失效準則從細觀層面判定纖維和基體的失效,在研究復(fù)合材料纖維、基體性能匹配和耐久性方面有獨特的優(yōu)勢。算例表明其可以有效預(yù)測復(fù)合材料的破壞過程;
(2)CMFAS可以有效實現(xiàn)復(fù)合材料跨尺度失效分析的整個過程,極大提高了計算效率,為跨尺度失效準則的實際應(yīng)用提供了新的思路。
【參考文獻】
[1]Tsai S W, Wu E M. A General Theory of Strength for Anisotropic Materials [J]. Journal of Composite Materials. 1971, 5(1): 58-80.
[2]Hashin Z. Failure Criteria for Unidirectional fiber composites[J]. Journal of Applied Mechanics, Transactions ASME. 1980, 47(2):329-334.
[3]Orifici A, Herszberg I, Thomson R. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures. 2008, 86(1-3):194-210.
[4]Cai H, Miyano Y, Nakada M. Long-term open-hole compression strength of CFRP laminates based on strain invariant failure theory[J]. Journal of Thermoplastic Composite Materials. 2009,22(1):63-81.
[5]Jasso A J M, Goodsell J E, Ritchey A J, et al. A parametric study of fiber volume fraction distribution on the failure initiation location in open hole off-axis tensile specimen[J]. Composites Science and Technology. 2011,71(16):1819-1825.
[9]Gosse J H, Christensen S. Strain invariant failure criteria for polymers in composite materials[C]. Seattle, WA, United states: American Inst. Aeronautics and Astronautics Inc., 2001.
[7]Mayes J S, Hansen A C. Composite laminate failure analysis using multicontinuum theory[J]. Composites Science and Technology. 2004, 64(3-4): 379-394.
[8]Sung Kyu Ha, Kyo Kook Jin, Yuanchen Huang. Micro-Mechanics of Failure (MMF) for Continuous Fiber Reinforced Composites [J]. Journal of Composite Materials. 2008, 42(18): 1873-1895.
[9]Ng S J, Felsecker A, Meilunas R, et al. SIFT analysis of IM7/5250-4 composites[C]. San Diego, CA, United states: Soc. for the Advancement of Material and Process Engineering, 2004.
[10]王曉宏,張博明,劉長喜,等.纖維纏繞復(fù)合材料壓力容器漸進損傷分析[J] 計算力學學報,2009(03).(Wang Xiaohong, Zhang Boming, Du Shanyi. Progressive falure analysis of composite overwrapped pressure vessels[J]. Chinese Journal of Computational Mechanics. 2009(03).)
[11]朱祎國.層狀復(fù)合材料的彈塑性模型[J].計算力學學報,2011(02). (Zhu Yiguo. Elastoplastic model of laminated composites[J]. Chinese Journal of Computational Mechanics. 2011(02).)
[12]黎增山,關(guān)志東,何為.國產(chǎn)復(fù)合材料應(yīng)變不變量材料性能[J].復(fù)合材料學報,2011,28(5):192-196. (Li Zengshan, Guan Zhidong*, He Wei. Strain Invariant Failure Theory(SIFT)Invariant Properties of Domestic Composite Materials[J]. Acta Materiae Compositae Sinica. 2011, 28(5): 192-196.)
[13]李星,關(guān)志東,劉璐,等.復(fù)合材料跨尺度失效準則及其損傷演化[Z].2012. (Li Xing, Guan Zhidong, Liulu. Composite multiscale failure criteria and damage evolution[Z]. 2012.)
[14]沈觀林,胡更開.復(fù)合材料力學[M].北京:清華大學出版社,2006.(Shen Guanlin, Hu Gengkai. Mechanics of composite materials[M]. Beijing, Tsinghua press, 2006.)
[15]王國梁,李旭東,何鳳蘭,等.GUI在多晶體材料微結(jié)構(gòu)設(shè)計中的應(yīng)用[J].甘肅科技,2009,25(11):6-9.(Wang Guoliang, Li Xudong, He Fenglan. GUI Application in micro structure design of polycrystalline materials[J]. Gansu Science and Technology. 2009, 25(11): 6-9.)
[16]Abaqus GUI Toolkit User's Manual[G]. Dassault Systèmes Simulia Corp, 2010.
[17]Abaqus GUI Toolkit Reference Manual. Dassault Systèmes Simulia Corp, 2010.
[18]Abaqus Add-ons. Dassault Systèmes Simulia Corp., 2012.
[19]王家林,李平.ABAQUS箱型橋梁的GUI二次開發(fā)[J].重慶交通大學學報:自然科學版,2009(06):1000-1004. (Wang Jialin, Li Ping. ABAQUS GUI Secondly development of box bridge.)
[20]Abaqus Scripting Users Manual. Dassault Systèmes Simulia Corp, 2010.
[21]曹金鳳,王旭春,孔亮.Python語言在Abaqus中的應(yīng)用[M].機械工業(yè)出版社,2011. (Cao Jinfeng, Wang Xuchun, Kong Liang. Application of Python language in Abaqus[M]. Mechanic Industry Press, 2011.).
[責任編輯:湯靜]