李向有,張慶祥
(延安大學數學與計算機學院 陜西 延安 716000)
B-(p,r)不變凸函數[1]是一類重要的不變凸函數,很多學者利用這一函數研究了大量凸規(guī)劃,得到了許多重要結論[2-6].但是這些文章只是利用B-(p,r)不變凸函數研究了常規(guī)的單目標規(guī)劃問題,并且研究內容有很大的重合,Anurag Jayswal[7]研究了極大極小分式規(guī)劃問題,對文獻[8-9]中的相關結論進行了推廣.上述文獻都是利用B-(p,r)不變凸函數,研究相應的規(guī)劃問題,沒有對B-(p,r)不變凸函數進行推廣.極大極小分式規(guī)劃是凸規(guī)劃里的一個重要研究內容,如文獻[8-11]中利用不同的凸函數研究了相應極大極小分式規(guī)劃問題最優(yōu)性和對偶性問題.在上述文章的基礎上,定義了一類新的廣義凸函數:B-(p,r,a)不變凸函數、B-(p,r,a)不變擬凸函數、B-(p,r,a)不變偽凸函數,這些函數是對B-(p,r)不變凸函數的重要推廣,并用這些函數研究了極大極小分式規(guī)劃問題,在更弱的凸性下,對文獻[8-11]中的相關結論進行了更大的推廣,得到了一些重要結果.
實值函數f:Rn→R是局部Lipschitz的,若對任意x∈Rn,存在一個正數k和x的鄰域N()x,對任意y,z∈N(x),使得‖f(y)-f(z)‖ ≤k‖y-z‖.
若函數f為局部Lipschitz的,那么函數f:X→R在x沿方向d的Clarke廣義方向導數和Clarke廣義方向梯度分別定義為:
定義1設非空開集X?Rn,f:X→R是X上的Lipschitz函數,p,r是任意非零實數,u∈X,若?x∈X,存在向量函數η:X×X→Rn,函數b:X×X→R+,a:X×X→R,使得對?ξ∈?f(u)有:
成立,則稱f在u點為關于函數η的B-(p,r,a)不變凸函數.
定義2設非空開集X?Rn,f:X→R是X上的Lipschitz函數,p,r是任意非零實數,u∈X,若?x∈X,存在向量函數η:X×X→Rn,函數b:X×X→R+,a:X×X→R,使得對?ξ∈?f(u)有:
成立,則稱f在u點為關于函數η的B-(p,r,a)不變擬凸函數.
定義3設非空開集X?Rn,f:X→R是X上的Lipschitz函數,p,r是任意非零實數,u∈X,若?x∈X,存在向量函數η:X×X→Rn,函數b:X×X→R+,a:X×X→R,使得對?ξ∈?f(u)有:
成立,則稱f在u點為關于函數η的B-(p,r,a)不變偽凸函數.
考慮如下的分式規(guī)劃問題:
其中:x∈D?Rn,Y是Rm中的緊子集,f(.,.):Rn×Rm→R是Lipschitz函數且f(x,y) ≥0,h(.,.):Rn×Rm→R是Lipschitz函數,h(x,y) >0,g(.):Rn→Rp是 Lipschitz函數.J={1,2,…,q},
K=現(xiàn)提出如下Mond-Weir對偶問題
這里H(s,λ,μ,y)表示滿足條件(1)~(3)的 (z,λ,μ,y)的集合,如果H(s,λ,μ,y)是空集,則規(guī)定它的上確界為-∞.
定理1(弱對偶定理)假設
1)x,(z,s,λ,μ,yˉ)分別是(P),(FD)的可行解;
3)b0(x,z)>0,b1(x,z)>0 且a(x,z)+c(x,z)≥0,則
定理 1 的證明因為x,(z,s,λ,μ,yˉ)分別是(P),(FD)的可行解,所以有又b1(
x,z)>0故有
定理2(強對偶定理)假設
1)x0是(P)的最優(yōu)解,?gj(x0),j∈J(x0)線性無關,(z,s,λ,μ,yˉ)是(FD)的最優(yōu)解;
2)?(x)=在z處為關于函數η,b0的B-( )p,r,a不變偽凸函數,在z處為關于函數η,b1的B-( )p,r,a不變凸函數;
3)b0(x,z)>0,b1(x,z)>0且a(x,z)+c(x,z)≥0.則(P)和(FD)的最優(yōu)值相等.
證明類似于文獻[6]中定理3的證明.
定理3(嚴格逆對偶定理)假設
1)x0是(P)的最優(yōu)解,?gj(x0),j∈J(x0)線性無關,(z,s,λ,μ,yˉ)是(FD)的最優(yōu)解;
2)?(x)=在z處為關于函數η,b0的B-( )p,r,a不變凸函數,在z處為關于函數η,b1的B-(p,r,a)不變擬凸函數;
3)b0(x,z)>0,b1(x,z)>0且a(x,z)+c(x,z)>0.
則x0=z,即z也是(P)的最優(yōu)解.
定理3的證明假設由于x0≠z,則由定理2可得(P)和(FD)的最優(yōu)值相等.
又在z處為關于函數η,b1的B-( )p,r,a不變擬凸函數,故?τj∈?gj(z),使得
由(5-6)式和a(x,z)+c(x,z)≥0,可得
又?(x)=在z處為關于函數η,b0的B-( )p,r,a不變凸函數,故
即有
于是存在i0,使得故有
而這與定理2結論矛盾.
[1]Antczak T.A class of B -(p,r) invex functions and mathematical programming[J].J Math Anal Appl,2003,286:187-206.
[2]Liang Zhian,Zhang Zhenhua.The efficiency conditions and duality for uniform invex multiobjective program[J].OR Transactions,2009,13(1): 44-50.
[3]Zhang Ying,Zhu bo,Xu yingtao.A class of Lipschitz B -(p,r) -invex functions and nonsmooth programming[J].OR Transactions,2009,13(1): 61-71.
[4]Antczak T.Generalized B -(p,r) -invexity functions and nonlinear mathematical programming[J].Numerical functional Analysisand Optimazation,2009,30:1-22.
[5]孫玉華,張艷.B-(p,r)不變凸規(guī)劃問題的最優(yōu)性討論[J].遼寧師范大學學報,2005,28(2):139-142.
[6]李向有,張慶祥.廣義Ⅰ型函數的對偶性條件[J].貴州大學學報,2014,31(2):22-24.
[7]Anurag Jayswal.Non-differentiable minimax fractional programming with generalized α - univexity[J].Journal of computationaland applized mathematic,2008,214:121-135.
[8]Liu J C ,Wu C S . On minimax fractional optimality conditions with Invex[J]. J Math Anal Appl,1998,219:21-35.
[9]Liu JC ,Wu CS ,Shen R L.Duality for fractional minimax programming[J].Optimization,1997,41:117-133.
[10]Kim D S,Kim SJ.Optimality and duality for a class of nondifferentiable multiobjective fractional programming problem[J].J Math Anal Appl,2006,305:227-229.
[11]Soghra Nobakhtian.Optimality and duality for nonsmooth multiobjective fractional programming with mixed constraints[J].J Glob Optim,2008,41:103-115.