王曉,劉錫平,鄧雪靜
(上海理工大學(xué)理學(xué)院,上海200093)
一類(lèi)分?jǐn)?shù)階奇異微分方程積分邊值問(wèn)題正解的存在性
王曉,劉錫平,鄧雪靜
(上海理工大學(xué)理學(xué)院,上海200093)
研究一類(lèi)具有Riemann-Liouville導(dǎo)數(shù)的分?jǐn)?shù)階奇異微分方程積分邊值問(wèn)題的可解性.運(yùn)用Guo-Krasnoselskii不動(dòng)點(diǎn)定理,得到了奇異微分方程積分邊值問(wèn)題正解的存在性定理.最后,給出了一個(gè)實(shí)例,用于說(shuō)明所得結(jié)論的有效性.
分?jǐn)?shù)階奇異微分方程;積分邊值問(wèn)題;正解;不動(dòng)點(diǎn)定理
近年來(lái),分?jǐn)?shù)階微分方程廣泛地出現(xiàn)在現(xiàn)代科學(xué)研究與技術(shù)的各個(gè)領(lǐng)域,其理論研究備受關(guān)注[1].由于在實(shí)際問(wèn)題中常常遇到非線(xiàn)性項(xiàng)奇異的情況,因此,國(guó)內(nèi)外學(xué)者對(duì)奇異微分方程的邊值問(wèn)題進(jìn)行了大量研究(見(jiàn)參考文獻(xiàn)[2-9]).文獻(xiàn)[8]研究了非線(xiàn)性分?jǐn)?shù)階微分方程滿(mǎn)足邊值條件u(0)=u(1)=u′(0)=u′(1)=0的邊值問(wèn)題,分別在奇異和非奇異情況下,得到了邊值問(wèn)題具有多個(gè)正解的存在性定理.
本文研究一類(lèi)非線(xiàn)性奇異分?jǐn)?shù)階微分方程
滿(mǎn)足積分邊界條件的非局部邊值問(wèn)題正解的存在性,其中3<α≤4,f是一個(gè)非負(fù)函數(shù)且f(t,x)可以在x=0處奇異,g1,g2∈L1[0,1],Dα0+是標(biāo)準(zhǔn)的Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù).運(yùn)用Guo-Krasnoselskii不動(dòng)點(diǎn)定理,得到了奇異積分邊值問(wèn)題正解的存在性定理.
設(shè)函數(shù)f在[0,1]×(0,+∞)上有定義,且滿(mǎn)足:
1)對(duì)幾乎處處的t∈[0,1],f(t,·):(0,+∞)→[0,+∞)連續(xù);
2)對(duì)所有的x∈(0,+∞),f(·,x):[0,1]→[0,+∞)可測(cè);
3)對(duì)任意r>0,存在函數(shù)φr∈L1[0,1],使得當(dāng)0<x≤r時(shí),對(duì)幾乎處處的t∈[0,1],有0≤f(t,x)≤φr(t).則稱(chēng)f在[0,1]×(0,+∞)上滿(mǎn)足Carath é odory條件,記作f∈Car([0,1]×(0,+∞)).
有關(guān)分?jǐn)?shù)階導(dǎo)數(shù),分?jǐn)?shù)階積分的定義及性質(zhì)請(qǐng)參見(jiàn)文獻(xiàn)[1-2].
引理2.1(Guo-Krasnoselskii定理[2,10])設(shè)X為實(shí)賦范線(xiàn)性空間,K?X是錐,?1,?2? K為非空相對(duì)開(kāi)集,且設(shè)F:?2→K為全連續(xù)算子,滿(mǎn)足:
1)‖F(xiàn)(x)‖≤‖x‖,?x∈??1;‖F(xiàn)(x)‖≥‖x‖,?x∈??2,或
2)‖F(xiàn)(x)‖≥‖x‖,?x∈??1;‖F(xiàn)(x)‖≤‖x‖,?x∈??2.則F在上存在不動(dòng)點(diǎn).
下面考慮滿(mǎn)足邊界條件(2)的分?jǐn)?shù)階線(xiàn)性微分方程
由函數(shù)G(t,s)的定義(5)容易證明下面的引理成立.
引理2.3函數(shù)G(t,s)滿(mǎn)足如下性質(zhì):
1)G(t,s)>0,t,s∈(0,1);
2)(α-2)q(t)k(s)≤Γ(α)G(t,s)≤M0k(s)≤M0,t,s∈[0,1];
3)G(t,s)在(t,s)∈[0,1]×[0,1]上連續(xù).
令P={x∈C[0,1]:x(t)≥0,t∈[0,1]},則P是C[0,1]中的錐,記表示L1[0,1]上的范數(shù).
引理3.1設(shè)條件(H0)成立,則算子A具有如下性質(zhì):
1)A是有界線(xiàn)性算子;
2)A(P)?P;
3)I-A可逆;
引理3.2假設(shè)條件(H0),(H1)成立,則Φn:Pδ→Pδ為全連續(xù)算子.
定理3.1假設(shè)條件(H0),(H1)成立,則邊值問(wèn)題(2)-(8)至少存在一個(gè)正解xn∈P0.
下面討論奇異邊值問(wèn)題(1)-(2)正解的存在性.
定理3.2若條件(H0),(H1)成立,則邊值問(wèn)題(1)-(2)至少存在一個(gè)正解.
本節(jié)應(yīng)用前面所得到的結(jié)論,討論一個(gè)具體的奇異分?jǐn)?shù)階微分方程邊值問(wèn)題.
由定理3.2知,邊值問(wèn)題(10)至少存在一個(gè)正解.
[1]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier B.V,2006.
[2]白占兵.分?jǐn)?shù)階微分方程邊值問(wèn)題理論及應(yīng)用[M].北京:陜科學(xué)技術(shù)出版社,2012.
[3]張立新,王海菊.含積分邊界條件的分?jǐn)?shù)階微分方程邊值問(wèn)題的正解的存在性[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2013,29(5):450-457.
[4]Liu Xinping,Wu Guiyun.Existence of positive solutions for integral boundary value problem of fractional differential equations[J].Journal of Shanghai Normal University:Natural Sciences:Mathematics,2014,43(5):496-505.
[5]劉帥,賈梅,秦小娜.帶積分邊值條件的分?jǐn)?shù)階微分方程解的存在性和唯一性[J].上海理工大學(xué)學(xué)報(bào),2014,36(5):409-415.
[6]金京福,劉錫平,竇麗霞,等.分?jǐn)?shù)階積分微分方程邊值問(wèn)題正解的存在性[J].上海理工大學(xué)學(xué)報(bào),2011,49(5):824-828.
[7]Bai Zhanbing,Sun Weichen.Existence and multiplicity of positive solutions for singular fractional boundary value problems[J].Computers and Mathematics with Applications,2012,63(9):1369-1381.
[8]Xu Xiaojie,Jiang Daqing,Yuan Chengjun.Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation[J].Nonlinear Analysis TMA,2009,71(10):4676-4688.
[9]Agarwal R P,O′Regan D,Stanek S.Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations[J].J.Math.Anal.Appl.,2010,371(1):57-68.
[10]郭大鈞,孫經(jīng)先,劉兆理.非線(xiàn)性常微分方程泛函方法[M].濟(jì)南:山東科學(xué)技術(shù)出版社,2006.
The existence of positive solutions for a class of fractional singular differential equations with integral boundary conditions
Wang Xiao,Liu Xiping,Deng Xuejing
(College of Science,University of Shanghai for Science and Technology,Shanghai200093,China)
This paper investigates the solvability for a class of fractional singular differential equations involving the Riemann-Liouville fractional derivative with integral boundary conditions.By means of Guo-Krasnoselskii fixed point theorem,the existence theorems of positive solutions for the boundary value problem are established.Finally,an example is presented to illustrate the main results.
fractional singular differential equation,integral boundary value problem,positive solution,fixed point theorem
0175.8
A
1008-5513(2015)05-0509-09
10.3969/j.issn.1008-5513.2015.05.011
2015-03-01.
國(guó)家自然科學(xué)基金(11171220);滬江基金(B14005).
王曉(1989-),碩士生,研究方向:常微分方程理論與應(yīng)用.
劉錫平(1962-),碩士,教授,研究方向:常微分方程理論與應(yīng)用.
2010 MSC:34B08,34B18,26A33