孔凡勝+王竹林
摘要:基于電子系統(tǒng)狀態(tài)監(jiān)測為研究背景,傳統(tǒng)的Kernel?Principal?Component?Analysis(核主成份分析法,簡稱KPCA)在狀態(tài)監(jiān)測過程中做數(shù)據(jù)特征降維處理,使得電路狀態(tài)數(shù)據(jù)在消除冗余信息的同時,也能在相應的模型算法計算中很大程度的減少計算步驟,但是KPCA法的降維數(shù)據(jù)處理過程對數(shù)據(jù)樣本貢獻率的識別能力有不足之處,雖然達到了降維的目的,但是對特征樣本數(shù)據(jù)的信息保留能力存在不足。本文中采用經(jīng)驗模態(tài)分解法(Empirical?Mode?Decomposition,簡稱EMD)對輸出信號進行采集處理作為樣本數(shù)據(jù),設計基于Fisher準則的狀態(tài)信息識別能力分析,采用Estimation?of?Distribution?Algorithms(種群算法,簡稱EDA)對KPCA分析法進行改進研究,通過對數(shù)據(jù)處理,最大限度的保留狀態(tài)主信息,使得在電路系統(tǒng)狀態(tài)監(jiān)測過程中減小實驗誤差,為后續(xù)故障預測打下基礎。
關鍵詞:KPCA;EDA;Fisher準則;EMD;信息識別;
中圖分類號:TP?????????????????文獻標識碼:A
Electronic?System?Based?on?EDA?Algorithm?improve?the?KPCA?Condition?Monitoring
and?Fault?Prediction?Research
Kong?Fan-sheng?,?Wang?Zhu-lin
(Ordnance?Engineering?College,?Shi?Jiazhuang?,?Hebei,?050003)
Abstract:?Condition?monitoring?based?on?electronic?system?as?the?research?background,?the?traditional?Kernel?Principal?Component?Analysis?(Kernel?Principal?Component?Analysis,?KPCA)?do?in?the?process?of?condition?monitoring?data?feature?dimension?reduction?process,?makes?the?circuit?state?data?at?the?same?time?of?eliminating?redundant?information,?as?well?as?the?corresponding?calculation?model?algorithm?greatly?reduces?computation?steps,?but?KPCA?method?of?dimension?reduction?data?processing?for?the?contribution?rate?of?the?data?sample?inadequacies?in?the?ability?to?recognize,?though?achieved?the?purpose?of?dimension?reduction,?but?information?on?the?characteristics?of?the?sample?data?retention?capability?shortcomings.This?article?USES?the?method?of?Empirical?Mode?Decomposition?(Empirical?Mode?Decomposition,?the?EMD)?was?carried?out?on?the?output?signal?as?sample?data?collection?and?processing,?design?based?on?Fisher?criterion?of?state?information?recognition?ability?analysis,?the?Estimation?of?Distribution?Algorithms?(population?algorithm,?referred?to?as?EDA)?to?improve?the?KPCA?analysis?research,?through?the?data?processing,?maximum?retention?state?master?information,?make?the?circuit?system?decrease?experimental?error?in?the?process?of?condition?monitoring,?fault?prediction?to?lay?the?foundation?for?the?follow-up.
Key?word:?KPCA;?EDA;?Fisher?criterion;?EMD;Information?identification;
1?摘要
某型測角儀是裝備訓練的重要控制設備,主要對裝備飛行過程中通過對誤差信息的接收處理,及時輸出調(diào)整信號到主控機,主控機輸出控制指令,從而達到提高裝備命中精度的功能。
基于對某型測角儀的狀態(tài)監(jiān)測與故障預測研究過程,選取一定的模型算法對設備的電子信號處理模塊進行分析研究,通過對采集的數(shù)據(jù)進行提取降維等一系列算法處理,從而達到信息特征狀態(tài)的提取分析,為下一步電子信號模塊的狀態(tài)監(jiān)測與故障預測研究打下基礎[1]。
2?研究內(nèi)容
本文主要是針對某型測角儀TV4信號處理模塊的狀態(tài)監(jiān)測與故障預測研究,采用HSMM為狀態(tài)監(jiān)測模型基礎,通過EMD(經(jīng)驗模態(tài)分解)信號特征提取作為數(shù)據(jù)特征提取方法,應用KPCA做為數(shù)據(jù)特征降維處理,根據(jù)KPCA具有的局限性,采用EDA算法基于fisher準則進行改進處理,使得采用KPCA降維的同時最大限度保證數(shù)據(jù)主信息的完整性。
3?實驗理論
3.1?KPCA分析法
本文是基于HSMM的電子系統(tǒng)信號處理模塊研究,由于提取的特征信號具有冗余和高維的特點[2],若直接應用到實驗中,會很大限度的降低狀態(tài)監(jiān)測能力,特征降維在于提取包含更多類別信息的狀態(tài)特征,大幅度的消除特征的冗余性,提高狀態(tài)監(jiān)測能力。