唐茂鋼 程依明 胡鳳霞
摘 要 步進(jìn)應(yīng)力加速壽命試驗(yàn)的最優(yōu)設(shè)計(jì)問(wèn)題早在20世紀(jì)60年代就已提出.本文在應(yīng)力個(gè)數(shù)和未知參數(shù)個(gè)數(shù)不相等的情況下,以MLE漸近方差最小為準(zhǔn)則,運(yùn)用廣義加號(hào)逆的理論,解決指數(shù)分布時(shí)定數(shù)截尾壽命試驗(yàn)和定時(shí)截尾壽命試驗(yàn)的最優(yōu)設(shè)計(jì)問(wèn)題.通過(guò)理論推導(dǎo),得出定數(shù)截尾壽命試驗(yàn)時(shí)的不同應(yīng)力下失效產(chǎn)品數(shù)的安排,以及定時(shí)截尾壽命試驗(yàn)時(shí)的最優(yōu)應(yīng)力變換點(diǎn).并且,對(duì)每一種情況進(jìn)行了數(shù)據(jù)模擬,結(jié)果顯示,這些理論和方法在實(shí)際運(yùn)用中是可行的和有效的.
關(guān)鍵詞 步加試驗(yàn);最優(yōu)設(shè)計(jì);廣義加號(hào)逆;漸近方差
中圖分類號(hào) O213.2 文獻(xiàn)標(biāo)識(shí)碼 A
Optimal Design of StepStress Accelerated
Life Test on the Theory of Generalized Inverse Theory
TANG Maogang1,CHENG Yiming2,HU Fengxia3
(1.School of Public Economics & Administration, Shanghai University of Finance & Economics, Shanghai 200433, China;
2. School of Finance & Statistics, East China Normal University, Shanghai 200241, China;
3. School of Mathematics & Information, Shanghai Lixin University of Commerce, Shanghai 201620, China)
Abstract The problem of optimal design for stepstress accelerated life test has been proposed since the 60s of the twentieth century. By using the method of generalized inverse matrix of positive sign and based on the minimum of asymptotic variance of MLE, this paper solved the optimum design of censored life test and typeI life test under exponential distribution when the number of stress and parameter is not equal. We obtained the arrangement of failure product for censored life test and the optimal transfer time for typeI life test. And, we conducted the data simulation for each condition. It shows that the results and methods are feasible and effective in practice.
Key words stepstress accelerated life test; optimal design; generalized inverse matrix of positive sign; asymptotic variance
1 引 言
加速壽命試驗(yàn)是指在保持失效機(jī)理不變的條件下,讓產(chǎn)品在高溫高壓下進(jìn)行試驗(yàn),從而加速產(chǎn)品失效,并以此失效數(shù)據(jù)正常應(yīng)力水平下產(chǎn)品的壽命等.加速壽命試驗(yàn)按照應(yīng)力施加方式的不同通常分為三種類型:恒定應(yīng)力加速壽命試驗(yàn),簡(jiǎn)稱恒加試驗(yàn);步進(jìn)應(yīng)力加速壽命試驗(yàn),簡(jiǎn)稱步加試驗(yàn);序進(jìn)應(yīng)力加速壽命試驗(yàn),簡(jiǎn)稱序加試驗(yàn).現(xiàn)實(shí)中使用較多的是恒加試驗(yàn)和步加試驗(yàn).恒加試驗(yàn)是選擇一組加速應(yīng)力水平,如S1、S2、…、Sk,它們都高于正常應(yīng)力水平S0,并且假定S0 步進(jìn)應(yīng)力加速壽命試驗(yàn)的最優(yōu)設(shè)計(jì)問(wèn)題早在60年代就已提出,Miller和Nelson[1]以及Bai, Kim和Lee[2]分別應(yīng)用MLE的理論,對(duì)指數(shù)分布討論了兩個(gè)應(yīng)力情況的最優(yōu)設(shè)計(jì)問(wèn)題,不同的是:文獻(xiàn)[1]為完全樣本,文獻(xiàn)[2]為截尾樣本,所以文獻(xiàn)[2]是文獻(xiàn)[1]的推廣.程依明[3]又對(duì)指數(shù)分布討論了一般k個(gè)未知參數(shù)的加速壽命方程下,k個(gè)應(yīng)力情況的步加試驗(yàn)的最優(yōu)設(shè)計(jì)問(wèn)題.因此,程依明[3]又可以看成是文獻(xiàn)[1]和文獻(xiàn)[2]的推廣. 經(jīng) 濟(jì) 數(shù) 學(xué)第 32卷第2期 唐茂鋼等:基于廣義逆理論的步進(jìn)應(yīng)力加速壽命試驗(yàn)的最優(yōu)設(shè)計(jì) 在實(shí)際中,應(yīng)力個(gè)數(shù)和未知參數(shù)的個(gè)數(shù)并不一定相等,當(dāng)應(yīng)力個(gè)數(shù)和未知參數(shù)的個(gè)數(shù)不相等時(shí),極大似然估計(jì)的漸近方差矩陣不是一個(gè)方陣,這時(shí)求解其逆矩陣,就需要運(yùn)用廣義逆矩陣的理論.本文是在一般l個(gè)未知參數(shù)的加速方程下,以MLE漸近方差最小為準(zhǔn)則,解決了指數(shù)分布時(shí)k個(gè)應(yīng)力情況的最優(yōu)設(shè)計(jì)問(wèn)題.因此本文又可看作是文獻(xiàn)[3]的推廣.本文首先提出一定的基本假設(shè)和基本引理,在此基礎(chǔ)上利用廣義加號(hào)逆理論求出極大似然估計(jì)漸近方差的表達(dá)式,從而利用凸規(guī)劃理論得出定數(shù)截尾壽命試驗(yàn)時(shí)不同應(yīng)力水平下失效產(chǎn)品數(shù)的最優(yōu)設(shè)計(jì),以及定時(shí)截尾壽命試驗(yàn)時(shí)的最優(yōu)應(yīng)力變換點(diǎn),最后利用實(shí)例進(jìn)行模擬分析,以驗(yàn)證本文結(jié)論.