,,
(1.重慶交通大學(xué)機(jī)電與汽車(chē)工程學(xué)院,重慶400074;2.哈爾濱工業(yè)大學(xué)電氣工程系,黑龍江哈爾濱150001)
三相電機(jī)驅(qū)動(dòng)系統(tǒng)逆變器故障補(bǔ)救與容錯(cuò)策略
姜保軍1,安群濤2,路梅1
(1.重慶交通大學(xué)機(jī)電與汽車(chē)工程學(xué)院,重慶400074;2.哈爾濱工業(yè)大學(xué)電氣工程系,黑龍江哈爾濱150001)
電機(jī)驅(qū)動(dòng)系統(tǒng)的安全運(yùn)行得到了研究者的廣泛重視。逆變器是電機(jī)驅(qū)動(dòng)系統(tǒng)中故障頻發(fā)的薄弱環(huán)節(jié),對(duì)目前逆變器的故障隔離、補(bǔ)救和容錯(cuò)方案進(jìn)行了歸納,介紹了各方案所采用的拓?fù)浜涂刂撇呗裕⒁杂来磐诫姍C(jī)驅(qū)動(dòng)系統(tǒng)為例對(duì)各容錯(cuò)逆變器的性能進(jìn)行了對(duì)比,其結(jié)果可以為提高電機(jī)驅(qū)動(dòng)系統(tǒng)安全性設(shè)計(jì)提供指導(dǎo)。
電機(jī)驅(qū)動(dòng);逆變器;安全性;故障補(bǔ)救;容錯(cuò)
電壓源逆變器供電的三相電機(jī)驅(qū)動(dòng)系統(tǒng)以其優(yōu)越的性能和較高的效率在工業(yè)、電動(dòng)汽車(chē)、軍事、航天航空等領(lǐng)域得到了廣泛應(yīng)用。然而,由于電力電子器件及其驅(qū)動(dòng)電路的脆弱性,使得逆變器成為系統(tǒng)中故障頻發(fā)的薄弱環(huán)節(jié)[1]。因此,實(shí)施逆變器的故障診斷、故障隔離、故障補(bǔ)救與容錯(cuò)策略是提高電機(jī)驅(qū)動(dòng)系統(tǒng)安全性的有效途徑。
電機(jī)容錯(cuò)驅(qū)動(dòng)是指通過(guò)對(duì)系統(tǒng)故障進(jìn)行實(shí)時(shí)診斷和分析,在發(fā)生故障后主動(dòng)重構(gòu)系統(tǒng)的軟硬件結(jié)構(gòu),從而確保整個(gè)系統(tǒng)在不損失性能指標(biāo)或部分性能指標(biāo)有所降低的情況下安全運(yùn)行[2]。容錯(cuò)和補(bǔ)救的前提是要對(duì)系統(tǒng)中的故障進(jìn)行診斷、定位和隔離,對(duì)于逆變器故障,人們已提出了很多診斷和定位方法,文獻(xiàn)[3-7]對(duì)其進(jìn)行了綜述。
本文從保障電機(jī)驅(qū)動(dòng)系統(tǒng)安全運(yùn)行的策略出發(fā),對(duì)現(xiàn)有的逆變器故障隔離、補(bǔ)救與容錯(cuò)方案進(jìn)行歸納,介紹各方案所用的拓?fù)浜涂刂撇呗?,并以永磁同步電機(jī)驅(qū)動(dòng)系統(tǒng)為例對(duì)各容錯(cuò)逆變器的性能進(jìn)行對(duì)比。
本文僅討論與逆變器有關(guān)的故障,常見(jiàn)故障包括:
1)單個(gè)開(kāi)關(guān)管開(kāi)路故障;
2)單個(gè)開(kāi)關(guān)管短路故障;
3)單相開(kāi)路故障;
4)橋臂直通短路故障。
無(wú)論容錯(cuò)還是故障補(bǔ)救,都需要對(duì)故障進(jìn)行隔離,隔離方法如圖1所示[8-11]。圖1a屬于被動(dòng)隔離技術(shù),電路簡(jiǎn)單、成本低,適用于橋臂短路故障的隔離。圖1b屬于主動(dòng)隔離技術(shù),根據(jù)診斷和定位出的故障開(kāi)關(guān)的位置,燒斷相應(yīng)的快速熔絲來(lái)實(shí)現(xiàn)。正常情況下晶閘管均處于關(guān)斷狀態(tài),當(dāng)Tx發(fā)生故障時(shí),控制器觸發(fā)TRx+1導(dǎo)通,直流電源Vdc通過(guò)熔絲Fx和晶閘管TRx+1給電容C2充電,產(chǎn)生很大的沖擊電流短時(shí)間內(nèi)將Fx熔斷,從而隔離掉Tx支路。通過(guò)合理選取電容、晶閘管和快速熔絲的參數(shù),能夠保證在需要時(shí)間內(nèi)將相應(yīng)熔絲可靠熔斷。
圖1 故障隔離技術(shù)Fig.1Fault isolation techniques
3.1評(píng)價(jià)標(biāo)準(zhǔn)
三相交流電機(jī)驅(qū)動(dòng)系統(tǒng)中,逆變器通常采用標(biāo)準(zhǔn)的三相半橋拓?fù)?,如圖2所示,它不具有故障容錯(cuò)能力,為此人們提出了許多故障補(bǔ)救和容錯(cuò)方案來(lái)提高電機(jī)驅(qū)動(dòng)系統(tǒng)的安全性[6,12]。為了評(píng)估各容錯(cuò)逆變器在故障后運(yùn)行時(shí)的輸出能力,考查逆變器輸出的電壓空間矢量:
式中:ua,ub,uc分別為電機(jī)繞組相電壓。
圖2 三相半橋逆變器拓?fù)銯ig.2Three?phase half?bridge inverter topology
此時(shí),合成最大幅值為Ilim的電流矢量:
表1 三相半橋逆變器的電壓矢量Tab.1Voltage vectors of three?phase half?bridge inverter
圖3 三相半橋逆變器的電壓矢量Fig.3Voltage vectors of three?phase half?bridge inverter
下面以三相半橋逆變器為參考,考察各容錯(cuò)逆變器故障后的電壓和電流輸出能力。
3.2容錯(cuò)拓?fù)浜涂刂撇呗?/p>
3.2.1 雙繞組冗余拓?fù)洌?3-21]
雙繞組冗余型采用兩套同樣的逆變器和電機(jī)繞組并聯(lián),為電氣雙余度結(jié)構(gòu),兩逆變器采用獨(dú)立的直流電源供電或母線并聯(lián)于一個(gè)直流電源,如圖4所示。電機(jī)定子側(cè)嵌放兩套獨(dú)立的Y型繞組,其相位相差γ(一般取0,30°或60°)電角度,共用一個(gè)轉(zhuǎn)子。該系統(tǒng)具有冷備份和熱備份兩種運(yùn)行方式,當(dāng)某一余度出現(xiàn)故障時(shí),系統(tǒng)可切除故障余度,啟用單余度方式降級(jí)工作[13-15]。也有文獻(xiàn)介紹將兩套電機(jī)系統(tǒng)同軸聯(lián)接,構(gòu)成模塊型雙余度系統(tǒng)[16-17]。
圖4 雙繞組冗余拓?fù)銯ig.4Dual?winding redundant topology
雙繞組冗余型拓?fù)湟子陂_(kāi)發(fā),具有雙余度冗余,是目前電動(dòng)舵機(jī)等航空系統(tǒng)中常采用的結(jié)構(gòu)[13,18-21]。但是由于兩套逆變器和電機(jī)繞組,加上實(shí)現(xiàn)余度管理的控制電路,系統(tǒng)較復(fù)雜、體積龐大、成本高,對(duì)體積有嚴(yán)格要求和低成本的場(chǎng)合不太適用。
3.2.2 橋臂冗余拓?fù)洌?1,22]
單橋臂冗余拓?fù)淙鐖D5所示,故障隔離采用如圖1所示的電路,這里沒(méi)有畫(huà)出,為簡(jiǎn)化表示以下容錯(cuò)拓?fù)渲幸矊⑹÷?。?dāng)某一橋臂發(fā)生故障時(shí),快速熔絲熔斷將故障橋臂隔離,控制器觸發(fā)相應(yīng)的雙向晶閘管導(dǎo)通,將繞組從故障橋臂切換到輔助橋臂。也可將三相分別配備冗余橋臂,構(gòu)成三相橋臂冗余,如圖6所示。重構(gòu)后的拓?fù)渑c正常逆變器相同,控制策略也無(wú)需調(diào)整。
圖5 單橋臂冗余拓?fù)銯ig.5Single?leg redundant topology
圖6 三相橋臂冗余拓?fù)銯ig.6Three?leg redundant topology
3.2.34 開(kāi)關(guān)三相容錯(cuò)逆變器[23-27]
將單橋臂冗余拓?fù)渲械妮o助橋臂用串聯(lián)的兩電容代替,構(gòu)成4開(kāi)關(guān)三相容錯(cuò)拓?fù)?,如圖7所示。正常時(shí)3個(gè)雙向晶閘管處于關(guān)斷狀態(tài),當(dāng)某一橋臂出現(xiàn)故障后,與該橋臂相連的雙向晶閘管被觸發(fā)導(dǎo)通,故障橋臂被串聯(lián)電容取代,電機(jī)由4開(kāi)關(guān)逆變器驅(qū)動(dòng)。與傳統(tǒng)6開(kāi)關(guān)逆變器相比,4開(kāi)關(guān)逆變器具有4個(gè)基本電壓矢量,以a相故障為例,基本電壓矢量及其空間分布分別如表2和圖8所示。4開(kāi)關(guān)逆變器采用SVPWM或標(biāo)量PWM調(diào)制策略,輸出線性最大電壓矢量為Vdc是6開(kāi)關(guān)逆變器的一半,采用過(guò)調(diào)制算法可進(jìn)一步提高輸出能力[23-24]。矢量控制、直接轉(zhuǎn)矩控制、直接電流控制等策略已被應(yīng)用于4開(kāi)關(guān)逆變器電機(jī)驅(qū)動(dòng)系統(tǒng)中[25-27]。
圖7 4開(kāi)關(guān)三相容錯(cuò)拓?fù)銯ig.7Four?switch three?phase fault?tolerant topology
表2 4開(kāi)關(guān)三相逆變器的電壓矢量Tab.2Voltage vectors of four?switch three?phase inverter
圖8 4開(kāi)關(guān)逆變器的電壓矢量Fig.8Voltage vectors of the four?switch inverter
3.2.4 三相4橋臂容錯(cuò)拓?fù)洌?1,28-31]
圖9 三相4橋臂容錯(cuò)拓?fù)銯ig.9Three?phase four?leg fault?tolerant topology
兩相3橋臂逆變器的電壓矢量如表3所示,電壓矢量分布與標(biāo)準(zhǔn)三相半橋逆變器相同,如圖3所示,輸出的最大電壓矢量幅值仍為可采用SVPWM,SPWM和滯環(huán)PWM進(jìn)行控制[11,30-31]。
表3 兩相3橋臂逆變器的電壓矢量Tab.3Voltage vectors of two?phase three?bridge inverter
3.2.5 4開(kāi)關(guān)兩相容錯(cuò)拓?fù)洌?5,32-34]
將電機(jī)繞組中性點(diǎn)通過(guò)一個(gè)雙向晶閘管連接到母線串聯(lián)電容的中點(diǎn),構(gòu)成4開(kāi)關(guān)兩相容錯(cuò)拓?fù)?,如圖10所示。故障橋臂隔離后,雙向晶閘管TRn導(dǎo)通,系統(tǒng)運(yùn)行在4開(kāi)關(guān)兩相模式,電流矢量極限圓半徑為例如a相橋臂故障后,b,c兩相運(yùn)行,逆變器輸出電壓矢量如表4所示,4個(gè)基本電壓的空間分布與4開(kāi)關(guān)三相逆變器相同,如圖8所示,輸出的最大電壓矢量Ulim為Vd
圖10 4開(kāi)關(guān)兩相容錯(cuò)拓?fù)銯ig.10Four?switch two?phase fault?tolerant topology
表4 4開(kāi)關(guān)兩相逆變器的電壓矢量Tab.4Voltage vectors of four?switch two?phase inverter
3.2.6 三相H橋拓?fù)洌?5-40]
為了減小故障橋臂對(duì)其他繞組的影響,三相繞組可采用獨(dú)立的驅(qū)動(dòng)單元,構(gòu)成三相H橋拓?fù)?。將電機(jī)各相繞組采用獨(dú)立全橋供電,構(gòu)成三相全橋逆變器,即單電源H橋拓?fù)洌鐖D11所示;或采用2個(gè)逆變器級(jí)聯(lián),構(gòu)成三相兩電平級(jí)聯(lián)逆變器,即雙電源H橋拓?fù)?,如圖12所示。三相全橋逆變器故障后工作于兩相全橋模式,三相兩電平級(jí)聯(lián)逆變器故障后可工作于三相半橋模式,均可用于容錯(cuò)單管開(kāi)路和單管短路故障[40]。
圖11 三相全橋拓?fù)銯ig.11Three?phase full?bridge topology
圖12 三相兩電平級(jí)聯(lián)拓?fù)銯ig.12Three?phase two?level cascaded topology
對(duì)于兩電平級(jí)聯(lián)逆變器,使ia+ib+ic=0,由基爾霍夫電壓定律并結(jié)合開(kāi)關(guān)信號(hào),電機(jī)電壓可表示為
式中:Vdc1,Vdc2分別為2個(gè)母線電壓值;sa1~sc2分別為各相橋臂功率管的開(kāi)關(guān)信號(hào),等于“1”表示上管導(dǎo)通下管關(guān)斷,“0”表示上管關(guān)斷下管導(dǎo)通。
當(dāng)Vdc1=Vdc2=Vdc時(shí),無(wú)故障情況下電壓矢量空間分布如圖13a所示,三相全橋逆變器也具有相同的電壓矢量。基本電壓矢量的幅值有是標(biāo)準(zhǔn)三相半橋逆變器的2倍。當(dāng)逆變器工作于兩相全橋時(shí),輸出的電壓矢量如圖13b所示,輸出的最大線性電壓矢量的幅值Ulim為最大線性電壓幅值為,調(diào)制方式有滯環(huán)PWM和SVPWM,可得到負(fù)載電流矢量極限圓的半徑為
圖13 電壓矢量Fig.13Voltage vectors
3.2.7 模塊化冗余拓?fù)洌?1-43]
為了提高電機(jī)系統(tǒng)可靠性和降低體積,研究者提出了集成模塊電機(jī)驅(qū)動(dòng)(IMMD)的概念:將電機(jī)設(shè)計(jì)為分段極靴和集成繞組,彼此電磁分離,每極配置獨(dú)立的驅(qū)動(dòng)電路單元,組合為完整的電機(jī)系統(tǒng),如圖14和圖15所示[41-42]。冗余結(jié)構(gòu)設(shè)計(jì)使得IMMD具有一定的容錯(cuò)能力,是未來(lái)電力牽引系統(tǒng)的發(fā)展方向[42]。但在目前,IMMD仍面臨著體積有限、振動(dòng)、熱和電磁干擾等諸多方面的挑戰(zhàn)[43]。隨著碳化硅(SiC)、氮化鎵(GaN)等耐高溫半導(dǎo)體功率器件技術(shù)的成熟,以及電機(jī)和控制器設(shè)計(jì)的不斷完善,IMMD將得到廣泛應(yīng)用。
圖14 集成模塊電機(jī)驅(qū)動(dòng)概念Fig.14Concept of integrated modular motor drive
圖15 IMMD實(shí)物圖Fig.15Real product of IMMD
為了定量對(duì)比各種逆變器容錯(cuò)拓?fù)涞男阅?,下面結(jié)合表面磁鋼永磁同步電機(jī)來(lái)分析故障前后系統(tǒng)的輸出能力。受逆變器輸出電壓的限制,穩(wěn)態(tài)運(yùn)行時(shí)施加到電機(jī)繞組上的電壓矢量幅值為
其中,永磁同步電機(jī)的dq軸電壓ud和uq分別為
式中:ω為轉(zhuǎn)子電角速度,ω=pωm,p為極對(duì)數(shù),ωm為轉(zhuǎn)子機(jī)械角速度;R為繞組電阻;Ld,Lq分別為d軸和q軸繞組電感;Ψf為轉(zhuǎn)子永磁磁鏈。
對(duì)于表面磁鋼永磁同步電機(jī),Ld=Lq=L,并且電機(jī)運(yùn)行在基速ωb時(shí),可忽略定子壓降,再將dq軸電壓代入式(5)中,整理得到電機(jī)滿足的電壓極限圓:
受逆變器輸出電流和電機(jī)額定電流的限制,永磁同步電機(jī)在穩(wěn)態(tài)運(yùn)行時(shí)的電流矢量滿足極限圓:電機(jī)的電磁轉(zhuǎn)矩為
id=0可獲得最大轉(zhuǎn)矩/電流的恒轉(zhuǎn)矩控制,此時(shí)電流矢量只有iq分量。因此,電壓矢量極限圓和電流矢量極限圓的交點(diǎn)位于q軸上,如圖16a中所示的A,B點(diǎn)。圖16b為對(duì)應(yīng)的電機(jī)機(jī)械特性曲線,分為恒轉(zhuǎn)矩和恒功率兩段運(yùn)行區(qū)域。在最大轉(zhuǎn)矩輸出條件下,隨著轉(zhuǎn)速的上升,逆變器輸出電壓矢量幅值不斷增加,在基速ωb時(shí)達(dá)到電壓極限圓。假設(shè)三相半橋逆變器對(duì)應(yīng)圖16a的電壓極限圓Ⅰ和電流極限圓Ⅰ,電機(jī)運(yùn)行在兩個(gè)圓包圍的區(qū)域,最大轉(zhuǎn)矩為T(mén)emax,基速為ωb,機(jī)械特性為圖16b中的曲線N。當(dāng)故障后逆變器輸出電壓能力降低為而輸出電流能力維持Ilim不變時(shí),仍對(duì)應(yīng)電壓極限圓Ⅰ和電流極限圓Ⅰ,電機(jī)最大轉(zhuǎn)矩維持為T(mén)emax,但基速降低到ωb/2,逆變器容量下降,電機(jī)機(jī)械特性曲線為F-Ⅰ。當(dāng)故障后逆變器輸出電壓能力維持不變,而輸出電流能力降低為時(shí),根據(jù)式(7)和式(8),分別對(duì)應(yīng)電壓極限圓Ⅱ和電流極限圓Ⅱ,電機(jī)最大轉(zhuǎn)矩降低為,基速提升,但不大于,機(jī)械特性曲線為F-Ⅱ。當(dāng)逆變器輸出電壓和電流能力分別下降為時(shí),根據(jù)式(7)和式(8),對(duì)應(yīng)電壓極限圓Ⅱ和電流極限圓Ⅱ,電機(jī)最大轉(zhuǎn)矩降低為,基速下降到以下,機(jī)械特性曲線為F-Ⅲ。將以上各容錯(cuò)逆變器拓?fù)涞妮敵瞿芰α杏诒?中進(jìn)行對(duì)比。在設(shè)計(jì)電機(jī)驅(qū)動(dòng)系統(tǒng)時(shí),可以按照要求選擇適宜的拓?fù)浠虬摧敵瞿芰统杀菊壑羞x取。
圖16 逆變器輸出能力描述Fig.16Output capabilities of inverters
表5 故障容錯(cuò)逆變器的比較Tab.5Comparison of fault?tolerant inverters
除了以上介紹的逆變器容錯(cuò)拓?fù)渫?,多相冗余方案?相雙凸極永磁電機(jī)系統(tǒng)[44]、5相電機(jī)容錯(cuò)驅(qū)動(dòng)系統(tǒng)[45-50]等也被用于電機(jī)驅(qū)動(dòng)系統(tǒng)中,通過(guò)增加相數(shù)可以實(shí)現(xiàn)容錯(cuò)和減小故障相帶來(lái)的功率損失[51-52]。
隨著電機(jī)驅(qū)動(dòng)系統(tǒng)在電動(dòng)汽車(chē)、航天航空等領(lǐng)域的廣泛應(yīng)用,其可靠運(yùn)行得到了研究者的重視,尤其針對(duì)系統(tǒng)中較為脆弱的功率變換器,提出了許多故障診斷和容錯(cuò)方法。
本文在介紹現(xiàn)有的逆變器故障補(bǔ)救和容錯(cuò)方法的基礎(chǔ)上,從輸出電壓和電流能力的角度進(jìn)行了對(duì)比,為提高電機(jī)驅(qū)動(dòng)系統(tǒng)的安全性設(shè)計(jì)提供思路,并得出結(jié)論:
1)容錯(cuò)驅(qū)動(dòng)是提高電機(jī)系統(tǒng)可靠性的有效途徑,一些冗余和容錯(cuò)設(shè)計(jì)已被成功應(yīng)用于電動(dòng)舵機(jī)和電動(dòng)車(chē)拖動(dòng)系統(tǒng)中;
2)集成模塊電機(jī)驅(qū)動(dòng)是一個(gè)新的概念和研究方向,但目前面臨的問(wèn)題有待研究;
3)開(kāi)發(fā)新型容錯(cuò)逆變器拓?fù)浜腿蒎e(cuò)控制策略是今后的一個(gè)研究方向。
[1]Rothenhagen K,F(xiàn)uchs F W.Performance of Diagnosis Meth?ods for IGBT Open Circuit Faults in Three Phase Voltage source Inverters for AC Variable Speed Drives[C]//Proceed?ings of the 11thEuropean Conference on Power Electronics and Applications,Dresden,Germany,2005:7-16.
[2]Mecrow B C,Jack A G,Haylock J A,et al.Fault?tolerant Permanent Magnet Machine Drives[J].IEE Proceedings?elec?tric Power Applications,1996,143(6):437-442.
[3]Fuchs F W.Some Diagnosis Methods for Voltage Source Invert?ers in Variable Speed Drives with Induction Machines—a Sur?vey[C]//Proceedings of the IEEE Industrial Electronics Society AnnualConference,Roanoke,Virginia,USA,2003:1378-1385.
[4]Lu B,Santosh K S.A Literature Review of IGBT Fault Diagnos?tic and Protection Methods for Power Inverters[J].IEEE Trans?actions on Industry Applications,2009,45(5):1770-1777.
[5]安群濤,孫力,孫立志,等.三相逆變器開(kāi)關(guān)管診斷方法研究進(jìn)展[J].電工技術(shù)學(xué)報(bào),2010,26(4):135-144.
[6]張?zhí)m紅,胡育文,黃文新.三相變頻驅(qū)動(dòng)系統(tǒng)中的逆變器的故障診斷與容錯(cuò)技術(shù)[J].電工技術(shù)學(xué)報(bào),2004,19(12):1-9.
[7]安群濤,孫力,趙克,等.基于開(kāi)關(guān)函數(shù)模型的逆變器開(kāi)路故障診斷方法[J].中國(guó)電機(jī)工程學(xué)報(bào),2010,30(6):1-6.
[8]Abrahamsen F,Blaabjerg F,Ries K,et al.Fuse Protection of IGBTs Against Rupture[C]//Proceedings of the Nordic Work?shop on Power and Industrial Electronics,Aalborg,Denmark,2000:64-68.
[9]Iov F,Blaabjerg F,Ries K.IGBT Fuses in Voltage Source Converters[C]//Proceedings of the PCIM,Chicago,IL,2001:267-276.
[10]Karimi S,Gaillard A,Poure P,et al.FPGA?based Real?time Power Converter Failure Diagnosis for Wind Energy Conver?sion Systems[J].IEEE Transactions on Industrial Electron?ics,2008,55(12):4299-4308.
[11]Bolognani S,Zordan M,Zigliotto M.Experimental Fault?toler?ant Control of a PMSM Drive[J].IEEE Transactions on Indus? trial Electronics,2000,47(5):1134-1141.
[12]Welchko B A,Lipo T A,Jahns T M,et al.Fault Tolerant Three?phase AC Motor Drive Topologies:a Comparison of Fea?tures,Cost,and Limitations[J].IEEE Transactions on Power Electronics,2004,19(4):1108-1116.
[13]周元鈞,劉宇杰.雙通道永磁同步伺服系統(tǒng)的容錯(cuò)性能[J].電工技術(shù)學(xué)報(bào),2005,20(9):98-102.
[14]Takorabet N,Caron J P,Vaseghi B,et al.Study of Different Architectures of Fault Tolerant Actuator Using a Double?star PM Motor[C]//IEEE Industry Applications Society Annual Meeting,Edmonton,Alberta,Canada,2008:1-6.
[15]Shamsi?Nejad M A,Nahid?Mobarakeh B,Pierfederici S,et al.Fault Tolerant and Minimum Loss Control of Double?star Synchronous Machines under Open Phase Conditions[J]. IEEE Transactions on Industrial Electronics,2008,55(5):1956-1965.
[16]Zhu J W,Ertugrul N,Soong W L.Fault Remedial Strategies in a Fault?tolerant Brushless Permanent Magnet AC Motor Drive with Redundancy[C]//IEEE 6thInternational Power Electronics and Motion Control Conference,Wuhan,China,2009:423-427.
[17]Ertugrul N,Soong W,Dostal G,et al.Fault Tolerant Motor Drive System with Redundancy for Critical Applications[C]// IEEE 33thPower Electronics Specialists Conference,Cairns,Queensland,Australia,2002:1457-1462.
[18]Jacobina C B,Miranda R S,Lima A M N.Reconfigurable Fault Tolerant Dual?winding AC Motor Drive System[C]// IEEE 36thPower Electronics Specialists Conference,Recife,Brazil,2005:1574-1579.
[19]周元鈞,董慧芬,王自強(qiáng).飛行控制用無(wú)刷直流電動(dòng)機(jī)容錯(cuò)運(yùn)行方式[J].北京航空航天大學(xué)學(xué)報(bào),2006,32(2):190-194.
[20]郝振洋,胡育文,黃文新.電力作動(dòng)器中永磁容錯(cuò)電機(jī)及其控制系統(tǒng)的發(fā)展[J].航空學(xué)報(bào),2008,29(1):149-158.
[21]胡文祥,程明,朱孝勇,等.驅(qū)動(dòng)用微特電機(jī)及其控制系統(tǒng)的可靠性技術(shù)研究綜述[J].電工技術(shù)學(xué)報(bào),2007,22(4):38-46.
[22]Ribeiro R L A,Jacobina C B,Da Silva E R C,et al.Fault?tol?erant Voltage?fed PWM Inverter AC Motor Drive Systems[J]. IEEE Transactions on Industrial Electronics,2004,51(2):439-446.
[23]安群濤,孫醒濤,趙克,等.容錯(cuò)三相四開(kāi)關(guān)逆變器控制策略[J].中國(guó)電機(jī)工程學(xué)報(bào),2010,30(3):14-20.
[24]An Q T,Sun L Z,Sun L,et al.Scalar PWM Algorithms for Four?switch Three?phase Inverters[J].Electronics Letters,2010,46(14):1021-1022.
[25]Mendes A M S,Cardoso A J M.Fault?tolerant Operating Strat?egies Applied to Three?phase Induction?motor Drives[J]. IEEE Transactions on Industrial Electronics,2006,53(6):1807-1817.
[26]孫丹,何宗元,Blanco I Y,等.四開(kāi)關(guān)逆變器供電永磁同步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)轉(zhuǎn)矩脈動(dòng)抑制[J].中國(guó)電機(jī)工程學(xué)報(bào),2007,27(21):47-52.
[27]符強(qiáng),林輝,賀博.四開(kāi)關(guān)三相無(wú)刷直流電機(jī)的直接電流控制[J].中國(guó)電機(jī)工程學(xué)報(bào),2006,26(4):149-153.
[28]Correa M B R,Jacobina C B,Silva E R C,et al.An Induc?tion Motor Drive System with Improved Fault Tolerance[J]. IEEE Transactions on Industry Applications,2001,37(3):873-879.
[29]Ribeiro R L A,Jacobina C B,Lima A M N,et al.A Strategy for Improving Reliability of Motor Drive Systems Using a Four?leg Three?phase Converter[C]//16thAnnual IEEE Applied Pow?er Electronics Conference and Exposition,Anaheim,Califor?nia,USA,2001:385-391.
[30]Wallmark O,Harnefors L,Carlson O.Control Algorithms for a Fault?tolerant PMSM Drive[J].IEEE Transactions on Indus?trial Electronics,2007,54(4):1973-1980.
[31]Bianchi N,Bolognani S,Zigliotto M,et al.Innovative Remedi?al Strategies for Inverter Faults in IPM Synchronous Motor Drives[J].IEEE Transactions on Energy Conversion,2003,18(2):306-314.
[32]Liu T H,F(xiàn)u J R,Lipo T M.A Strategy for Improving Reliabil?ity of Field?oriented Controlled Induction Motor Dirves[J]. IEEE Transactions on Industry Applications,1993,29(5):910-918.
[33]Mendes A M S,Cardoso A J M.Continuous Operation Perfor?mance of Faulty Induction Motor Drives[C]//IEEE Interna?tional Electric Machines and Drives Conference,Madison,Wisconsin,USA,2003:547-553.
[34]Naidu M,Gopalakrishnan Suresh,Nehl T W.Fault?tolerant Permanent Magnet Motor Drive Topologies for Automotive x?by?wire Systems[J].IEEE Transactions on Industry Applica?tions,2010,46(2):841-848.
[35]Welchko B A,Jahns T M,Lipo T A.Short?circuit Fault Miti?gation Methods for Interior PM Synchronous Machine Drives Using Six?leg Inverters[C]//35thAnnual IEEE Power Electronics SpecialistsConference,Aachen,Germany,2004:2133-2139.
[36]Welchko B A,Wai Jachson,Jahns T M,et al.Magnet?flux?null?ing Control of Interior PM Machine Drives for Improved Steady?state Response to Short?circuit Faults[J].IEEE Transactions on Industry Applications,2006,42(1):113-120.
[37]Welchko B A,Nagashima J M.The Influence of Topology Se?lection on the Design of EV/HEV Propulsion Systems[J]. IEEE Power Electronics Letters,2003,1(2):36-40.
[38]Lillo L,Wheeler P W,Empringham L,et al.A Power Con?verter for Fault Tolerant Machine Development in Aerospace Applications[C]//13thInternational Power Electronics and Mo?tion Control Conference,Poznan,Poland,2008:388-392.
[39]Lillo L,Empringham L,Wheeler P W,et al.Multiphase Pow?er Converter Drive for Fault?tolerant Machine Development in Aerospace Applications[J].IEEE Transactions on Industrial Electronics,2008,57(2):575-583.
[40]Corzine K A,Sudhoff S D,Whitcomb C A.Performance Char?acteristics of a Cascaded Two?level Converter[J].IEEE Trans?actions on Energy Conversion,1999,14(3):433-439.
[41]Choi G,Jahns T M.Development of a High Power Density In?tegrated Traction Drive[C]//Poster Presentations of 2010 WEM?PEC Annual Review Meeting,Madison,Wisconsin,USA,2010:333-339.
[42]Wang F.High Power Density Integrated Traction Machine Drive[C]//2010 DOE Hydrogen and Vehicle Technologies Programs Annual Merit Review Meeting,Washington,DC,USA,2010:33-38.
[43]Brown N R,Jahns T M,Lorenz R D.Power Converter Design for an Integrated Modular Motor Drive[C]//42ndIEEE Industry Applications Society Annual Meeting,New Orleans,Louisi?ana,USA,2007:1322-1328.
[44]Zhao W,Cheng M,Zhu X,et al.Analysis of Fault?tolerant Performance of a Doubly Salient Permanent?magnet Motor Drive Using Transient Cosimulation Method[J].IEEE Trans?actions on Industrial Electronics,2008,55(4):1739-1748.
[45]Ouyang Wen,Lipo T A.Multiphase Modular Permanent Mag?net Drive System Design and Realization[C]//IEEE Interna?tional Electric Machines and Drives Conference,Antalya,Turkey,2007:787-792.
[46]Abolhassani M T,Toliyat H A.Fault Tolerant Permanent Mag?net Motor Drives for Electric Vehicles[C]//IEEE International Electric Machines and Drives Conference,Miami,F(xiàn)lorida,USA,2009:1146-1152.
[47]Parsa L,Toliyat H A.Fault?tolerant Interior?permanent?mag?net Machines for Hybrid Electric Vehicle Applications[J]. IEEE Transactions on Vehicular Technology,2007,56(4):1546-1552.
[48]Bennett J W,Mecrow B C,Jack A G,et al.A Prototype Elec?trical Actuator for Aircraft Flaps[J].IEEE Transactions on In?dustry Applications,2010,46(3):915-921.
[49]Casadei D,Mengoni M,Serra G,et al.Optimal Fault?tolerant Control Strategy for Multi?phase Motor Drives under an Open Circuit Phase Fault Condition[C]//18thInternational Confer?ence on Electric Machines,Vilamoura,Algarve,Portugal,2008:1-6.
[50]Dwari S,Parsa L,Lipo T A.Optimum Control of a Five?phase Integrated Modular Permanent Magnet Motor under Normal and Open?circuit Fault Conditions[C]//IEEE Power Electron?ics Specialists Conference,Orlando,F(xiàn)lorida,USA,2007:1639-1644.
[51]Wolmarans J J,Gerber M B,Polinder H,et al.A 50 kW Inte?grated Fault Tolerant Permanent Magnet Machine and Motor Drive[C]//IEEE Power Electronics Specialists Conference,Rhodes,Greece,2008:345-351.
[52]Wolmarans J J,Polinder H,F(xiàn)erreira J A,et al.Selecting an Optimum Number of System Phases for an Integrated,F(xiàn)ault Tolerant Permanent Magnet Machine and Drive[C]//13thEuro?pean Conference on Power Electronics and Applications,Bar?celona,Spain,2009:1-10.
Fault Remedial and Tolerant Strategies of Inverters in Three?phase Motor Drives
JIANG Bao?jun1,AN Qun?tao2,LU Mei1
(1.College of Mechatronics and Automation Engineering,Chongqing Jiaotong University,Chongqing400074,China;2.Department of Electrical Engineering,Harbin Institute of Technology,Harbin150001,Heilongjiang,China)
The safe operation of motor drive systems is paid much attention recently.Because of frequent fault occurrence,the inverter is a fragile part in motor drive systems.A survey and review on existing techniques of fault isolation,remedy and tolerance was presented.The topology and related control strategy of each scheme were introduced,and their performances were compared in permanent magnet synchronous motor drive systems.The conclusion provides guidance for designing a safer motor drive system.
motor drive;inverter;security;fault remedy;fault tolerance
TM464
A
2014-07-07
修改稿日期:2014-11-27
姜保軍(1965-),男,副教授,博士,Email:jiang031@163.com