盧唯實(shí) 常瑤
摘 要:傳統(tǒng)基于模糊C均值聚類圖像分割算法易受復(fù)雜紋理和噪聲干擾,無法準(zhǔn)確分割圖像。針對(duì)這一現(xiàn)象,提出一種基于權(quán)重系數(shù)模糊C均值聚類算法,并將其應(yīng)用于圖像分割中。算法定義權(quán)重系數(shù)矩陣,將每個(gè)像點(diǎn)的鄰域信息引入到像點(diǎn)間相似性度量中,計(jì)算每個(gè)像點(diǎn)與聚類中心點(diǎn)的鄰域相似程度,根據(jù)權(quán)重系數(shù)矩陣確定鄰域中每個(gè)像點(diǎn)在鄰域特征計(jì)算中所占權(quán)重,增強(qiáng)了算法對(duì)噪點(diǎn)和雜波的魯棒性。實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)模糊C均值聚類算法相比,該文算法獲得更加精確的圖像分割結(jié)果。
關(guān)鍵詞:模糊C均值聚類 權(quán)重系數(shù) FCM
中圖分類號(hào):TN242 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-3791(2015)04(b)-0245-03
Abstract:A weighting coefficient matrix based fuzzy C-means clustering algorithm for image segmentation was proposed to solve the problems that the segmentation results of the traditional FCM based image segmentation algorithms were easily disturbed by complex texture and noise.In this algorithm,weighting coefficient matrix was defined to calculate neighborhood feature for every pixel in the image,and neighborhood information for every pixel in the image was introduced into similarity measure calculation between pixels and cluster centers,that can improve the robustness of the improved algorithm to noise and clutter.The experimental results demonstrated that the proposed algorithm achieves more accurate image segmentation compared with traditional FCM algorithms.
Key words:Fuzzy c-means clustering;Weight coefficient;FCM
圖像分割是將用戶感興趣的區(qū)域從圖像中提取出來的過程,使得目標(biāo)區(qū)域更加有意義和便于后續(xù)處理。圖像分割是圖像處理的基礎(chǔ),是對(duì)圖像進(jìn)行后續(xù)操作的關(guān)鍵步驟。根據(jù)是否需要人為參與,將圖像分割算法分為自動(dòng)分割方法和交互式分割方法。比較有代表性的自動(dòng)分割方法包括閾值法[1]和聚類法[2-3]等;交互式分割方法包括圖割算法[4]、隨機(jī)游走算法[5]、Live wire算法[6] 和活動(dòng)輪廓模型[7]。其中,模糊C均值聚類算法(FCM)由于其實(shí)現(xiàn)簡單、無需人為操作而被廣泛應(yīng)用于圖像分割中,并獲得了較好的圖像分割結(jié)果。
1 模糊C均值聚類算法
FCM算法[3]由Bezdek于1974年首次提出,通過最優(yōu)化目標(biāo)函數(shù)值來獲得數(shù)據(jù)樣本的最優(yōu)劃分,由于算法中沒有考慮樣本數(shù)據(jù)的領(lǐng)域信息,導(dǎo)致分割結(jié)果易受噪聲和復(fù)雜背景的干擾而出現(xiàn)誤分割。Girolam等人對(duì)FCM算法進(jìn)行了改進(jìn),提出了核模糊聚類算法(KFCM)[8],將核函數(shù)的概念引入到樣本數(shù)據(jù)與聚類中心的相似性度量中,增強(qiáng)了算法對(duì)噪聲的魯棒性。Wang等將局部和非局部空間約束引入到FCM算法中,對(duì)MRI腦圖像進(jìn)行分割并獲得了較好的分割結(jié)果,但該方法對(duì)于信噪比較低的圖像分割效果不理想[9]。Yang等人將高斯核函數(shù)和支持向量機(jī)方法引入到FCM算法中,極大地抑制了圖像中存在的噪聲和離群像素的干擾,獲得了較好的分類結(jié)果[10]。文獻(xiàn)[11]提出了一種基于全局空間相似性的模糊聚類算法,將數(shù)據(jù)空間位置信息引入到數(shù)據(jù)與聚類中心的相似性度量計(jì)算中,增強(qiáng)了分割結(jié)果的空間分布連續(xù)性。
該文提出一種基于權(quán)重系數(shù)模糊C均值聚類算法,并將其應(yīng)用于圖像分割中。算法通過定義權(quán)重系數(shù)矩陣并構(gòu)造相應(yīng)的核函數(shù),將數(shù)據(jù)樣本中每個(gè)樣本的鄰域特征信息引入到數(shù)據(jù)樣本與聚類中心的相似性計(jì)算中,通過核函數(shù)將樣本集合中的樣本映射到高維空間中,實(shí)現(xiàn)樣本在特征空間的優(yōu)化。由于該文算法充分考慮了樣本點(diǎn)的鄰域信息,極大地抑制了樣本空間中的噪點(diǎn)和離群樣本點(diǎn),與傳統(tǒng)FCM算法相比,該文算法能夠獲得更加精確的圖像分割結(jié)果。
模糊C均值聚類算法是一種無監(jiān)督的自動(dòng)分割方法,算法首先要確定聚類中心數(shù)c并初始化聚類中心點(diǎn),通過迭代更新聚類中心和最小化目標(biāo)函數(shù)值來計(jì)算樣本中數(shù)據(jù)與各個(gè)聚類中心的隸屬度,根據(jù)隸屬度矩陣對(duì)樣本集合X=(x1,x2,…xn)∈Rn×p中數(shù)據(jù)進(jìn)行分類。FCM算法目標(biāo)函數(shù)如下式所示:
時(shí),根據(jù)計(jì)算得到的隸屬度矩陣對(duì)數(shù)據(jù)樣本進(jìn)行分類,分類結(jié)果即為樣本中數(shù)據(jù)的最優(yōu)劃分。
基于權(quán)重系數(shù)模糊C均值聚類算法流程如下所示:
① 確定聚類中心個(gè)數(shù)c和最大迭代次數(shù)N;初始化隸屬度矩陣和聚類中心;
② 設(shè)迭代次數(shù)t=1,并以樣本集合中每個(gè)數(shù)據(jù)點(diǎn)為中心,計(jì)算其3×3鄰域樣本值與其對(duì)應(yīng)權(quán)重系數(shù)的乘積和;
③ 更新聚類中心;
④ 更新隸屬度矩陣;
⑤ 如果滿足終止條件,即相鄰兩次迭代目標(biāo)函數(shù)值之差小于給定閾值或大于最大迭代次數(shù),退出循環(huán),根據(jù)每個(gè)樣本點(diǎn)到各個(gè)聚類中心隸屬度函數(shù)值的大小對(duì)數(shù)據(jù)樣本點(diǎn)進(jìn)行分類;否則,執(zhí)行步驟③,t=t+1。
3 結(jié)果與分析
為了驗(yàn)證該文算法的可行性,分別對(duì)遙感圖像、具有自然背景彩色圖像和星云圖像三類具有不同特征的圖像進(jìn)行仿真實(shí)驗(yàn)(如圖1、圖2和圖3所示),比較該文算法與FCM算法和KFCM算法分割結(jié)果的精確性。圖(a)為原始圖像,圖(b)為FCM算法分割結(jié)果,圖(c)為KFCM算法分割結(jié)果,圖(d)為該文算法分割結(jié)果,從分割結(jié)果中可以看到,傳統(tǒng)FCM算法易受噪聲和雜波的干擾導(dǎo)致分割結(jié)果目標(biāo)空間分布離散,無法對(duì)圖像中目標(biāo)進(jìn)行精確分割;KFCM算法分割結(jié)果在一定程度上抑制了圖像中噪聲和雜波的干擾,分割結(jié)果類內(nèi)數(shù)據(jù)空間分布連續(xù)增強(qiáng),但仍無法獲得令人滿意的分割結(jié)果;該文算法通過定義權(quán)重矩陣,將圖像中每個(gè)像點(diǎn)的鄰域信息引入到聚類中心和隸屬度矩陣的更新計(jì)算中,增強(qiáng)了算法對(duì)噪聲和雜波的魯棒性,獲得了較好的圖像分割結(jié)果。
4 結(jié)語
該文提出一種基于權(quán)重系數(shù)模糊C均值聚類算法,并將其應(yīng)用于圖像分割中。該文算法根據(jù)圖像中每個(gè)像點(diǎn)及其鄰域像點(diǎn)的空間位置關(guān)系,定義相應(yīng)的權(quán)重系數(shù)矩陣,構(gòu)造相應(yīng)的核函數(shù),并將其引入到模糊C均值聚類中。通過核函數(shù)將樣本集合中的樣本映射到高維空間中,實(shí)現(xiàn)樣本在特征空間的優(yōu)化。圖像中每個(gè)像點(diǎn)鄰域特征信息的引入增強(qiáng)了算法對(duì)噪聲和雜波的魯棒性,提高了圖像分割結(jié)果的精度。
參考文獻(xiàn)
[1] Karasulu B, Korukoglu S.A simulated annealing-based optimal threshold determining method in edge-based segmentation of grayscale images[J].Applied SoftComputing,2011,11(2):2246-2259.
[2] Isa N A M,Salamah S A,Ngah U K. Adaptive fuzzy movingk-means clustering algorithm for image segmentation[J].IEEETransactions on Consumer Electronics,2009,55(4):2145-2153.
[3] Bezdek J C.Cluster validity with fuzzy sets[J].Cybernetics and Systems, 1974,3(3):58-73.
[4] Boykov Y,Veksler O,Zabih R.Fast approximate energy minimization via graph cuts[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,1999,1:377-384.
[5] L. Grady,Random Walks for Image Segmentation,IEEE Transactions on Pattern Analysis and Machine Intelligence,vol.28,no.11,pp.1768–1783,2006.
[6] Mortensen E, Morse B,Barrett W, et al.Adaptive boundary detection using 'live-wire'two-dimensional dynamic programming[C]//Proceedings of Computers in Cardiology.Los Alamitos: IEEE Computer Society Press,1992:635-638.
[7] Kass M,Witkin A,Terzopoulos D. Snakes:active contour models[J].International Journal of Computer Vision, 1987,1(4):321-331.
[8] Girolami M.Mercer kernel-based clustering in feature space[J].IEEE Transactions on Neural Networks, 2002,13(3):780-784.
[9] Wang J Z, Kong J,Lu Y H,et al. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints[J].Computerized Medical Imaging and Graphics,2008,32(8):685-698.
[10] Yang X W,Zhang G Q,Lu J,et al. A kernel fuzzyc-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises [J].IEEE Transactions on Fuzzy Systems,2011,19(1):105-115.
[11] 依玉峰,高立群,郭麗.基于全局空間相似性的模糊聚類算法[J].東北大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,33(2):178-181.