王 芬,劉清珍,劉 健,江姿潞,謝 滔,李偉彥
(1.徐州醫(yī)學院江蘇省麻醉學重點實驗室,2.徐州醫(yī)學院江蘇省麻醉與鎮(zhèn)痛應用技術重點實驗室,江蘇 徐州 221004;3.南京軍區(qū)南京總醫(yī)院麻醉科,江蘇 南京 210002;4.第二軍醫(yī)大學研究生院,上海 200433)
脊髓脂質運載蛋白-2對大鼠嗎啡耐受形成的影響
王 芬1,2,劉清珍3,劉 健3,江姿潞1,2,謝 滔4,李偉彥3
(1.徐州醫(yī)學院江蘇省麻醉學重點實驗室,2.徐州醫(yī)學院江蘇省麻醉與鎮(zhèn)痛應用技術重點實驗室,江蘇 徐州 221004;3.南京軍區(qū)南京總醫(yī)院麻醉科,江蘇 南京 210002;4.第二軍醫(yī)大學研究生院,上海 200433)
目的 探索用RNA干擾(RNAi)法沉默脊髓脂質運載蛋白-2(lipocalin-2, LCN2)的表達及其對正常大鼠嗎啡耐受形成的影響。方法 鞘內置管成功的♂SD大鼠48只,體質量180~220 g,隨機均分為4組,每組12只:Ⅰ組對照組、Ⅱ組嗎啡耐受組、Ⅲ組錯義小干擾RNA(mismatch siRNA, MM siRNA)組、Ⅳ組LCN2小干擾RNA(LCN2 siRNA)組。所有大鼠鞘內置管術后d 6確定導管位置,記為d 0。d 2~8連續(xù)7 d,每天2次進行皮下注射,每次注射劑量10 μg·g-1,Ⅰ組大鼠皮下注射生理鹽水(normal saline, NS),Ⅱ-Ⅳ組大鼠皮下注射嗎啡建立嗎啡耐受模型。各組大鼠每天皮下給藥前分別鞘內注射10 μL DEPC溶液、10 μL DEPC溶液、10 μL含4 μg MM siRNA的DEPC溶液和10 μL含4 μg LCN2 siRNA的DEPC溶液。d 1、d 9,測定所有大鼠的基礎熱縮足反應潛伏期(paw withdrawal thermal latency, PWTL)及皮下注射嗎啡后45 min的PWTL,并計算嗎啡的最大可能鎮(zhèn)痛效應百分比值(% maximal possible effect, %MPE)。d 9行為學測試結束后,取脊髓腰膨大,用Western blot法檢測磷酸化p38 絲裂原活化蛋白激酶(p-p38 MAPK)及LCN2蛋白表達水平,用免疫組織熒光染色法檢測小膠質細胞標記物Iba1的表達。結果 d 9,與Ⅰ組比,Ⅱ、Ⅲ組大鼠%MPE值明顯下降(P<0.05),腰段脊髓LCN2、p-p38 MAPK、Iba1表達明顯增加(P<0.05)。與Ⅱ組比,Ⅳ組大鼠的%MPE值明顯增加(P<0.05),脊髓LCN2、p-p38MAPK、Iba1表達明顯下降(P<0.05)。結論 鞘內注射LCN2 siRNA沉默脊髓LCN2的表達能夠部分抑制嗎啡耐受的形成,該現象可能與其抑制脊髓背角小膠質細胞的活化及脊髓p-p38 MAPK的表達有關。
嗎啡耐受;脂質運載蛋白-2;小干擾RNA;小膠質細胞;磷酸化p38 絲裂原活化蛋白激酶;脊髓
嗎啡(morphine)耐受是指長期反復使用嗎啡后,其鎮(zhèn)痛作用逐漸減退甚至消失,需加大劑量才能產生既定藥理效應的現象。大量研究顯示,膠質細胞活化是嗎啡耐受的重要機制,其中小膠質細胞活化主要參與了嗎啡耐受的形成,星型膠質細胞活化則參與了嗎啡耐受的維持[1-2]。脂質運載蛋白-2(lipocalin-2, LCN2),也被稱作24p3或中性粒細胞明膠酶相關脂質運載蛋白(neutrophil gelatinase-associated lipocalin, NGAL),是一個分子質量為25 ku的糖蛋白,最初在中性粒細胞顆粒中發(fā)現。研究發(fā)現,LCN2能夠誘導小膠質細胞和p38 MAPK活化,進而誘導炎癥因子釋放而導致神經病理性疼痛[3],而小膠質細胞、p38 MPAK通路均參與了嗎啡耐受的形成,其中p-p38MAPK主要表達于小膠質細胞[4,5],因此,我們推測LCN2亦可能參與了嗎啡耐受的發(fā)生。本實驗擬用鞘內注射LCN2 siRNA選擇性抑制LCN2表達的方法,探討LCN2對大鼠嗎啡耐受形成的影響,并探索相關機制,為防治嗎啡耐受提供新的依據。
1.1 實驗動物與分組清潔級♂SD大鼠,體質量180~220 g(南京軍區(qū)南京總醫(yī)院比較醫(yī)學科提供)。鹽酸嗎啡注射液(130704-2,東北制藥集團沈陽第一制藥有限公司,中國),DEPC溶液,LCN2 siRNA序列:sense: 5′-GCCUCAAGGAUAACAACAUTT-3′; antisense: 5′-AUGUUGUUAUCCUUGAGGCTT-3′; 錯義siRNA序列:sense: 5′-UUCUCCGAACGUGUCACGUTT-3′; antisense: 5′- ACGUGACACGUUCGGAGAATT-3′(上海吉瑪制藥技術有限公司,中國)。所有大鼠鞘內置管成功后,采用隨機數字表法將其隨機分為4組(n=12):Ⅰ組,對照組(DEPC+NS組);Ⅱ組,嗎啡耐受組(DEPC+morphine組);Ⅲ組,錯義 siRNA組(MM siRNA+morphine組);Ⅳ組,LCN2 siRNA組(LCN2 siRNA+morphine組)。
1.2 鞘內置管參考Milligan等[6]的方法,大鼠腹腔注射質量分數為2 %的戊巴比妥鈉50 μg·g-1麻醉,以L5-6為中心作縱切口,分離椎旁肌肉,暴露椎間隙,以稍鈍針頭穿破黃韌帶及硬脊膜,可見大鼠出現甩尾反射及腦脊液外溢。將一段20 cm的PE-10導管(寧波市科技園區(qū)安來軟件科技有限公司,中國)經椎間隙向頭端插入2 cm。經皮下自頸部將其引出后縫合固定導管,熱熔封口。術后分籠飼養(yǎng),自由飲水和攝食,恢復5 d。置管d 6經導管注射質量分數為2%的利多卡因15 μL,如注射后30 s內大鼠出現雙后肢麻痹現象說明導管位置正確,記為d 0。置管不成功大鼠予以麻醉處死。
1.3 給藥方案參照Raghavendra等[4]方法,d 2~8,連續(xù)7 d,每天8 ∶00和16 ∶00,Ⅱ~Ⅳ組大鼠皮下注射10 μg·g-1嗎啡建立嗎啡耐受模型,Ⅰ組大鼠皮下注射10 μg·g-1生理鹽水。各組大鼠每天皮下給藥前分別鞘內注射10 μL DEPC溶劑(Ⅰ組、Ⅱ組)、4 μg MM siRNA(Ⅲ組)、4 μg LCN2 siRNA的DEPC溶液(Ⅳ組),siRNA均用10 μL DEPC溶劑稀釋。
1.4 行為學測試d 1、d 9,參照Hargreaves等[7]方法,使用足底輻射熱痛覺測試儀(Model 390, IITC Life ScienceInc, 美國),測定所有大鼠的基礎熱縮足反應潛伏期(paw withdrawal thermal latency, PWTL),皮下注射嗎啡后45 min的PWTL,每只大鼠重復測量5次,單次光照時間不超過20 s(cut-off time),去掉最大及最小值,取平均值即為大鼠的PWTL,并計算嗎啡的最大可能鎮(zhèn)痛效應百分比值(% maximal possible effect, MPE/%),MPE/%=(給藥后PWTL-基礎PWTL) / (cut-off time-基礎PWTL)×100%。
1.5 標本采集d 9行為學測試結束后,大鼠腹腔注射質量分數為2%的戊巴比妥鈉80 μg·g-1麻醉。取8只大鼠快速截取脊髓腰膨大于液氮中保存,留待Western blot法檢測蛋白表達。另取4只大鼠開胸灌注,留取脊髓腰膨大用于免疫熒光染色。
1.6 Western blot用含蛋白酶抑制劑、磷酸酶抑制劑和PMSF的RIPA裂解液將L4-6脊髓組織進行勻漿。蛋白定量煮樣后,配置SDS-PAGE凝膠,每孔上樣量50 μg(10 μL),電泳,轉膜,質量分數為5 %的脫脂牛奶室溫封閉1 h,加一抗:兔抗大鼠LCN2(1 ∶200,Millipore,美國)或兔抗大鼠p-p38 MAPK(1 ∶800, Cell Signaling Technology,美國),4 ℃孵育過夜。d 2,棄一抗,TBST洗5 min×6次,加辣根過氧化物酶標記的羊抗兔二抗(1 ∶1 000,Cell Signaling Technology,美國),室溫孵育1 h,TBST洗5 min × 6次,增強型化學發(fā)光試劑顯色曝光,顯影,定影。 內參為GAPDH(1 ∶1 000,Cell Signaling Technology,美國)或β-actin(1 ∶1 000,Cell Signaling Technology,美國 )。掃描后蛋白條帶用Image J軟件分析,以目的條帶灰度值與內參蛋白的比值反映目的蛋白表達的相對水平,進行半定量分析。
1.7 免疫組織熒光染色取L4-6脊髓,置入質量分數為4 %的多聚甲醛溶液,4 ℃固定4~6 h。然后轉入質量分數為15 %的蔗糖溶液,待組織沉底后再轉入質量分數為30 %的蔗糖溶液,4 ℃放置48 h。OCT包埋組織后,放入-22 ℃冰凍切片機(CM1900, Leica,美國),40 min后行冰凍切片,片厚35 μm。PBST洗5 min×3次,質量分數為5 %的驢血清封閉2 h,加山羊抗大鼠Iba1一抗(1 ∶100, Abcam,美國),4 ℃孵育過夜,PBST洗3次,加入熒光標記二抗(1 ∶1 000, Life Technologies,美國)室溫避光孵育2 h,PBST洗5 min×3次。避光貼片、甘油封片。普通熒光顯微鏡下觀察攝片。
2.1 行為學測試d 1、d 9各組大鼠基礎PWTL(Basic PWTL)差異均無顯著性(Fig 1)。d 1,各組大鼠%MPE差異無顯著性,d 9,與Ⅰ組比較,Ⅱ、Ⅲ、Ⅳ組大鼠%MPE明顯降低(P<0.05)。與Ⅱ組比較,Ⅲ組大鼠的%MPE無明顯變化,而Ⅳ組大鼠的%MPE明顯升高(P<0.05)見Fig 2。
Fig 1 Basic PWTL of rats on d 1 and d 9(n=8)
On d 1 and d 9, there was no significant difference in the basic PWTL among four groups (P>0.05).
Fig 2 MPE of rats on d 1 and d 9(n=8)
On d 1, there was no significant difference in the %MPE among four groups (P>0.05), while on d 9, the MPE significantly declined in group Ⅱ-Ⅳ compared to group I (P<0.05) and the MPE significantly increased in group Ⅳ compared to group Ⅱ (P<0.05).*P<0.05vsgroup Ⅰ;#P<0.05vsgroup Ⅱ
2.2 脊髓腰膨大LCN2與p-p38 MAPK蛋白的表達變化與Ⅰ組相比,其余各組大鼠脊髓腰膨大的LCN2表達量均升高(P<0.05)。與Ⅱ組相比,Ⅲ組大鼠脊髓腰膨大的LCN2表達無明顯變化,而Ⅳ組大鼠脊髓腰膨大的LCN2表達明顯下降(P<0.05)(Fig 3)。與Ⅰ組相比,Ⅱ、Ⅲ組p-p38 MAPK表達量均升高(P<0.05)。與Ⅱ組相比,Ⅲ組p-p38 MAPK表達無明顯變化,而Ⅳ組p-p38 MAPK表達明顯下降(P<0.05),見Fig 4。
Fig 3 Expression of LCN2 in L5 spinal cord of rats on d 9(n=3)
On d 9, compared with group Ⅰ, the expression of LCN2 in the L5 spinal cord of rats was significantly increased in group Ⅱ-Ⅳ (P<0.05), while compared with group Ⅱ, the expression of LCN2 was significantly decreased in group Ⅳ (P<0.05).*P<0.05vsgroup Ⅰ;#P<0.05vsgroup Ⅱ.
Fig 4 Expression of p-p38 MAPK in L5 spinal cord of rats on d 9(n=3)
On d 9, compared with group Ⅰ, the expression of p-p38 MAPK in the L5 spinal cord of rats was significantly increased in group Ⅱ and Ⅲ (P<0.05), while compared with group Ⅱ, the expression of p-p38 MAPK was significantly decreased in group Ⅳ (P<0.05).*P<0.05vsgroup Ⅰ;#P<0.05vsgroup Ⅱ.
2.3 腰段脊髓背角小膠質細胞標記物Iba1的表達變化免疫熒光染色結果顯示,Ⅰ組大鼠腰段脊髓背角Iba1表達量較少。與Ⅰ組相比,Ⅱ組、Ⅲ組Iba1表達量明顯增加,小膠質細胞胞體變大,分支增加。與Ⅱ組相比,Ⅲ組Iba1表達無明顯變化,Ⅳ組Iba1表達量明顯降低,小膠質細胞胞體較小,分支也減少(Fig 5)。
近年來研究發(fā)現,LCN2在膠質細胞活化及神經病理性痛中發(fā)揮重要作用。靜止的小膠質細胞受炎癥刺激后釋放LCN2,而LCN2能進一步激活小膠質細胞,使小膠質細胞變?yōu)榉种钚∧z質細胞,且導致小膠質細胞凋亡敏感性增加[8]。而LCN2主要通過激活小鼠或大鼠脊髓水平小膠質細胞及其p-p38 MAPK信號通路誘導痛覺過敏的產生,從而參與神經病理性疼痛及慢性炎癥性痛[3,9]。已有研究顯示,嗎啡耐受能夠促進大鼠腰段脊髓水平小膠質細胞活化及p-p38 MAPK的表達,且p-p38MAPK主要表達于活化的小膠質細胞中,這表明小膠質細胞及其內的p-p38 MAPK信號通路參與了嗎啡耐受的形成過程,且多項研究表明,趨化因子也參與了嗎啡耐受形成[10-11]。因此,我們推測LCN2可能通過激活脊髓小膠質細胞及其內p-p38 MAPK信號通路,進而誘導趨化因子及炎癥因子的釋放,從而參與了嗎啡耐受的形成。
Fig 5 Expression of Iba1 in dorsal horn of L5 spinal cord of rats on d 9
On d 9, compared with group Ⅰ, the immunoreactivity of Iba1 in the dorsal horn of L5 spinal cord of rats was markedly increased in group Ⅱ and Ⅲ, while compared with group Ⅱ, the immunoreactivity was markedly decreased in group Ⅳ.
最近,小干擾RNA(siRNA)基因沉默技術在分子生物學領域迅速發(fā)展。siRNA是一段長度約21~22個堿基的雙鏈RNA,可以特異性地誘導轉錄后基因沉默,即RNAi[12]。近年來,LCN2的研究主要采用基因敲除動物[3]、短發(fā)夾RNA(short hairpin)[13]或siRNA[14]等技術達到抑制LCN2表達的作用,本實驗采用鞘內注射特異性LCN2 siRNA的方法進行研究,參照文獻[15-17],在每天給予嗎啡前鞘內注射LCN2 siRNA 4 μg,連續(xù)7 d,并檢測脊髓內LCN2 mRNA及蛋白表達水平,結果顯示此種給藥方法及給藥劑量能產生較好的基因沉默效果而無明顯不良反應。本實驗參照Raghavendra等[4]方法建立慢性嗎啡耐受模型,d 9嗎啡耐受組MPE值較對照組明顯下降,表示嗎啡鎮(zhèn)痛效能下降,嗎啡耐受已經形成。與嗎啡耐受組比較,LCN2 siRNA處理組大鼠MPE值明顯升高,即嗎啡的鎮(zhèn)痛效能得到改善,提示LCN2 siRNA能夠緩解嗎啡耐受的形成。進一步檢測顯示,與對照組相比,嗎啡耐受組大鼠脊髓內Iba1及p-p38 MAPK的表達明顯增加,而LCN2 siRNA處理后兩者表達均明顯降低。
本研究表明,嗎啡耐受能夠促進脊髓水平LCN2表達,進而促進小膠質細胞活化及其內p-p38 MAPK的表達。而通過向大鼠鞘內注射LCN2 siRNA后,脊髓水平的LCN2表達減少,進而小膠質細胞活化及其p-p38 MAPK表達水平亦下降,而相應地,大鼠的嗎啡耐受部分緩解。因此,我們推測,脊髓水平LCN2可能通過激活小膠質細胞及其p-p38 MAPK信號通路,進一步誘導趨化因子及炎癥因子的釋放,從而參與嗎啡耐受的形成,而鞘內注射LCN2 siRNA特異性抑制LCN2表達后,可能通過抑制小膠質細胞活化及其p-p38 MAPK信號通路,進而提高嗎啡鎮(zhèn)痛效能,達到緩解嗎啡耐受形成的作用。
總之,鞘內注射LCN2 siRNA能特異性沉默脊髓LCN2的表達,進而部分抑制嗎啡耐受的形成。該效應可能與其抑制嗎啡誘導的腰段脊髓內小膠質細胞活化及其p-p38 MAPK信號通路有關。本研究提示,阻斷脊髓LCN2,有望為嗎啡耐受的機制研究提供新思路,并為嗎啡耐受的臨床防治提供新的途徑。
[1] Song P, Zhao Z Q. The involvement of glial cells in the development of morphine tolerance[J].NeurosciRes, 2001, 39(3): 281-6.
[2] 舒銀銀,謝軍明,李永樂,等.鞘內注射IL-18中和抗體對大鼠嗎啡耐受形成的影響[J].中國藥理學通報,2013,29(5):693-7.
[2] Shu Y Y, Xie J M, Li Y L, et al. Effect of intrathecal injection of anti-rat IL-18 antibody on the development of morphine tolerance in rats[J].ChinPharmacolBull, 2013, 29(5): 693-7.
[3] Jeon S, Jha M K, Ock J, et al. Role of lipocalin-2-chemokine axis in the development of neuropathic pain following peripheral nerve injury[J].JBiolChem, 2013, 288(33): 24116-27.
[4] Raghavendra V, Rutkowski M D, DeLeo J A. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats[J].JNeurosci, 2002, 22(22): 9980-9.
[5] Wen Y R, Tan P H, Cheng J K, et al. Microglia:a promising target for treating neuropathic and postoperative pain,and morphine tolerance[J].JFormosMedAssoc, 2011, 110(8): 487-94.
[6] Milligan E D, Hinde J L, Mehmert K K, et al. A method for increasing the viability of the external portion of lumbar catheters placed in the spinal subarachnoid space of rats[J].JNeurosciMethods, 1999, 90(1): 81-6.
[7] Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia[J].Pain, 1988, 32(1): 77-88.
[8] Lee S, Lee J, Kim S, et al. A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia[J].JImmunol, 2007, 179(5): 3231-41.
[9] Jha M K, Jeon S, Jin M, et al. The pivotal role played by lipocalin-2 in chronic inflammatory pain[J].Expneurol, 2014, 254: 41-53.
[10] Hutchinson M R, Coats B D, Lewis S S, et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia[J].BrainBehavImmun, 2008, 22(8): 1178-89.
[11] Johnston I N, Milligan E D, Wieseler-Frank J, et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine[J].JNeurosci, 2004, 24(33): 7353-65.
[12] Dorn G, Patel S, Wotherspoon G, et al. siRNA relieves chronic neuropathic pain[J].NucleicAcidsRes, 2004, 32(5): e49.
[13] Zhang J, Wu Y J, Zhang Y, et al. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages[J].MolEndocrinol, 2008, 22(6): 1416-26.
[14] Yang J, Bielenberg D R, Rodig S J, et al. Lipocalin 2 promotes breast cancer progression[J].ProcNatlAcadSciUSA, 2009, 106(10): 3913-8.
[15] Tumati S, Roeske W R, Largent-Milnes T, et al. Sustained morphine-mediated pain sensitization and antinociceptive tolerance are blocked by intrathecal treatment with Raf-1-selective siRNA[J].BrJPharmacol, 2010, 161(1): 51-64.
[16] Yang C H, Huang H W, Chen K H, et al. Antinociceptive potentiation and attenuation of tolerance by intrathecal β-arrestin 2 small interfering RNA in rats[J].BrJAnaesth, 2011: 107(5): 774-81.
[17] Tumati S, Roeske W R, Largent-Milnes T M, et al. Intrathecal PKA-selective siRNA treatment blocks sustained morphine-mediated pain sensitization and antinociceptive tolerance in rats[J].JNeurosciMethods, 2011, 199(1): 62-8.
Effect of spinal cord lipocalin-2 on development of morphine tolerance in normal rats
WANG Fen1,2, LIU Qing-zhen3, LIU Jian3, JIANG Zi-lu1,2, XIE Tao4, LI Wei-yan3
(1.KeyLaboratoryofAnesthesiologyofJiangsuProvince; 2.KeyLaboratoryofAnesthesiaandAnalgesiaApplicationTechnologyofJiangsuProvince,XuzhouMedicalCollege,XuzhouJiangsu221004,China;3.DeptofAnesthesiology,NanjingGeneralHospitalofNanjingMilitaryCommand,Nanjing210002,China;4.GraduateSchoolofSecondMilitaryMedicalUniversity,Shanghai200433,China)
Aim To explore the effect of knockdown spinal cord LCN2 by RNAi on the development of morphine tolerance in normal rats. Methods After successful intrathecal implantation, fourty-eight male Sprague-Dawley rats weighing 180 - 220 grams were randomly divided into 4 groups (n=12): group I: control group, group II: morphine tolerance group, group Ⅲ: mismatch siRNA group, group IV: LCN2 siRNA group. The sixth day after intrathecal implantation, rats were tested to ensure the position of catheters, and it was recorded as d 0. On d 2 - 8, rats were subcutaneously (s.c) injected of normal saline (NS) (group I) or morphine (group Ⅱ,Ⅲ,Ⅳ) 10 μg·g-1twice a day at 8:00 and 16:00. Before everyday s.c injection, rats were intrathecally injected of 10 μL DEPC solution (group Ⅰ,Ⅱ), 10 μL DEPC solution containing 4 μg mismatch siRNA (group III) and 4 μg LCN2 siRNA solution (group IV). Paw withdrawal latencies to thermal stimuli (PWTL) were tested before morphine injection and 45 minutes after morphine injection on d 1 and d 9. The percentage of maximal possible effect (%MPE) was calculated later. Animals were sacrificed on d 9 after the behavioral test and the lumbar enlargement segments of the spinal cord were removed for detecting the expression of phosphorylated-p38 mitogen-activated protein kinase (p-p38 MAPK) and LCN2 by Western blot and microglia marker Iba1 by immunofluorecence. Results On d 1, there was no significant difference in %MPE among four groups. On d 9, compared to group Ⅰ, %MPE was significantly reduced (P<0.05) while p-p38MAPK, LCN2 and Iba1 were markedly up-regulated in group Ⅱ and Ⅲ (P<0.05). On d 9, compared to group Ⅱ, %MPE was significantly increased while p-p38MAPK, LCN2 and Iba1 were markedly reduced in group IV (P<0.05). Conclusion Using LCN2 siRNA to knockdown spinal LCN2 relieves the development of morphine tolerance in normal rats possibly through inhibiting the activation of microglia and p38 MAPK in the spinal cord.
morphine tolerance; LCN2; siRNA; microglia; p-p38 MAPK; spinal cord
時間:2015-3-16 15:41 網絡出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20150316.1541.011.html
2014-12-25,
2015-02-26
江蘇省自然科學基金面上研究項目(No BK20131328)
王 芬(1989-)女,碩士,研究方向:麻醉與鎮(zhèn)痛的基礎與臨床,E-mail:DocWangFen@126.com; 李偉彥(1965-),男,博士,主任醫(yī)師,碩士生導師,研究方向:麻醉與鎮(zhèn)痛的基礎與臨床,Tel:025-80860147,E-mail:weiyanlee@sina.com
10.3969/j.issn.1001-1978.2015.04.025
A
1001-1978(2015)04-0565-05
R-332;R322.81;R341;R342.2;R345.57; R971.2