国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

被動(dòng)加標(biāo)在水生生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中的應(yīng)用
——以多氯聯(lián)苯分配系數(shù)的測(cè)定為例

2015-06-05 09:51:45祁紅學(xué)李慧珍游靜
生態(tài)毒理學(xué)報(bào) 2015年2期
關(guān)鍵詞:被動(dòng)毒性分配

祁紅學(xué),李慧珍,游靜,*

1.中國(guó)科學(xué)院廣州地球化學(xué)研究所有機(jī)地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣州510640 2.中國(guó)科學(xué)院大學(xué),北京100049

被動(dòng)加標(biāo)在水生生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中的應(yīng)用
——以多氯聯(lián)苯分配系數(shù)的測(cè)定為例

祁紅學(xué)1,2,李慧珍1,游靜1,*

1.中國(guó)科學(xué)院廣州地球化學(xué)研究所有機(jī)地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣州510640 2.中國(guó)科學(xué)院大學(xué),北京100049

準(zhǔn)確的水生生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)需要可靠的毒性數(shù)據(jù),而其獲取要求在一定時(shí)間范圍內(nèi),水體中污染物的濃度保持恒定。對(duì)疏水性有機(jī)污染物進(jìn)行水體生物毒性測(cè)試時(shí),通常采用有機(jī)溶劑加標(biāo),然而該方式可能因?yàn)槲廴疚锏膿]發(fā)和降解、容器壁吸附、生物攝取等問題,水體中污染物濃度持續(xù)下降,導(dǎo)致污染物的濃度-效應(yīng)關(guān)系難以明確。近期為了克服這些問題,被動(dòng)加標(biāo)用于替代溶劑加標(biāo),通過污染物在加標(biāo)體系中平衡分配來維持精確和恒定的水體濃度,同時(shí)還可通過測(cè)定加標(biāo)聚合物中污染物的濃度來監(jiān)測(cè)水體濃度。首先介紹了被動(dòng)加標(biāo)方法及其材料選擇,討論了該方法在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中的主要應(yīng)用,包括分配系數(shù)的測(cè)定、體外細(xì)胞測(cè)試、體內(nèi)生物積累及毒性測(cè)試,以及沉積物毒性評(píng)價(jià)等。然后,以測(cè)定代表污染物多氯聯(lián)苯在聚二甲基硅氧烷與水間的分配系數(shù)為例,詳細(xì)說明被動(dòng)加標(biāo)的操作流程。最后,討論了被動(dòng)加標(biāo)方法的優(yōu)缺點(diǎn),并對(duì)其在水生生態(tài)風(fēng)險(xiǎn)中的應(yīng)用前景進(jìn)行了展望。

多氯聯(lián)苯;被動(dòng)加標(biāo);水體生物毒性測(cè)試;疏水性有機(jī)污染物

水體污染嚴(yán)重威脅水生生物的多樣性和人類健康,因此迫切需要開展水生生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)的研究,并制定相應(yīng)基準(zhǔn)[1]。準(zhǔn)確可靠的毒性數(shù)據(jù)是建立水生生態(tài)基準(zhǔn)方法的前提,而毒性數(shù)據(jù)主要通過加標(biāo)受試污染物到水體,對(duì)模式生物進(jìn)行毒性測(cè)試來獲取。傳統(tǒng)的溶劑加標(biāo)法將待測(cè)化合物配制成目標(biāo)濃度的有機(jī)溶液,然后加入水體。這種以溶劑為載體的加標(biāo)方式對(duì)水溶性較大、水體中降解較慢的化合物適用性較好,水體濃度隨時(shí)間變化不大。然而,對(duì)于疏水性有機(jī)污染物(hydrophobic organic contaminants, HOCs),則由于污染物的揮發(fā)降解、容器壁吸附、毒性測(cè)試中生物體的攝取等因素,測(cè)試過程中污染物水體濃度逐漸降低。這導(dǎo)致水體暴露濃度變化大,污染物的濃度-效應(yīng)關(guān)系不明,直接影響毒性測(cè)試數(shù)據(jù)的準(zhǔn)確性。例如,文獻(xiàn)所報(bào)道的HOCs的毒性數(shù)據(jù),即使是同一污染物對(duì)同一生物,也可能相差甚大[2],其中部分原因就是生物測(cè)試期間,無法保障水體中污染物的濃度穩(wěn)定。

圖1 溶劑加標(biāo)與被動(dòng)加標(biāo)的對(duì)比[5]Fig. 1 A comparison between solvent dosing and passive dosing[5]

為了克服溶劑加標(biāo)方式在水體中HOCs毒性測(cè)試的問題,Mayer等[3]在平衡分配理論[4]的基礎(chǔ)上建立了被動(dòng)加標(biāo)法(passive dosing methodology)。該方法可有效地維持相對(duì)恒定的HOCs水體濃度,相比于傳統(tǒng)溶劑加標(biāo)法,優(yōu)勢(shì)明顯。圖1比較了2種加標(biāo)方式,采用溶劑加標(biāo)時(shí),受試化合物的水濃度隨時(shí)間大幅度下降,而在被動(dòng)加標(biāo)情況下,化合物的水濃度僅略微降低[5]。被動(dòng)加標(biāo)在生物暴露期間維持穩(wěn)定的水體濃度,為毒性數(shù)據(jù)的準(zhǔn)確性提供了有力的保障。

本文首先介紹被動(dòng)加標(biāo)方法及其常用材料的選擇,接著重點(diǎn)綜述被動(dòng)加標(biāo)法在水生生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中的應(yīng)用。然后選擇生物相容性好的聚二甲基硅氧烷(polydimethylsiloxane, PDMS)為吸附相聚合材料,多氯聯(lián)苯(polychlorinated biphenyls, PCBs)為代表污染物,以被動(dòng)加標(biāo)法測(cè)定PCBs在PDMS-水間分配系數(shù)(kPw)為例,詳細(xì)說明被動(dòng)加標(biāo)法的操作流程及可行性。最后,討論被動(dòng)加標(biāo)法的優(yōu)缺點(diǎn),并對(duì)其在水生生態(tài)風(fēng)險(xiǎn)中的應(yīng)用前景進(jìn)行展望。

1 被動(dòng)加標(biāo)的定義及材料選擇 (Definition andmaterial selection of passive dosing)

被動(dòng)加標(biāo)法在實(shí)際應(yīng)用中還有多種名稱。如1999年Mayer等[3]首次提出被動(dòng)加標(biāo)技術(shù)時(shí),稱之為分配機(jī)制的給藥方式(partitioning driven administering),此后該技術(shù)也被稱作分配控制的釋放(partition controlled delivery)[6]、固相加標(biāo)(solid phase dosing)[7]、動(dòng)力滲透法(dynamic permeation method)[8]、基于分配的加標(biāo)(partitioning-based dosing)[9],以及被動(dòng)加標(biāo)(passive dosing)[10]等。雖然名稱不同,但其基本方法是一致的,即選擇生物相容性較好的聚合物材料,如PDMS,將目標(biāo)化合物加載到聚合物中作為“源”,然后將成功載樣的聚合物放置在水體中。此時(shí),聚合物中的化合物通過“平衡分配”釋放進(jìn)入水體,且在生物測(cè)試進(jìn)行過程中彌補(bǔ)水體中化合物隨時(shí)間的損耗,從而達(dá)到維持水體濃度恒定的目的。同時(shí),被動(dòng)加標(biāo)方法還可通過測(cè)定聚合物中污染物的濃度來獲得水體中污染物濃度,解決了污染物水濃度較低時(shí)難以測(cè)定的困難。

近年來,使用自動(dòng)循環(huán)裝置的被動(dòng)加標(biāo)也逐步發(fā)展起來,包括動(dòng)態(tài)被動(dòng)加標(biāo)(dynamic passive dosing)[5]、被動(dòng)加標(biāo)流動(dòng)系統(tǒng)(flow-through passive dosing system)[11]和再循環(huán)流動(dòng)系統(tǒng)(recirculating flow-through system)[12]等。這些測(cè)試體系,可循環(huán)供給含有穩(wěn)定濃度的目標(biāo)水溶液,同時(shí)滿足生物測(cè)試過程中的換水需求,保證生物體有充足的供氧量。

目前多種類型的聚合物被用作被動(dòng)加標(biāo)的材料,包括十八烷基鍵合硅膠(octadecyl silica, ODS)[3]、聚乙烯(polyethylene, PE)[13]、聚氧甲烯(polyoxymethylene, POM)[14],以及PDMS[6]等硅酮材料。反相色譜柱的常用填料ODS被用于被動(dòng)加標(biāo),主要因?yàn)镺DS有較大的比表面積,與化合物的作用方式主要為范德華力,而化合物在其中主要是分配吸附等特點(diǎn)[15]。廣泛應(yīng)用于被動(dòng)采樣技術(shù)中的一些聚合物材料[16],如PE[17]和PDMS等,也可用于被動(dòng)加標(biāo)。

因?yàn)槠渖锵嗳菪院茫胶夥峙錂C(jī)制較為明確等優(yōu)點(diǎn),PDMS是應(yīng)用最為廣泛的被動(dòng)采樣及加標(biāo)材料。為了適應(yīng)不同容器的需要,其形狀被制成膜狀[13]、棒狀[9]、O形環(huán)[18]等。通常認(rèn)為,化合物在聚合物中的吸附分布主要有吸著(adsorption)和吸收(absorption)兩種機(jī)理。吸著是指化合物附著在聚合物表面,可能存在吸附飽和、競(jìng)爭(zhēng)吸附等現(xiàn)象。另一方面,吸收是指化合物分子分配進(jìn)入聚合物內(nèi)部,均勻分布,不出現(xiàn)吸附飽和及競(jìng)爭(zhēng)吸附。根據(jù)相似相溶原理,吸收時(shí)目標(biāo)化合物能以任意比溶入聚合物內(nèi),其載量與該物質(zhì)的濃度呈線性相關(guān),且不因其它化合物的種類增加而降低。Brown等[6]指出HOCs在PDMS膜上的吸附基于平衡分配理論,化合物通過分子擴(kuò)散進(jìn)入PDMS膜內(nèi)部,為吸收機(jī)理。夏歡等[19]測(cè)定了多溴聯(lián)苯在PDMS與水之間的分配系數(shù),其結(jié)果也支持PDMS為吸收機(jī)理。此外,相對(duì)于PE膜,以PDMS為代表的硅酮類材料適用有機(jī)污染物的極性范圍更大,包括有機(jī)磷阻燃劑和多溴聯(lián)苯醚等,而PE膜的適用范圍相對(duì)較窄,適用化合物的辛醇-水分配系數(shù)(log kow)介于4到7之間[20]。鑒于此,大多數(shù)目前被動(dòng)加標(biāo)法的應(yīng)用選擇了PDMS作為加標(biāo)材料[6]。被動(dòng)加標(biāo)不僅用于單一化合物加標(biāo),而且可以實(shí)現(xiàn)多種化合物同時(shí)加標(biāo),目前還沒有不同化合物在硅酮材料上相互干擾的報(bào)道[21]。

被動(dòng)加標(biāo)的載樣和萃取過程中,會(huì)使用有機(jī)溶劑,但有機(jī)溶劑對(duì)材料會(huì)產(chǎn)生一定的溶脹作用。有機(jī)溶劑的溶脹作用從強(qiáng)到弱依次為正己烷、二氯甲烷、乙酸乙酯、丙酮、甲醇。甲醇對(duì)多數(shù)材料的溶脹體積小于5%,因此,通常選擇甲醇為載樣溶劑[16]。

2 被動(dòng)加標(biāo)的應(yīng)用(Application of passive dosing)

相比于傳統(tǒng)的溶劑加標(biāo),被動(dòng)加標(biāo)能夠維持精確和恒定的HOCs水濃度。在HOCs的溶解度范圍內(nèi),可以通過調(diào)節(jié)HOCs在甲醇溶液中的濃度,建立聚合物上的載樣梯度,并依據(jù)聚合物與水之間的分配系數(shù),獲得所需濃度的水溶液系列。如表1所示,被動(dòng)加標(biāo)中水溶液濃度常以污染物自由溶解濃度(freely dissolved concentration, Cfree)和化學(xué)活度(a)的形式表達(dá)。Schmidt等[22]分析了39種非極性化合物對(duì)綠藻的毒性,發(fā)現(xiàn)對(duì)這些化合物當(dāng)其非特異性毒性出現(xiàn)時(shí),a值基本在0.01~0.1范圍內(nèi),顯示了a值在毒性預(yù)測(cè)中的作用。

在Cfree和a之外,表1還列出了通過被動(dòng)加標(biāo)法可獲得的常用于表征污染物環(huán)境行為的參數(shù)及其計(jì)算公式。除了受HOCs疏水性的影響外,無機(jī)鹽離子和溶解有機(jī)質(zhì)(dissolved organic matters, DOM)也將影響被動(dòng)加標(biāo)體系[23]。離子強(qiáng)度增加時(shí),鹽析作用可導(dǎo)致HOCs的Cfree下降[24-25]。離子強(qiáng)度對(duì)Cfree的影響,可利用鹽效應(yīng)常數(shù)(Setschenow constant, ks)加以校正。另一方面,由于活度系數(shù)(γ)增加,HOCs的化學(xué)活度(a=γCfree)不受水體鹽度影響[26]。水溶液中的HOCs趨向于與腐殖酸等DOM結(jié)合,引起Cfree降低,而DOM對(duì)Cfree的影響,可用分配比(k)、結(jié)合常數(shù),以及增加容量(E)來表示(表1)。獲得這些參數(shù)對(duì)研究HOCs的環(huán)境遷移和毒代動(dòng)力學(xué)過程有重要的意義,例如,HOCs在土壤微孔中的膠體傳輸可能是地下水污染的主要途徑[27]。Tejeda等[28]發(fā)現(xiàn)腐殖酸(humic acid, HA)的存在顯著影響PAHs的生物降解。Zhao等[29]用被動(dòng)采樣方法研究了大分子物質(zhì)對(duì)菲的結(jié)合能力,發(fā)現(xiàn)HA5>HA2>牛血清蛋白>胃蛋白酶>溶菌酶。此外,他們也進(jìn)一步利用被動(dòng)加標(biāo)方法探討了石墨烯對(duì)菲的吸附過程中表面活性劑膽酸鈉的影響[30]。

除了研究水體中污染物環(huán)境行為之外,被動(dòng)加標(biāo)在水生生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中的應(yīng)用主要涉及生物毒性測(cè)試[31]。目前已開展的應(yīng)用包括污染物在聚合物與水相間分配系數(shù)的測(cè)定、體外細(xì)胞測(cè)試、體內(nèi)生物積累與毒性測(cè)試,以及沉積物毒性評(píng)價(jià)等(表2)。

2.1 分配系數(shù)的測(cè)定

由于HOCs水溶性差、易產(chǎn)生容器壁吸附、平衡時(shí)間長(zhǎng)等問題,隨HOCs疏水性的加大,其分配系數(shù)的測(cè)定越來越難。在這種情況下,被動(dòng)加標(biāo)法被用于測(cè)量HOCs的分配系數(shù)。Ter Laak等[7]測(cè)定6種多環(huán)芳烴(polycyclic aromatic hydrocarbons, PAHs)的kPw,結(jié)果顯示方法精密度好,標(biāo)準(zhǔn)誤差小于0.05。此外,Kwon等[8]利用水邊界層滲透的被動(dòng)加標(biāo)法測(cè)定了高疏水性HOCs的分配系數(shù)。該方法使用2張PDMS膜,1張預(yù)先載樣,作為供體膜,而另1張未載樣的為受體膜,將2張膜置于同一水體系統(tǒng),依據(jù)平衡分配理論,供體膜、受體膜和水三相之間達(dá)到平衡時(shí),通過受體膜-水之間的分配準(zhǔn)確測(cè)定HOCs的分配系數(shù)。這一方法為測(cè)定高疏水性HOCs的分配系數(shù)提供了新的思路,但是研究方法所需的實(shí)驗(yàn)體系非常小,實(shí)驗(yàn)條件要求高。測(cè)定HOCs在聚合物-水相間分配系數(shù),對(duì)于分析化合物與聚合物間的作用機(jī)理也至關(guān)重要。Smith等[21]測(cè)定了PAHs的kPw,發(fā)現(xiàn)當(dāng)log kow在3.56~6.63范圍內(nèi),log kPw與log kow呈線性相關(guān)(log kPw=0.799 log kow+0.234, r2=0.955),認(rèn)為PAHs主要是以分配進(jìn)入PDMS膜中,支持了PDMS對(duì)HOCs的吸收理論。

被動(dòng)加標(biāo)也可看作是被動(dòng)采樣的逆過程,故而相同的聚合物材料常在2種方法中共用[26],例如PDMS[32]。被動(dòng)采樣技術(shù)可在野外原位測(cè)定Cfree,該濃度是生物可利用濃度的表征[33-34],對(duì)生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)有重要的意義[35]。相對(duì)于耗竭式提取所測(cè)定的沉積物總濃度,Cfree可更好地預(yù)測(cè)沉積物的毒性效應(yīng)[36]。但是在野外環(huán)境中,被動(dòng)采樣方法的應(yīng)用面臨著諸多挑戰(zhàn),如是否達(dá)到平衡分配,是否會(huì)打破原有體系(微損耗條件是否滿足)等[37]。用被動(dòng)加標(biāo)法準(zhǔn)確測(cè)定污染物在聚合物和水之間的分配系數(shù),以及通過被動(dòng)加標(biāo)與被動(dòng)采樣技術(shù)的相互校正,在一定程度上可促進(jìn)被動(dòng)采樣技術(shù)的發(fā)展與與完善[38]。

2.2 體外細(xì)胞測(cè)試

被動(dòng)加標(biāo)技術(shù)已被用于體外與體內(nèi)毒性測(cè)試,包括在細(xì)胞水平的暴露(表2)。細(xì)胞毒性測(cè)試,除了小體積的特點(diǎn)外,存在的主要問題是血清中蛋白質(zhì)等物質(zhì)對(duì)目標(biāo)污染物的吸附。Smith等[18]將PDMS制成O形環(huán),加載HOCs后置入細(xì)胞培養(yǎng)皿,成功地將被動(dòng)加標(biāo)法用于體外細(xì)胞毒性測(cè)試。進(jìn)一步研究中,將載樣的PDMS膜置于培養(yǎng)皿底部,另外插入一張膜,供細(xì)胞生長(zhǎng),從而避免細(xì)胞與PDMS膜的直接接觸[39]。Kramer等[40]對(duì)比了溶劑加標(biāo)與被動(dòng)加標(biāo)2種方法,結(jié)果顯示在細(xì)胞培養(yǎng)時(shí)血清吸附對(duì)化合物濃度影響很大。當(dāng)用二甲亞砜做溶劑加標(biāo)時(shí),二氯苯、三氯苯和苯并[a]芘的血清吸附量分別達(dá)到了61%、70%和99.8%,與被動(dòng)加標(biāo)法進(jìn)行的細(xì)胞測(cè)試相比,溶劑加標(biāo)的毒性數(shù)據(jù)低1.3到7倍。此外,研究結(jié)果也表明相比較于溶劑加標(biāo),被動(dòng)加標(biāo)法所得到的細(xì)胞毒性的劑量-效應(yīng)曲線的重現(xiàn)性更好[39]。因此,體外細(xì)胞毒性測(cè)試中應(yīng)用被動(dòng)加標(biāo)法,較好地解決了血清吸附污染物的問題。

表1 被動(dòng)加標(biāo)的常用測(cè)定參數(shù)Table 1 Parameters measured in passive dosing

注:k是速率常數(shù);t是時(shí)間;kPw是聚合物與水之間的分配系數(shù);Swater是水中溶解度;tm是熔解溫度;I是離子強(qiáng)度。

Note: k, rate constant; t, time; kPw, partition coefficient between polymer and water; Swater, water solubility; tm, melting temperature; I, ionic strength.

表2 被動(dòng)加標(biāo)的應(yīng)用Table 2 Applications of passive dosing

2.3 分配系數(shù)的測(cè)定

除了體外測(cè)試之外,被動(dòng)加標(biāo)法還廣泛用于HOCs的體內(nèi)生物累積和毒性測(cè)試。例如,被動(dòng)加標(biāo)法成功測(cè)試了PAHs對(duì)水蚤[21]和斑馬魚[41]的毒性效應(yīng),以及用于測(cè)試基因突變的Ames試驗(yàn)中[42]。通過被動(dòng)加標(biāo),HOCs在水體中的化學(xué)活度能較好地反映生物體的毒性效應(yīng)(表1)。Mayer等[10]使用PDMS的被動(dòng)加標(biāo)測(cè)試10種PAHs對(duì)彈尾蟲的毒性,建立了化學(xué)活度-毒性效應(yīng)關(guān)系曲線,發(fā)現(xiàn)致死率與PAHs的化學(xué)活度的相關(guān)程度優(yōu)于其與PAHs的log kow和分子大小的關(guān)系。Roh等[43]也成功運(yùn)用被動(dòng)加標(biāo)方法,建立了暴露在毒死蜱中的線蟲的生物標(biāo)志物的劑量-效應(yīng)曲線。Mayer等[44]進(jìn)一步利用PDMS測(cè)定了PAHs在不同類蔬菜油、魚脂和貽貝脂肪中的化學(xué)活度,認(rèn)為PDMS可用于生物體內(nèi)和富脂性樣品中HOCs濃度的監(jiān)測(cè)。Engraff等[45]和Schmidt等[46]報(bào)道多種PAHs的混合毒性與其總化學(xué)活度相關(guān),而且不單是化學(xué)活度,PAHs的脂肪平衡濃度和毒性單位也都能很好地表征其毒性效應(yīng)[47]。此外,研究顯示通過被動(dòng)加標(biāo)開展的生物毒性實(shí)驗(yàn),其重復(fù)性也要明顯優(yōu)于溶劑加標(biāo)[48]。

最近,被動(dòng)加標(biāo)方法也被用于聯(lián)合毒性效應(yīng)的評(píng)價(jià)。Smith等[49]利用被動(dòng)加標(biāo)體系,確認(rèn)了不同PAHs之間毒性表現(xiàn)為濃度加和效應(yīng)。Holmstrup等[50]在彈尾蟲的聯(lián)合毒性研究中,發(fā)現(xiàn)菲在干燥環(huán)境條件下出現(xiàn)協(xié)同效應(yīng),進(jìn)一步研究指出該協(xié)同效應(yīng)與菲濃度相關(guān),不可簡(jiǎn)單外推,而應(yīng)該注意化合物濃度變化導(dǎo)致的協(xié)同效應(yīng)差異[51]。

2.4 沉積物毒性評(píng)價(jià)

沉積物中多種污染物并存,其中主要致毒因子的鑒別往往借助于效應(yīng)導(dǎo)向分析(effect-directed analysis, EDA)。在EDA過程中,考慮沉積物中污染物的生物可利用性(bioavailability)對(duì)評(píng)判結(jié)果的準(zhǔn)確性極為重要。如PDMS等被動(dòng)加標(biāo)的材料相當(dāng)于沉積物的有機(jī)碳,而污染物在PDMS-水相間的分配可用于模擬其在沉積物-水相中的分配[52],考慮到污染物的生物可利用性,更準(zhǔn)確地評(píng)價(jià)沉積物毒性并鑒別致毒因素[9]。Bandow等[53]在EDA對(duì)有機(jī)物分離組分的毒性測(cè)試過程中,對(duì)比了溶劑加標(biāo)與被動(dòng)加標(biāo)2種方式,發(fā)現(xiàn)主要致毒污染物鑒定結(jié)果大不相同。通過溶劑加標(biāo)的方式獲得的毒性組分主要是PAHs,而基于被動(dòng)加標(biāo)時(shí),PAHs不再是主要致毒物,而極性較強(qiáng)的三氯生被檢出。因此,Brack等[54]建議在進(jìn)行致毒因素的鑒別時(shí),結(jié)合基于生物可利用性的污染物提取方式(如Tenax萃取[55])與平衡分配的被動(dòng)加標(biāo)技術(shù),可更好地評(píng)價(jià)沉積物毒性和推斷主要致毒物質(zhì)。

3 被動(dòng)加標(biāo)操作流程的應(yīng)用實(shí)例(Example procedureof passive dosing)

被動(dòng)加標(biāo)的操作包括聚合物材料選擇、載樣、水體釋放、測(cè)試4步。本文以7種PCBs為代表性HOCs,通過被動(dòng)加標(biāo)測(cè)定其在PDMS-水相間的分配系數(shù),詳細(xì)描述被動(dòng)加標(biāo)的操作流程。如圖2所示,首先為材料的選擇與制備,本研究自行制備生物相溶性好的PDMS膜為吸附相。其次為載樣階段,將PDMS浸入溶有所需濃度PCBs的甲醇中,通過不斷向甲醇溶液中加水的方式實(shí)現(xiàn)載樣,此方式稱為后載樣法(post-loading approach),另外也可采用前載樣法(pre-loading approach),即在PDMS膜的制作過程中直接加入目標(biāo)化合物[6]。再次,水體釋放階段,即將已載樣的PDMS膜從載樣的甲醇/水溶液中取出,放入適量測(cè)試水溶液中,PDMS膜中的化合物通過平衡分配釋放進(jìn)入水體,提供精確和恒定的水體濃度。最后,樣品測(cè)試步驟,運(yùn)用已獲得穩(wěn)定污染物濃度的水溶液開展分配系數(shù)測(cè)定或毒性測(cè)試等。在測(cè)試過程中,PDMS膜上的化合物可不斷補(bǔ)充水中化合物的損失,維持恒定的水濃度。以下具體討論實(shí)驗(yàn)流程及PCBs分配系數(shù)的測(cè)試結(jié)果,實(shí)驗(yàn)包括3個(gè)平行樣。

圖2 被動(dòng)加標(biāo)操作流程示意圖(后載樣法)Fig. 2 The diagram of procedures of passive dosing (post-loading approach)

3.1 膜的制備

本實(shí)驗(yàn)用的PDMS膜由美國(guó)道康寧公司生產(chǎn)MDX4-4210生物醫(yī)用級(jí)硅酮制備,使用前將硅酮前聚物和催化劑充分混合(10:1),以0.25 mm左右的厚度均勻涂布在錫紙上,23 ℃硬化72 h后裁剪成所需大小。將膜從錫紙上取下,用甲醇浸泡至少4 h除去雜質(zhì),再用超純水淋洗3次去除甲醇,自然風(fēng)干待用。

3.2 載 樣

取0.5 g的PDMS膜浸泡于含有PCBs的甲醇溶液,在23 ℃以220 r·min-1的速度搖動(dòng),每隔2 h加入1~2 mL高純水,促使PCBs轉(zhuǎn)移到PDMS膜中,至72 h完成載樣。

3.3 水體釋放

化合物從PDMS膜釋放至水體時(shí),需要確保污染物在兩相間達(dá)到平衡,其釋放過程可用公式(1)中一級(jí)一室動(dòng)力學(xué)模型描述。污染物達(dá)到95%穩(wěn)態(tài)時(shí)所需時(shí)間(t95)通過公式(1)模擬所得到釋放速率k計(jì)算獲得(公式2)。

Cw(t)= Cw(eq)(1-e-kt)

(1)

t95= 3/k

(2)

公式中:Cw(t)和Cw(eq)分別為PCBs在t時(shí)刻和達(dá)到平衡時(shí)的水濃度,k為釋放速率常數(shù),t95是達(dá)到95%穩(wěn)態(tài)濃度所需時(shí)間。

在靜止或動(dòng)態(tài)條件下,達(dá)到平衡所需時(shí)間有較大差別,因此平衡時(shí)間的估算需要在特定實(shí)驗(yàn)條件下進(jìn)行。Smith等[21]比較了熒蒽在不同條件下,在PDMS和水體中達(dá)到平衡的釋放時(shí)間,發(fā)現(xiàn)采用顛倒混勻方法最快達(dá)到平衡,以250 r·min-1的振蕩次之,而在靜止?fàn)顟B(tài)下最慢。

本研究在燒杯中加入300 mL的純凈水和1片已載樣的PDMS膜,并以660 r·min-1的速度攪拌至預(yù)訂時(shí)間點(diǎn),分別為0.5、1、2、8、24和48 h,分別采集樣品,并通過數(shù)據(jù)模擬獲得k值。如表3所示,7種PCBs達(dá)到穩(wěn)態(tài)時(shí)所需時(shí)間最長(zhǎng)為35.5 h(PCB-156)。因此,在測(cè)定分配系數(shù)時(shí),平衡時(shí)間設(shè)定為48 h,確保所有PCBs均達(dá)到平衡。達(dá)到平衡后(48 h),通過溶劑萃取與氣相-質(zhì)譜儀測(cè)定PDMS膜和水體中PCBs濃度,結(jié)果表明PCBs在PDMS膜上的量占加標(biāo)初始量的53%~73%(表3)。與文獻(xiàn)中數(shù)據(jù)接近,如Mayer等[3]報(bào)道12種鹵代烴的載樣效率在63%~82%之間。整體而言,PDMS膜的載樣效率較高,最低也能超過一半,在實(shí)際操作中還可逐步提高載樣體系中的水含量,爭(zhēng)取最大的載樣量[56]。

3.4 測(cè)試(log kPw的測(cè)定)

當(dāng)PCBs在PDMS和水相中達(dá)到平衡后測(cè)定其濃度,并根據(jù)公式(3)計(jì)算得到log kPw值(表3)。

kPw= CPDMS(eq)/Cw(eq)

(3)

公式中:kPw為平衡分配常數(shù),CPDMS(eq)和Cw(eq)分別為達(dá)到平衡時(shí)PCBs在PDMS膜和水中濃度。

如圖3所示,所測(cè)定PCBs的log kPw與其log kow[57]呈線性相關(guān),即log kPw=0.77 log kow+0.83(r2=0.82, n=7, P< 0.01),與文獻(xiàn)報(bào)道值相近:log kPw=0.82 log kow+0.24(r2=0.84, n=22)[16],說明本研究中PDMS材料的制備與實(shí)驗(yàn)體系的建立是可行的。同時(shí)該相關(guān)關(guān)系也表明PCBs的分配系數(shù)與其疏水程度密切相關(guān),PCBs主要通過吸收進(jìn)入PDMS中。

表3 多氯聯(lián)苯(PCBs)的基本性質(zhì)[57]及被動(dòng)加標(biāo)測(cè)定的分配系數(shù)Table 3 Chemical properties of polychlorinated biphenyl (PCBs)[57] and partition coefficients measured by passive dosing

圖3 被動(dòng)加標(biāo)測(cè)定的多氯聯(lián)苯在聚二甲基硅氧烷 和水相的分配系數(shù)(log kPw)與其辛醇-水分配系數(shù)(log kow) 的關(guān)系。誤差線代表標(biāo)準(zhǔn)偏差,實(shí)線代表線性回歸模型 (log kPw=0.77 log kow+0.83, r2=0.82, n= 7, P<0.01)Fig. 3 Relationship between polydimethylsiloxane (PDMS)-water partition coefficients (log kPw) of polychlorinated biphenyls and their octano-water partition coefficients (log kow). Error bars denote the standard deviations and the real line indicates the best-fit using a linear regression (log kPw=0.77 log kow + 0.83, r2 = 0.82, n=7, P<0.01)

4 展望(Perspective)

被動(dòng)加標(biāo)法依據(jù)平衡分配理論,在水體中建立并維持目標(biāo)化合物精確和恒定的濃度,為傳統(tǒng)溶劑加標(biāo)在毒性測(cè)試過程中水濃度不穩(wěn)定的問題提供了有效的解決途徑,提高風(fēng)險(xiǎn)評(píng)價(jià)準(zhǔn)確性。此外,對(duì)污染物水體濃度的測(cè)定,可通過直接測(cè)定PDMS膜上的濃度來實(shí)現(xiàn),解決了小體積、低濃度測(cè)定的困難。被動(dòng)加標(biāo)法的發(fā)展對(duì)水環(huán)境中HOCs的環(huán)境行為及毒性研究具有非常積極的意義。硅酮類加標(biāo)材料具有對(duì)HOCs為分配吸收機(jī)制、生物相容性好、化合物適用范圍廣等優(yōu)點(diǎn)。然而,當(dāng)化合物的疏水性持續(xù)增大時(shí),其分配系數(shù)與疏水程度可能出現(xiàn)非線性關(guān)系。Yang等[58]發(fā)現(xiàn)化合物的log kow> 7~7.5時(shí),log kPw與log kow的關(guān)系出現(xiàn)拐點(diǎn),不再呈正相關(guān),而他們認(rèn)為其原因可能是由于高交聯(lián)網(wǎng)狀結(jié)構(gòu)的PDMS膜,對(duì)大分子的空間位阻效應(yīng)所造成[59]。此外,除化合物的極性因素外,化合物的立體結(jié)構(gòu)、分子量大小等也可能影響其分配行為,具體的機(jī)理尚需進(jìn)一步地研究。

被動(dòng)加標(biāo)可用于水體暴露的生物測(cè)試,是提供準(zhǔn)確毒性數(shù)據(jù)的有力保障。此外,在水體沉積物風(fēng)險(xiǎn)評(píng)價(jià)過程中,PDMS又可相當(dāng)于沉積物中有機(jī)碳,通過污染物在PDMS-水間的分配模擬其在沉積物-水間的分配,這一過程巧妙地將生物可利用性結(jié)合到沉積物毒性評(píng)價(jià)中。最后,被動(dòng)加標(biāo)、被動(dòng)采樣技術(shù),或其它基于分配理論的方法能夠相互驗(yàn)證,通過建立被動(dòng)采樣濃度和被動(dòng)加標(biāo)所獲毒性數(shù)據(jù)的聯(lián)系,為水生生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)提供新的思路。

[1] 金小偉, 雷炳莉, 許宜平, 等. 水生態(tài)基準(zhǔn)方法學(xué)概述及建立我國(guó)水生態(tài)基準(zhǔn)的探討[J]. 生態(tài)毒理學(xué)報(bào), 2009, 4(5): 609-616

Jin X W, Lei B L, Xu Y P, et al. Methodologies for deriving water quality criteria to protect aquatic life (ALC) and proposal for development of ALC in China: A review [J]. Asian Journal of Ecotoxicology, 2009, 4(5): 609-616 (in Chinese)

[2] Li H Z, You J. Application of species sensitivity distribution in aquatic probabilistic ecological risk assessment of cypermethrin: A case study in an urban stream in South China [J]. Environmental Toxicology and Chemistry, 2015, 34(3): 640-648

[3] Mayer P, Wernsing J, Tolls J, et al. Establishing and controlling dissolved concentrations of hydrophobic organics by partitioning from a solid phase [J]. Environmental Science & Technology, 1999, 33(13): 2284-2290

[4] Di Toro D M, Zarba C S, Hansen D J, et al. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning [J]. Environmental Toxicology and Chemistry, 1991, 10(12): 1541-1583

[5] Smith K E C, Rein A, Trapp S, et al. Dynamic passive dosing for studying the biotransformation of hydrophobic organic chemicals: Microbial degradation as an example [J]. Environmental Science & Technology, 2012, 46(9): 4852-4860

[6] Brown R S, Akhtar P, Akerman J, et al. Partition controlled delivery of hydrophobic substances in toxicity tests using poly(dimethylsiloxane) (PDMS) films [J]. Environmental Science & Technology, 2001, 35(20): 4097-4102

[7] Ter Laak T L, Durjava M, Struijs J, et al. Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes [J]. Environmental Science & Technology, 2005, 39(10): 3736-3742

[8] Kwon J H, Wuethrich T, Mayer P, et al. Dynamic permeation method to determine partition coefficients of highly hydrophobic chemicals between poly(dimethylsiloxane) and water [J]. Analytical Chemistry, 2007, 79(17): 6816-6822

[9] Bandow N, Altenburger R, Lubcke-von Varel U, et al. Partitioning-based dosing: An approach to include bioavailability in the effect-directed analysis of contaminated sediment samples [J]. Environmental Science & Technology, 2009, 43(10): 3891-3896

[10] Mayer P, Holmstrup M. Passive dosing of soil invertebrates with polycyclic aromatic hydrocarbons: Limited chemical activity explains toxicity cutoff [J]. Environmental Science & Technology, 2008, 42(19): 7516-7521

[11] Adolfsson-Erici M, Akerman G, Jahnke A, et al. A flow-through passive dosing system for continuously supplying aqueous solutions of hydrophobic chemicals to bioconcentration and aquatic toxicity tests [J]. Chemosphere, 2012, 86(6): 593-599

[12] Butler J D, Parkerton T F, Letinski D J, et al. A novel passive dosing system for determining the toxicity of phenanthrene to early life stages of zebrafish [J]. Science of the Total Environment, 2013, 463: 952-958

[13] Perron M M, Burgess R M, Ho K T, et al. Development and evaluation of reverse polyethylene samplers for marine phase II whole-sediment toxicity identification evaluations [J]. Environmental Toxicology and Chemistry, 2009, 28(4): 749-758

[14] Lombard N J, Ghosh U, Kjellerup B, et al. Kinetics and threshold level of 2,3,4,5-tetrachlorobiphenyl dechlorination by an organohalide respiring bacterium [J]. Environmental Science & Technology, 2014, 18(8): 4353-4360

[15] Moors M, Massart D, McDowall R. Analyte isolation by solid phase extraction (SPE) on silica-bonded phases: Classification and recommended practices (Technical Report) [J]. Pure and Applied Chemistry, 1994, 66(2): 277-304

[16] Rusina T P, Smedes F, Klanova J, et al. Polymer selection for passive sampling: A comparison of critical properties [J]. Chemosphere, 2007, 68(7): 1344-1351

[17] Booij K, Smedes F, van Weerlee E M. Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers [J]. Chemosphere, 2002, 46(8): 1157-1161

[18] Smith K E C, Oostingh G J, Mayer P. Passive dosing for producing defined and constant exposure of hydrophobic organic compounds during in vitro toxicity tests [J]. Chemical Research in Toxicology, 2010, 23(1): 55-65

[19] 夏歡, 謝美, 楊澤玉, 等. 多溴聯(lián)苯在聚二甲基硅氧烷與水相間分配系數(shù)的固相微萃取技術(shù)測(cè)定[J]. 分析測(cè)試學(xué)報(bào), 2008, 27(2): 148-152

Xia H, Xie M, Yang Z Y, et al. Determination of poly(dimethyl)siloxane-water partition coefficients for polybrominated biphenyls by solid-phase microextraction [J]. Journal of Instrumental Analysis, 2008, 27(2): 148-152 (in Chinese)

[20] Allan I J, Harman C, Ranneklev S B, et al. Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water [J]. Environmental Toxicology and Chemistry, 2013, 32(8): 1718-1726

[21] Smith K E, Dom N, Blust R, et al. Controlling and maintaining exposure of hydrophobic organic compounds in aquatic toxicity tests by passive dosing [J]. Aquatic Toxicology, 2010, 98(1): 15-24

[22] Schmidt S N, Mayer P. Linking algal growth inhibition to chemical activity: Baseline toxicity required 1% of saturation [J]. Chemosphere, 2015, 120: 305-308

[23] 鄭偉, 楊曦, 張金鳳. 水環(huán)境中有機(jī)污染物與溶解性有機(jī)質(zhì)相互作用研究[J]. 環(huán)境保護(hù)科學(xué), 2007(6): 17-20

Zhen W, Yang X, Zhang J F. Study on interaction of organic pollutants and dissolved organic matter in aquatic environment [J]. Environmental Protection Science , 2007(6): 17-20 (in Chinese)

[24] Endo S, Pfennigsdorff A, Goss K-U. Salting-out effect in aqueous NaCl solutions: Trends with size and polarity of solute molecules [J]. Environmental Science & Technology, 2012, 46(3): 1496-1503

[25] Wang C, Lei Y D, Endo S, et al. Measuring and modeling the salting-out effect in ammonium sulfate solutions [J]. Environmental Science & Technology, 2014, 48(22): 13238-13245

[26] Gouliarmou V, Smith K E C, de Jonge L W, et al. Measuring binding and speciation of hydrophobic organic chemicals at controlled freely dissolved concentrations and without phase separation [J]. Analytical Chemistry, 2012, 84(3): 1601-1608

[27] De Jonge L W, Kjaegaard C, Moldrup P. Colloids and colloid-facilitated transport of contaminants in soils [J]. Vadose Zone Journal, 2004, 3(2): 321-325

[28] Tejeda-Agredano M-C, Mayer P, Ortega-Calvo J-J. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime [J]. Environmental Pollution, 2014, 184: 435-442

[29] Zhao J, Wang Z, Ghosh S, et al. Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique [J]. Environmental Pollution, 2014, 184: 145-153

[30] Zhao J, Wang Z, Zhao Q, et al. Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation [J]. Environmental Science & Technology, 2014, 48(1): 331-339

[31] Murphy M B, 林忠華, 林群聲. 體內(nèi)和體外生物測(cè)定在環(huán)境監(jiān)測(cè)中的應(yīng)用[J]. 化學(xué)進(jìn)展, 2009, 21(2/3): 483-491

Murphy M B, Lam J C W, Lam P K S. Use ofinvivoandinvitrobioassays for environmental monitoring [J]. Progress in Chemistry, 2009, 21(2/3): 483-491 (in Chinese)

[32] Ter Laak T L, Busser F J, Hermens J L. Poly(dimethylsiloxane) as passive sampler material for hydrophobic chemicals: Effect of chemical properties and sampler characteristics on partitioning and equilibration times [J]. Analytical Chemistry, 2008, 80(10): 3859-3866

[33] Styrishave B, Mortensen M, Henning Krogh P, et al. Solid-phase microextraction (SPME) as a tool to predict the bioavailability and toxicity of pyrene to the springtail, Folsomia candida, under various soil conditions [J]. Environmental Science & Technology, 2008, 42(4): 1332-1336

[34] 胡霞林, 劉景富, 盧士燕, 等. 環(huán)境污染物的自由溶解態(tài)濃度與生物有效性[J]. 化學(xué)進(jìn)展, 2009, 20(2/3): 514-523

Hu X L, Liu J F, Lu S Y, et al. Freely dissolved concentration and bioavailability of environmental pollutants [J]. Progress in Chemistry, 2009, 21(2/3): 514-526 (in Chinese)

[35] 陳珊, 許宜平, 王子健. 有機(jī)污染物生物有效性的評(píng)價(jià)方法[J]. 環(huán)境化學(xué), 2011, 30(1): 158-164

Chen S, Xu Y P, Wang Z J. Methods for evaluating the bioavailability of organic contaminants in environments [J]. Environmental Chemistry, 2011, 30(1): 158-164 (in Chinese)

[36] 李慧珍, 游靜. 被動(dòng)采樣技術(shù)在測(cè)定沉積物中有機(jī)污染物的生物可利用性和毒性中的研究進(jìn)展[J]. 色譜, 2013, 31(7): 620-625

Li H Z, You J. Advances in using passive sampling techniques to measure bioavailability and toxicity of organic contaminants in sediment [J]. Chinese Journal of Chromatography, 2013, 31(7): 620-625 (in Chinese)

[37] Mayer P, Tolls J, Hermens L, et al. Equilibrium sampling devices [J]. Environmental Science & Technology, 2003, 37(9): 184A-191A

[38] DiFilippo E L, Eganhouse R P. Assessment of PDMS-water partition coefficients: Implications for passive environmental sampling of hydrophobic organic compounds [J]. Environmental Science & Technology, 2010, 44(18): 6917-6925

[39] Booij P, Lamoree M H, Leonards P E G, et al. Development of a polydimethylsiloxane film-based passive dosing method in the in vitro DR-CALUX(R)assay [J]. Environmental Toxicology and Chemistry, 2011, 30(4): 898-904

[40] Kramer N I, Busser F J, Oosterwijk M T, et al. Development of a partition-controlled dosing system for cell assays [J]. Chemical Research in Toxicology, 2010, 23(11): 1806-1814

[41] Seiler T B, Best N, Fernqvist M M, et al. PAH toxicity at aqueous solubility in the fish embryo test with Danio rerio using passive dosing [J]. Chemosphere, 2014, 112: 77-84

[42] Smith K E C, Heringa M B, Uytewaal M, et al. The dosing determines mutagenicity of hydrophobic compounds in the Ames II assay with metabolic transformation: Passive dosing versus solvent spiking [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2013, 750(1-2): 12-18

[43] Roh J Y, Lee H, Kwon J H. Changes in the expression of CYP35A family genes in the soil nematode Caenorhabditis elegans under controlled exposure to chlorpyrifos using passive dosing [J]. Environmental Science & Technology, 2014, 48(17): 10475-10481

[44] Mayer P, Toraeng L, Glaesner N, et al. Silicone membrane equilibrator: Measuring chemical activity of nonpolar chemicals with poly(dimethylsiloxane) microtubes immersed directly in tissue and lipids [J]. Analytical Chemistry, 2009, 81(4): 1536-1542

[45] Engraff M, Solere C, Smith K E C, et al. Aquatic toxicity of PAHs and PAH mixtures at saturation to benthic amphipods: Linking toxic effects to chemical activity [J]. Aquatic Toxicology, 2011, 102(3-4): 142-149

[46] Schmidt S N, Smith K E C, Holmstrup M, et al. Uptake and toxicity of polycyclic aromatic hydrocarbons in terrestrial springtails: Studying bioconcentration kinetics and linking toxicity to chemical activity [J]. Environmental Toxicology and Chemistry, 2013, 32(2): 361-369

[47] Schmidt S N, Holmstrup M, Smith K E C, et al. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: Linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units [J]. Environmental Science & Technology, 2013, 47(13): 7020-7027

[48] Rojo-Nieto E, Smith K E C, Perales J A, et al. Recreating the seawater mixture composition of HOCs in toxicity tests with Artemia franciscana by passive dosing [J]. Aquatic Toxicology, 2012, 120-121: 27-34

[49] Smith K E C, Schmicdt S N, Dom N, et al. Baseline toxic mixtures of non-toxic chemicals: "Solubility addition" increases exposure for solid hydrophobic chemicals [J]. Environmental Science & Technology, 2013, 47(4): 2026-2033

[50] Holmstrup M, Slotsbo S, Schmidt S N, et al. Physiological and molecular responses of springtails exposed to phenanthrene and drought [J]. Environmental Pollution, 2014, 184: 370-376

[51] Schmidt S N, Holmstrup M, Damgaard C, et al. Simultaneous control of phenanthrene and drought by dual exposure system: The degree of synergistic interactions in springtails was exposure dependent [J]. Environmental Science & Technology, 2014, 48(16): 9737-9744

[52] Heinis L J, Highland T L, Mount D R. Method for testing the aquatic toxicity of sediment extracts for use in identifying organic toxicants in sediments [J]. Environmental Science & Technology, 2004, 38(23): 6256-6262

[53] Bandow N, Altenburger R, Streck G, et al. Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition [J]. Environmental Science & Technology, 2009, 43(19): 7343-7349

[54] Brack W, Bandow N, Schwab K, et al. Bioavailability in effect-directed analysis of organic toxicants in sediments [J]. Trac-Trends in Analytical Chemistry, 2009, 28(5): 543-549

[55] Schwab K, Altenburger R, Luebcke-von Varel U, et al. Effect-directed analysis of sediment-associated algal toxicants at selected hot spots in the River Elbe basin with a special focus on bioaccessibility [J]. Environmental Toxicology and Chemistry, 2009, 28(7): 1506-1517

[56] Birch H, Gouliarmou V, Lutzhoft H-C H, et al. Passive dosing to determine the speciation of hydrophobic organic chemicals in aqueous samples [J]. Analytical Chemistry, 2010, 82(3): 1142-1146

[57] Hawker D W, Connell D W. Octanol water partition-coefficients of polychlorinated biphenyl congeners [J]. Environmental Science & Technology, 1988, 22(4): 382-387

[58] Yang Z Y, Zeng E Y, Xia H, et al. Application of a static solid-phase microextraction procedure combined with liquid-liquid extraction to determine poly(dimethyl)siloxane-water partition coefficients for selected polychlorinated biphenyls [J]. Journal of Chromatography A, 2006, 1116(1-2): 240-247

[59] Yang Z Y, Zhao Y Y, Tao F M, et al. Physical origin for the nonlinear sorption of very hydrophobic organic chemicals in a membrane-like polymer film [J]. Chemosphere, 2007, 69(10): 1518-1524

[60] Gerofke A, Komp P, McLachlan M S. Stir bar contamination: A method to establish and maintain constant water concentrations of poorly water-soluble chemicals in bioconcentration experiments [J]. Water Research, 2004, 38: 3411-3419

Application of Passive Dosing in Aquatic Ecological Risk Assessment: A Case Study of Measuring Partition Coefficients of Polychlorinated Biphenyls

Qi Hongxue1,2, Li Huizhen1, You Jing1,*

1. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China 2. University of Chinese Academy of Science, Beijing 100049, China

24 December 2014 accepted 23 January 2015

To conduct aquatic ecological risk assessment, credible toxicity data are required, and maintaining stable water concentrations of test contaminants for certain time are the premises of accurate data. Solvent dosing has been conventionally used in aquatic toxicity testing with hydrophobic organic contaminants (HOCs), however, continuous reduction in chemical concentrations in water was frequently observed due to volatilization and degradation of chemicals, glassware binding and uptake by organisms. As a consequence, it is hard to achieve accurate concentration-response relationships for test HOCs. To overcome these problems, passive dosing has been recently introduced as a replacement of solvent dosing. Through the equilibrium partitioning of chemicals within dosing systems, HOCs’ concentrations in water could be stabilized and monitored by quantifying chemical concentration in polymers. The definition and material selection of passive dosing are introduced and the recent applications of this method in ecological risk assessment are summarized, including the measurements of chemical partition coefficients, in vitro cell assays, in vivo bioassays, and sediment toxicity evaluation. Then, the procedures of passive dosing are detailed using a case study of measuring partition coefficients of polychlorinated biphenyls between polydimethylsiloxane and water. Lastly, the perspective of passive dosing in aquatic ecological risk assessment is discussed.

passive doing; polychlorinated biphenyls; aquatic toxicity testing; hydrophobic organic contaminants

國(guó)家自然科學(xué)基金(41473106; 41273120)

祁紅學(xué)(1981-),男,博士研究生,研究方向?yàn)樯鷳B(tài)毒理學(xué),E-mail: qihx@gig.ac.cn;

*通訊作者(Corresponding author), E-mail: youjing@gig.ac.cn

10.7524/AJE.1673-5897.20141224001

2014-12-24 錄用日期:2015-01-23

1673-5897(2015)2-45-11

X171.5

A

游靜(1974-),女,分析化學(xué)博士,研究員,主要研究方向?yàn)槌练e物生態(tài)風(fēng)險(xiǎn)評(píng)價(jià),發(fā)表學(xué)術(shù)論文80余篇。

祁紅學(xué), 李慧珍, 游靜. 被動(dòng)加標(biāo)在水生生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中的應(yīng)用——以多氯聯(lián)苯分配系數(shù)的測(cè)定為例[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(2): 45-55

Qi H X, Li H Z, You J. Application of passive dosing in aquatic ecological risk assessment: A case study of measuring partition coefficients of polychlorinated biphenyls [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 45-55 (in Chinese)

猜你喜歡
被動(dòng)毒性分配
新聞?wù)Z篇中被動(dòng)化的認(rèn)知話語分析
應(yīng)答器THR和TFFR分配及SIL等級(jí)探討
主動(dòng)句都能轉(zhuǎn)換成被動(dòng)句嗎
第五課 拒絕被動(dòng)
趣味(語文)(2019年5期)2019-09-02 01:52:44
動(dòng)物之最——毒性誰最強(qiáng)
遺產(chǎn)的分配
一種分配十分不均的財(cái)富
績(jī)效考核分配的實(shí)踐與思考
RGD肽段連接的近紅外量子點(diǎn)對(duì)小鼠的毒性作用
PM2.5中煤煙聚集物最具毒性
东乌| 邓州市| 通州市| 乐山市| 上林县| 绍兴市| 中阳县| 古丈县| 荃湾区| 泉州市| 桐梓县| 星座| 长泰县| 湖州市| 阿鲁科尔沁旗| 庆城县| 绩溪县| 丹阳市| 信丰县| 海门市| 卢龙县| 巴楚县| 长海县| 区。| 阿合奇县| 增城市| 手游| 三门县| 肃南| 罗源县| 景东| 奉新县| 固阳县| 剑阁县| 铁岭市| 醴陵市| 乌苏市| 云和县| 抚宁县| 荣昌县| 柳州市|