王 曉,崔海平,史旭東,梁積新,孫鈺林,申一鳴,沈浪濤,*
(1.中國(guó)原子能科學(xué)研究院國(guó)家同位素工程技術(shù)研究中心,北京 102413;2.原子高科股份有限公司,北京 102413)
王 曉1,2,崔海平1,2,史旭東1,2,梁積新1,孫鈺林2,申一鳴1,2,沈浪濤1,2,*
(1.中國(guó)原子能科學(xué)研究院國(guó)家同位素工程技術(shù)研究中心,北京 102413;2.原子高科股份有限公司,北京 102413)
摘要:為制備納米材料SPION-DMSA及其標(biāo)記物,探討該標(biāo)記物作為SPECT/MRI雙模態(tài)顯像劑的可能性,本工作先采用高溫?zé)峤夥ê铣闪薙PION,然后用DMSA包覆獲得SPIONDMSA并進(jìn)行各種表征。用99Tcm標(biāo)記SPION-DMSA得到,并對(duì)該標(biāo)記物進(jìn)行荷U87 MG人腦神經(jīng)膠質(zhì)瘤裸鼠的生物分布和顯像研究。實(shí)驗(yàn)結(jié)果表明,SPION-DMSA具有超順磁性,99Tcm標(biāo)記率大于98%。在血液中清除較快,在肝臟中的攝取較高。與在小鼠體內(nèi)的生物分布差異較大。在腫瘤中并沒有明顯的攝取。SPION-DMSA和的MRI和SPECT顯像結(jié)果表明,SPIONDMSA和的腫瘤被動(dòng)靶向作用有限。因此,對(duì)于荷U87MG人腦神經(jīng)膠質(zhì)瘤裸鼠,還不是一種理想的SPECT/MRI雙模態(tài)顯像劑。
關(guān)鍵詞:超順磁氧化鐵納米顆粒;二巰基丁二酸;99Tcm;SPECT/MRI雙模態(tài)顯像劑
醫(yī)學(xué)影像是現(xiàn)代醫(yī)學(xué)的重要工具。磁共振成像(MRI)和單光子發(fā)射計(jì)算機(jī)斷層成像(SPECT)已在臨床得到了廣泛應(yīng)用。MRI沒有電離輻射,具有極好的軟組織反差、很高的空間分辨率(<1 mm),能提供解剖、生理和代謝等信息,但靈敏度較低(10-3~10-5mol/L)。SPECT具有很高的靈敏度(10-10~10-11mol/L),但空間分辨率較低(5~12 mm),且有一定的電離輻射[1-2]。當(dāng)前將兩種或多種影像技術(shù)融合是影像技術(shù)發(fā)展的趨勢(shì)之一。SPECT/MRI既可提供檢測(cè)對(duì)象功能和代謝方面的變化,又能在亞毫米水平上提供組織信息的一系列生物參數(shù)及三維結(jié)構(gòu)成像和高分辨率信息[3]。SPECT顯像依賴于發(fā)射γ光子的放射性藥物。同樣,為了獲得最佳的反差效果,MRI成像也往往需要使用磁共振造影劑。SPECT/MRI技術(shù)的發(fā)展與SPECT/MRI雙模態(tài)顯像劑的研發(fā)進(jìn)展密切相關(guān)[4]。
1.1 儀器及試劑
WGL-230 B型真空干燥箱,天津泰斯特儀器有限公司;高純水器,美國(guó)Millipore公司;IRAffinity-1傅里葉變換紅外光譜儀,日本SHIMADAZU公司;JEM2100F透射電鏡,日本電子株式會(huì)社;Nano ZS動(dòng)態(tài)光散射納米粒度分析儀,英國(guó)Malvern公司;BKT-4500Z振動(dòng)樣品磁強(qiáng)計(jì),美國(guó)Quantum Design公司;1470自動(dòng)γ計(jì)數(shù)器,芬蘭Perkin Elmer公司;CRC-15 R放射性活度計(jì),美國(guó)Capintec公司;AR-2000薄層掃描儀,德國(guó)Eckert Ziegler公司;NanoScan SPECT/CT,匈牙利MEDISO公司;7.0 T小動(dòng)物磁共振成像儀,美國(guó)Varian公司。
乙酰丙酮鐵,純度98%,百靈威公司;1,2-十六烷二醇,純度98%,TCI公司;油酸,分析純,阿拉丁試劑公司;油胺,純度90%,Adamasbeta公司;meso-2,3-二巰基丁二酸,純度98%,Adamas-beta公司;Na99TcmO4淋洗液,原子高科股份有限公司。其他化學(xué)試劑均為分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司。
1.2 實(shí)驗(yàn)動(dòng)物
昆明小白鼠,雌性,重約18~20 g,一級(jí),由中國(guó)醫(yī)學(xué)科學(xué)院腫瘤研究所提供。動(dòng)物模型:取4~5周齡Balb/c雌性裸鼠,右前肢腋下接種5×106個(gè)U87MG人腦神經(jīng)膠質(zhì)瘤細(xì)胞,腫瘤平均直徑達(dá)到8~10 mm時(shí)用于實(shí)驗(yàn),SPF級(jí),由中國(guó)醫(yī)學(xué)科學(xué)院腫瘤研究所提供。
2.1 SPION-DMSA的合成
SPION-DMSA的合成路線示于圖1。
圖1 SPION-DMSA合成路線Fig.1 Synthetic route of SPION-DMSA
稱取2 mmol乙酰丙酮鐵放入三口燒瓶中,加入10 mmol 1,2-十六烷二醇、6 mmol油酸、6 mmol油胺和20 m L苯醚,通N2保護(hù)并用磁力攪拌,先加熱至200℃回流30 min,繼續(xù)升溫至254℃并回流30 min,然后,移除加熱源,待溶液自然冷卻至室溫后加入40 m L無水乙醇,于離心機(jī)中以3 500 r/min離心20 min,沉淀用乙醇洗滌2~3次,置真空干燥箱中干燥,得到黑色粉末0.15 g。
稱取100 mg SPION,并加入10 m L三氯甲烷和50μL三乙胺,與含10 m L二甲基亞砜的50 mg DMSA混合,于油浴中加熱至60℃并機(jī)械攪拌18 h,離心后沉淀物用乙醇洗滌3次。沉淀物中加入10 m L乙醇和50μL三乙胺,與含10 m L二甲基亞砜的50 mg DMSA混合,于油浴中加熱至60℃并機(jī)械攪拌18 h,離心后沉淀用乙醇洗滌,并重復(fù)3次。向沉淀中加入10 mL蒸餾水,振蕩后透析48 h,過0.22μm膜,得SPION-DMSA。
樣品和產(chǎn)物的掃描電鏡(TEM)分析:將SPION和SPION-DMSA分別溶于己烷和水中,滴在銅網(wǎng)上,自然干燥,觀察形貌及大小分布。動(dòng)態(tài)光散射(DLS)分析:將合適濃度的樣品溶液倒入石英比色皿中,用633 nm的He/Ne激光進(jìn)行掃描測(cè)定。磁性VSM的測(cè)定:將固體樣品裝入約7 mm的棉簽管中,兩端封口后于樣品艙中進(jìn)行測(cè)試。紅外光譜(FT-IR)分析:取少量的固體粉末與KBr混合后壓片進(jìn)行FG-IR分析。
2.299Tcm的標(biāo)記與質(zhì)控分析
2.3 體外穩(wěn)定性
取標(biāo)記率達(dá)到95%以上的標(biāo)記物0.1 mL,分別與0.9 mL生理鹽水、10%人血清白蛋白混合,振蕩搖勻,室溫下靜置,分別于0.5、1、2、4、6 h取樣,用TLC法檢測(cè)標(biāo)記物的放化純度。
2.4 生物分布與顯像
取荷U87MG人腦神經(jīng)膠質(zhì)瘤裸鼠9只,隨機(jī)分成3組,每組3只,經(jīng)尾靜脈注射0.1 mL標(biāo)記物(約0.74 MBq),于注射后0.5、2、4 h分別摘眼球取血,繼而斷頸處死并解剖,取心、肝、脾、肺、腎、胃、腸、肉、骨、腦、瘤等稱重,用γ計(jì)數(shù)器測(cè)定放射性計(jì)數(shù),經(jīng)衰變校正后,計(jì)算每克組織的百分注射劑量率(%ID/g)及腫瘤與正常組織的攝取比T/NT。
取荷U87MG人腦神經(jīng)膠質(zhì)瘤裸鼠4只,隨機(jī)分成2組,每組2只,一組經(jīng)尾靜脈注射0.1 m L標(biāo)記物(約37.0 MBq),于給藥后0.5 h和4 h進(jìn)行SPECT顯像。另一組經(jīng)尾靜脈注射同樣量的未標(biāo)記物SPION-DMSA,于給藥后0.5 h和4 h進(jìn)行MRI顯像。
3.1 SPION-DMSA的表征
SPION、SPION-DMSA和DMSA的紅外光譜如圖2所示。圖2曲線a中592 cm-1處的寬峰對(duì)應(yīng)Fe—O鍵的振動(dòng);2 920 cm-1和2 848 cm-1處的峰分別對(duì)應(yīng)油酸中—CH2基團(tuán)的不對(duì)稱和對(duì)稱伸縮振動(dòng)。這表明SPION表面被油酸覆蓋。在圖2曲線b中仍存在592 cm-1處的峰,但強(qiáng)度有所減弱,2 920 cm-1和2 848 cm-1處峰則變得很微弱,而在1 606 cm-1和1 386 cm-1處的峰明顯是DMSA中—COO基團(tuán)的不對(duì)稱和對(duì)稱伸縮振動(dòng)所致。這充分說明DMSA已被成功地包覆在SPION表面,DMSA可能通過—COO螯合在SPION表面[15-16]。SPION-DMSA的可能結(jié)構(gòu)如圖1所示。
SPION和SPION-DMSA的TEM圖像如圖3所示。圖3a顯示,SPION納米顆粒大小均勻,呈球形,粒徑約為4 nm。由圖3b可見,SPION-DMSA的粒徑明顯增大,且粒徑分布較不均勻,約在60~100 nm之間。SPIONDMSA粒徑增大可能是因?yàn)镈MSA在SPION上包覆并且DMSA之間發(fā)生了S—S分子間的交聯(lián)[17]。
圖2 SPION、SPION-DMSA和DMSA的紅外光譜Fig.2 FT-IR spectra of SPION,SPION-DMSA and DMSA
圖3 SPION(a)和SPION-DMSA(b)的TEM圖像Fig.3 TEM images of SPION(a)and SPION-DMSA(b)
圖4 SPION(a)和SPION-DMSA(b)的水合動(dòng)力學(xué)直徑分布Fig.4 Hydrodynamic size distribution of SPION(a)and SPION-DMSA(b)
在溶液狀態(tài)中,SPION和SPION-DMSA的DLS結(jié)果如圖4所示。強(qiáng)度權(quán)重的DLS顯示均為單峰,即兩種納米粒子的粒徑大小分別集中在約4nm和80nm處,該結(jié)果與TEM結(jié)果相互印證。
SPION和SPION-DMSA的磁性分析如圖5所示。圖5的磁滯回線表明,隨著外加磁場(chǎng)強(qiáng)度的增大,納米粒子的磁化強(qiáng)度也隨之增大,當(dāng)外加磁場(chǎng)強(qiáng)度增大到一定值(10 000Oe)時(shí),磁化強(qiáng)度增速趨緩,逐漸達(dá)到磁飽和。SPION和SPION-DMSA的飽和磁化強(qiáng)度分別為54.6和26.0emu/g。SPION-DMSA的飽和磁化強(qiáng)度優(yōu)于文獻(xiàn)[14]的報(bào)道。由于DMSA包覆層的存在,雖然SPION-DMSA的飽和磁化強(qiáng)度較SPION明顯減小,但剩磁和矯頑力幾乎可忽略不計(jì),因此,所制得的SPION-DMSA仍具有良好的超順磁性。SPION-DMSA可作為下一步構(gòu)筑SPECT/MRI雙模態(tài)影像劑的良好平臺(tái)。
圖5 SPION和SPION-DMSA的磁滯回線Fig.5 Hysteresis loops of SPION and SPION-DMSA
3.299Tcm的標(biāo)記與質(zhì)控分析
3.3 體外穩(wěn)定性
圖6 SPION-DMSA-99Tcm的TLC色譜Fig.6 TLC chromatography ofSPION-DMSA-99Tcm
圖7 DMSA-99Tcm(Ⅴ)和SPION-DMSA-99Tcm的可能結(jié)構(gòu)Fig.7 Possible structures of DMSA-99Tcm(Ⅴ)and SPION-DMSA-99Tcm
圖8 SPION-DMSA-99Tcm體外穩(wěn)定性Fig.8 In vitro stability ofSPION-DMSA-99Tcm
3.4 生物分布與顯像
表1 SPION-DMSA-99Tcm在荷U87MG人腦神經(jīng)膠質(zhì)瘤裸鼠體內(nèi)的生物分布(±s,n=3)Table 1 Biodistribution of SPION-DMSA-99Tcmin nude mice bearing U87MG human glioma
表1 SPION-DMSA-99Tcm在荷U87MG人腦神經(jīng)膠質(zhì)瘤裸鼠體內(nèi)的生物分布(±s,n=3)Table 1 Biodistribution of SPION-DMSA-99Tcmin nude mice bearing U87MG human glioma
組織不同時(shí)間每克組織百分注射劑量率/(%ID·g-1)0.5 h 2 h 4 h血0.250±0.030 0.130±0.020 0.090±0.010心0.080±0.010 0.040±0.010 0.030±0.002肝3.060±0.350 2.870±0.420 2.070±0.170脾1.570±0.620 2.560±0.750 2.600±0.830肺0.220±0.020 0.150±0.020 0.140±0.010腎0.700±0.120 0.690±0.080 0.620±0.070胃0.130±0.020 0.110±0.050 0.070±0.010腸0.150±0.040 0.110±0.040 0.040±0.010肉0.040±0.002 0.030±0.002 0.020±0.001骨0.080±0.001 0.060±0.010 0.040±0.002腦0.020±0.004 0.010±0.001 0.004±0.001瘤0.040±0.006 0.030±0.001 0.030±0.002
圖9 荷U87MG人腦神經(jīng)膠質(zhì)瘤裸鼠的SPECT和MRI圖像Fig.9 SPECT and MRI images of nude mice bearing U87MG human glioma
超順磁性氧化鐵納米粒子在MRI成像中為T2造影劑。從圖9的MRI圖像可見,在注射SPION-DMSA 4 h后腫瘤部位略有變暗,表明腫瘤部位有微弱攝取,SPION-DMSA可作為一種MRI造影劑。
在腫瘤組織中,由于血管生成非常迅速,腫瘤脈管的完整性較差,此外,大多數(shù)腫瘤具有較差的淋巴引流系統(tǒng),因此,在血流中的大分子或納米材料,如SPION進(jìn)入腫瘤組織較進(jìn)入正常組織更容易,而它們一旦進(jìn)入腫瘤組織,就難以回到循環(huán)系統(tǒng)中,這使得大分子或納米材料從血管進(jìn)入腫瘤后在腫瘤組織中能滯留較長(zhǎng)的時(shí)間。這就是大分子或納米材料在腫瘤組織中的增強(qiáng)通透性和滯留效應(yīng),即EPR效應(yīng)[27]。但在本研究中并未觀察到明顯的EPR效應(yīng)。影響EPR效應(yīng)的因素是多方面的,如腫瘤的異質(zhì)性等[28],還有待進(jìn)一步研究。
為了進(jìn)一步提高SPECT/MRI雙模態(tài)影像劑在腫瘤中的攝取,在后續(xù)的研究中,考慮引入合適的多肽或抗體等靶向分子,使99Tcm標(biāo)記的SPION顯像劑具有主動(dòng)靶向的功能,以期進(jìn)一步改善SPECT和MRI的圖像質(zhì)量,制備出更為理想的腫瘤SPECT/MRI雙模態(tài)影像劑。
參考文獻(xiàn):
[1] BONEKAMP D,HAMMOUD D A,POMPER M G.Molecular imaging:Techniques and current clinical applications[J].Applied Radiology,2010,39(1):10-21.
[2] PYSZ M A,GAMBHIR S S,WILLMANN J K.Molecular imaging:Current status and emerging strategies[J].Clinical Radiology,2010,65(7):500-516.
[3] HAMAMURA M J,HA S,ROECK W W,et al.Development of an MR-compatible SPECT system(MRSPECT)for simultaneous data acquisition[J].Physics in Medicine and Biology,2010,55(6):1 563-1 575.
[4] BOUZIOTIS P,TSOTAKOS T,STAMOPOULOS D,et al.Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents[J].Current Topics in Medicinal Chemistry,2012,12(23):2 694-2 702.
[5] LAURENT S,F(xiàn)ORGE D,PORT M,et al.Magnetic iron oxide nanoparticles:Synthesis,stabilization,vectorization,physicochemical characterizations,and biological applications[J].Chemical Reviews,2008,108(6):2 064-2 110.
[6] MADRU R,KJELLMAN P,OLSSON F,et al.99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT-MRI of sentinel lymph nodes[J].The Journal of Nuclear Medicine,2012,53(3):459-463.
[7] LU A H,SALABAS E L,SCHUTH F.Magnetic nanoparticles:Synthesis,protection,functionalization,and application[J].Angewandte Chemie International Edition,2007,46(8):1 222-1 244.
[8] SAMANTA B,YAN H,F(xiàn)ISCHER N O,et al.Protein-passivated Fe3O4nanoparticles:Low toxicity and rapid heating for thermal therapy[J].Journal of Materials Chemistry,2008,18(11):1 204-1 208.
[9] APOSHIAN H V,MERSHON M M,BRINKLEY F B,et al.Anti-lewisite activity and stability of meso-dimercaptosuccinic acid and 2,3-dimercapto-1-propanesulfonic acid[J].Life Science,1982,31(19):2 149-2 156.
[10]HOET P,BUCHET J P,DECERF L,et al.Clinical evaluation of a lead mobilization test using the chelating agent dimercaptosuccinic acid[J].Clinical Chemistry,2006,52(1):88-96.
[11]RAMAMOORTHY N,SHETYE V,PANDEY P M,et al.Preparation and evaluation of99mTc(Ⅴ)-DMSA complex:Studies in medullary carcinoma of thyroid[J].European Journal of Nuclear Medicine,1987,12(12):623-628.
[12]ESER L E,PELIN O K.The role of Tc-99m(Ⅴ)DMSA scintigraphy in the diagnosis and follow-up of lung cancer lesions[J].Annals of Nuclear Medicine,2007,21(5):275-283.
[13]KIM J S,YOON T J,YU K N,et al.Toxicity and tissue distribution of magnetic nanoparticles in mice[J].Toxicologial Science,2006,89(1):338-347.
[14]FATAHIAN S,SHAHBAZI-GAHROUEI D,POULADIAN M,et al.Biodistribution and toxicity assessment of radiolabeled and DMSA coated ferrite nanoparticles in mice[J].Journal of Radioanalytical and Nuclear Chemistry,2012,293(3):915-921.
[15]CHEN Z P,ZHANG Y,ZHANG S,et al.Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,316(1-3):210-216.
[16]JUN Y W,HUH Y M,CHOI J,et al.Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging[J].Journal of the American Chemical Society,2005,127(16):5 732-5 733.
[17]MEJIAS R,PEREZ-YAGUE S,GUTIERREZ L,et al.Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy[J].Biomaterials,2011,32(11):2 938-2 952.
[18]IKEDA I,INOUE O,KURATA K.Preparation of various Tc-99m dimercaptosuccinate complexes and their evalution as radiotracers[J].Journal of Nuclear Medicine,1977,18(12):1 222-1 229.
[19]HORIUCHI K,SAJI H,YOKOYAMA A.p H sensitive properties of Tc(Ⅴ)-DMS:Analytical and in vitro cellular studies[J].Nuclear Medicine and Biology,1998,25(7):689-695.
[20]BANERJEE T,SINGH A K,SHARMA R K,et al.Labeling efficiency and biodistribution of technetium-99m labeled nanoparticles:Interference by colloidal tin oxide particles[J].International Journal of Pharmaceutics,2005,289(1):189-195.
[21]FATAHIAN S,SHAHBAZI D,POULADIAN M,et al.Preparation and magnetic properties investigation of Fe3O4nanoparticles99mTc labeled and Fe3O4nanoparticles DMSA coated[J].Digest Journal of Nanomaterials and Biostructures,2011,6(3):1 161-1 165.
[22]BANDOLI G,NICOLINI M,MAZZI U,et al.Synthesis and X-ray crystal structure of tetraethylammonium bis[1,2-di(carbomethoxy)etane-1,2-dithiolato]oxotechnetate(Ⅴ)[J].Transition Metal Chemistry,1984,9(4):127-129.
[23]LING D,HYEON T.Chemical design of biocompatible iron oxide nanoparticles for medical applications[J].Small,2013,9(9-10):1 450-1 466.
[24]GARCIA M P,PARCA R M,CHAVES S B,et al.Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA[J].Journal of Magnetism and Magnetic Materials,2005,293(1):277-282.
[25]RAMAMOORTHY N,SHETYE S V,PANDEY P M,et al.Preparation and evaluation of99mTc(Ⅴ)-DMSA complex:Studies in medullary carcinoma of thyroid[J].European Journal of Nuclear Medicine,1987,12(12):623-628.
[26]CHAUHAN U P S,BABBAR A,KASHYAP R,et al.Evaluation of a DMSA kit for instant preparation of99mTc(Ⅴ)-DMSA for tumour and metastasis scintigraphy[J].International Journal of Radiation Applications and Instrumentation,Part B:Nuclear Medicine and Biology,1992,19(8):825-830.
[27]MAEDA H.Tumor-selective delivery of macromolecular drugs via the EPR effect:Background and future prospects[J].Bioconjugate Chemistry,2010,21(5):797-802.
[28]LAMMERS T,KIESSLING F,HENNINK W E,et al.Drug targeting to tumors:Principles,pitfalls and(pre-)clinical progress[J].Journal of Controlled Release,2012,161(2):175-187.
中圖分類號(hào):O615.4
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000-6931(2015)09-1557-08
doi:10.7538/yzk.2015.49.09.1557
收稿日期:2014-05-05;修回日期:2014-06-09
作者簡(jiǎn)介:王 曉(1986—),女,山西運(yùn)城人,博士研究生,放射性同位素技術(shù)專業(yè)
通信作者:*沈浪濤,E-mail:shenlt@yahoo.com
WANG Xiao1,2,CUI Hai-ping1,2,SHI Xu-dong1,2,LIANG Ji-xin1,SUN Yu-lin2,SHEN Yi-ming1,2,SHEN Lang-tao1,2,*
(1.National Isotope Center of Engineering and Technology,China Institute of Atomic Energy,Beijing 102413,China;2.Atom Hi-Tech Co.,Ltd.,Beijing 102413,China)
Abstract:Nanoparticle SPION-DMSA and its radiolabeledwere prepared in order to investigate the possibility ofas a SPECT/MRI dual-modal imaging agent.SPION was synthesized by a hydrothermal process,and then coated with DMSA to afford SPION-DMSA.SPION-DMSA was characterized by means of various methods.was obtained by labeling with99Tcm.The data of biodistribution and the SPECT and MRI images were acquired after injectinginto the nude mice bearing U87MG human glioma in various intervals.The results show that SPION-DMSA exhibits super-magnetic properties.Thelabeling yield ofwas more than 98%.is cleared from the blood quickly and has higher uptake in the liver.There was a big difference of biodistributions betweenandin the nude mice.The uptake ofin tumor is not obvious.The results of imaging made by MRI and SPECT using SPION-DMSA andrespectively show that the tumor passive targeting of SPION-DMSA andis limited.Therefore,is not an ideal SPECT/MRI dualmodal imaging agent for the nude mice bearing U87MG human glioma.
Key words:super-magnetic iron oxide nanoparticle;DMSA;99Tcm;SPECT/MRI dualmodal imaging agent