趙麗娟,邵燕靈
(中北大學(xué) 理學(xué)院,山西 太原 030051)
一個極小譜任意的復(fù)符號模式
趙麗娟,邵燕靈
(中北大學(xué) 理學(xué)院,山西 太原 030051)
復(fù)符號模式;蘊含冪零;譜任意;冪零—雅可比
若S1=A1+iB1和S2=A2+iB2是兩個n×n復(fù)符號模式矩陣,如果A2是A1的子模式,且B2是B1的子模式,則稱S2是S1的子模式,也稱S1是S2的母模式.若S2是S1的子模式,且S2≠S1,則稱S2是S1的真子模式.
(3) 替換后的矩陣的特征多項式表達式如下:
(1)
(2)
其中aj,bk為正實數(shù),j,k=1,...,n.
j=1,2,...,n.
則有
將第k行的λ倍加到第k+1行,k=1,...,n-1,再按第2,4...n-3,n-1,n列依次展開,得
定理得證.
定理2 設(shè)Sn形如(1),則當n≥5時,Sn及其母模式都是譜任意的.
再把行列式按第1,2,...,2n-6行展開,得
所以Sn及其母模式是譜任意的.證畢.
定理3 設(shè)Sn是形如(1)的符號模式,則當n≥5時,Sn是極小譜任意的.
(1)顯然,tkk=skk,k=1,n-2.
(2)若T所決定的定性矩陣類里的矩陣是奇異的或是非奇異的,則T都不是譜任意的,所以tk,k+1=sk,k+1,k=1,...,n-1.
[1]DrewJH,JohnsonCR,OleskyDD,etal.Spectrallyarbitrarypatterns[J].LinearAlgebraanditsApplications, 2000, 308(1):121-137.
[2]CaversMS,VanderMeulenKN.Spectrallyandinertiallyarbitrarysignpatterns[J].LinearAlgebraanditsApplications, 2005, 394:53-72.
[3]McDonaldJJ,StuartJ.Spectrallyarbitraryraypatterns[J].LinearAlgebraanditsApplications,2008,429:727-734.
[4]CaversMS,KimIJ,ShaderBL,VanderMeuleKN.Ondeterminingminimalspectrallyarbitrarypattern[J].TheElectronicJournalofLinearAlgebra,2005,13:240-248.
[5]BritzT,McDonaldJJ,OleskyDD,etal.Minimalspectrallyarbitrarysignpatterns[J].SIAMJournalonMatrixAnalysisandApplications, 2004, 26(1):257-271.
[6]GaoYB,ShaoYL,FanYZ.Spectrallyarbitrarycomplexsignpatternmatrices[J].ElectronicJournalofLinearAlgebraanditsApplication,2009,18:674-692.
[7]Jia-YuShao,YLiu,Ling-ZhiRen.Theinverseproblemsofthedeterminantalregionsofraypatternsandcomplexsignpatternmatrices[J].LinearAlgebraanditsApplications,2006,416:835-843.
[責任編輯:王軍]
A minimally spectrally arbitrary complex sign pattern
ZHAO Lijuan, SHAO Yanling
(School of Science, North University of China, Taiyuan 030051, China)
complex sign pattern;potentially nilpotent;spectrally arbitrary; nilpotent-jacobian
2015-03-04
山西省回國留學(xué)人員科研資助項目(12-070)
趙麗娟(1989-),女,山西大同人,中北大學(xué)碩士研究生,主要從事組合數(shù)學(xué)方面的研究.
O
A
1672-3600(2015)12-0008-05